

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

Turning the Sentinel-2 Global Reference Image

into a Database of Ground Control Points

OPT-MPC

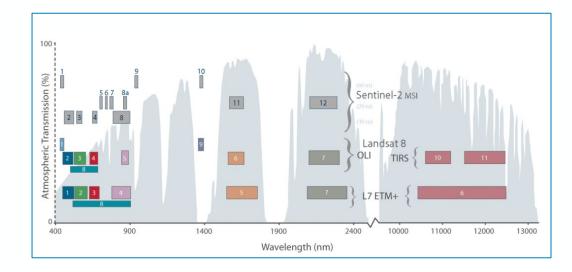
Enache S. (CS), Lombard A.(IGN), Massera S. (IGN), Saulquin B.(CS), Burie A.(CS), Quang C.(CS), Iannone R. (RHEA), Pessiot L. (CS), Boccia V. (ESA)

(ะบุรรค 🖸

L), Pessiot L. (CS), Boccia V. (ESA

ESA UNCLASSIFIED – For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY


- 23/05/2022

Copernicus Sentinel-2 Constellation

- ✓ Optical multi-spectral mission for the monitoring of land and in-land/coastal waters.
- ✓ Constellation of two satellites (Sentinel-2A and Sentinel-2B).
- ✓ Polar sun-synchronous orbit at an altitude of 786km, with LTDN 10h30.
- ✓ Swath of 294km.

✓ Free & open products for feeding a large range of applications.

Sentinel 2 Geometric Accuracy Targets

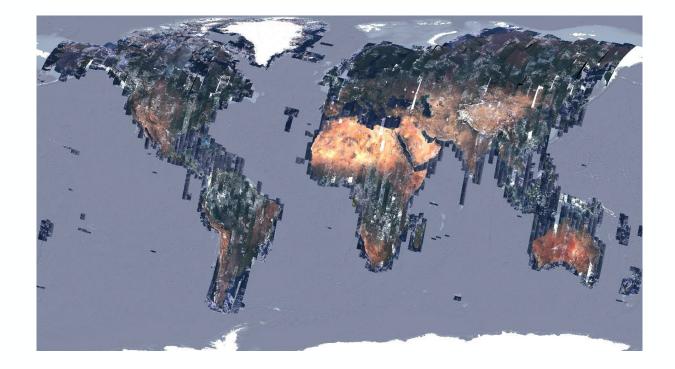
- Geometric target justification
 - > Sentinel 2 is designed to produce high revisit time series at medium resolution
 - Geometric requirements ensure the repeatability of images and contribute to image quality (multi-spectral registration)

- Main Sentinel 2 products:
 - <u>Level 1B</u>: radiances, radiometrically corrected product
 - in sensor geometry: not publicly disseminated

- Level 1C: TOA reflectances orthorectified product (geometric ortho-correction considering a DEM) (UTM MGRS)
- Level 2A: BOA reflectances (same projection)

Sentinel 2 Geometric Accuracy Targets

- > Without geometric refinement < 20 m</p>
- > With geometric refinement < 12.5 m
- Multi-temporal (relative) geolocation < 5 m


What is the Global Reference Image (GRI)?

GRI is composed of about 1000 Level 1B Sentinel-2A & B mono-spectral (B4, red channel) images

- > worldwide coverage including many isolated islands
- stack of images limiting clouds (up to 5 images)
- computed in a refined global block
 - Accuracy: 7m CE95
 - Internal coherence: 0.1p @95%
- designed to reach L1C targets:
 - 12.5m CE95
 - multi-temporal registration 0.5p @95%

💳 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔜 📲 🚍 🛶 🞯 🛌 📲 🗮 🚍 🖛 👘

Global Reference Image (GRI)

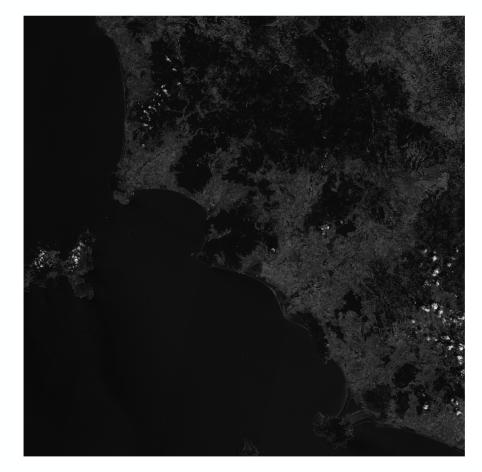
- the 30th of March 2021 over Euro-Africa region followed the 23rd of August 2021 worldwide;
- the geometric refinement algorithm was introduced in order to improve the geometric performance of Copernicus Sentinel-2 products based on the use of the Global Reference Image (GRI).
 - ✓ Absolute geolocation accuracy
 - from 11 m improved to < 7 m (CE95)
 - ✓ Multi-temporal co-registration accuracy
 - from 9 m improved to < 5 m (CE95)

consistent time series for the Sentinel 2 users' community

Collection 1:

- Strong potential but not really user oriented
- Making the GRI useful and usable for the international user community requires some evolutions of the current GRI

Multi-layer GRI product in Level 1C


generated by converting to Level 1C the multi-layer

GRI product in Level 1B

compliant to the last Sentinel 2 Level 1C format evolutions

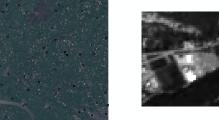
(PSD 14.9, PB 04.00)

- generated with the Copernicus DEM at 30m resolution
- composed by multiple layers

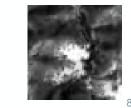
S2A_OPER_MSI_L1C_TL_MPS__20161018T120000_A000022_T32TPN_B04.jp2

→ THE EUROPEAN SPACE AGENCY

→ THE EUROPEAN SPACE AGENCY


• A set of textured points of interest extracted from GRI images

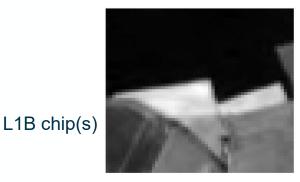
- Subset of GRI coverage
- Relevant features of the landscape automatically detected
- Same Geometric Quality as GRI •
- Perennial


• What is the GRI GCP DB?

- Qualified
- Use context :
 - In order to be easily usable for S2 refining but also in other contexts than S2 (LSTM, CHIME...), up to 50m resolution.
 - Points have to be considered as cluster (statistical set)

GRI Ground Control Points DB

GRI GCP DB main requirements



sensor geometry as the L1B GRI
reference to the L1B datastrips
attached crop image(s): 10m resolution, 57x57p

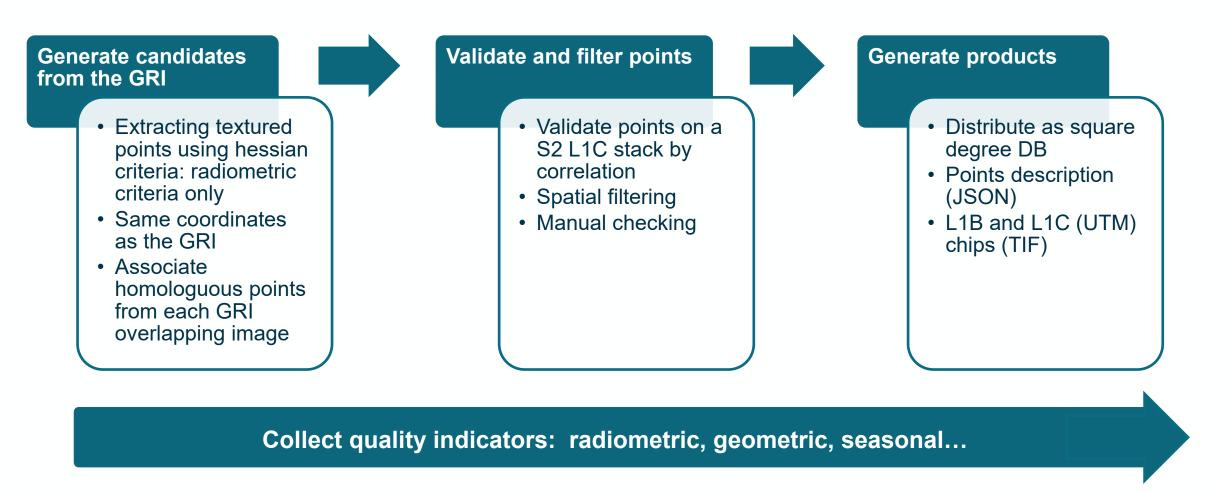
GCP's in L1C

user oriented
ground coordinates (with Copernicus DEM 30m)
attached crop image(s): 10m resolution, 57x57p, rectification on constant Z value, local UTM projection

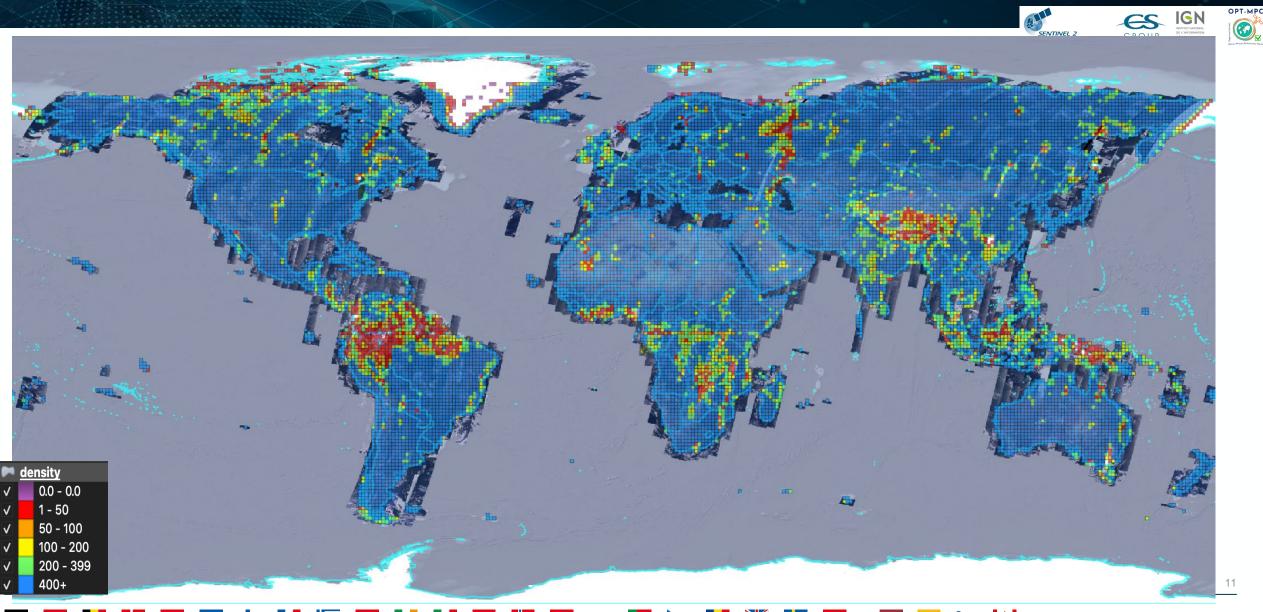
57x57 pixels

Generic constraints

- distributed by square degree
- mean density about 200pt/deg²
- free open source
- a related documentation for public distribution: Product Handbook and Validation Report


L1C chip(s)

GRI GCP DB building process



GRI GCP DB expected density

→ THE EUROPEAN SPACE AGENCY

Validation for each GCP

- Includes strong gradients or enough texture to be used by the S2 correlation tool (gradients, entropy & anisotropic ratio)
- Clouds, snow and water bodies assessment using with Fmask
- Has a good potential using the S2 correlation tool: estimation of the winter and summer correlation scores using at least 3 non-cloudy 2020-21 images

- > Validation of the spatial distribution of the GCPs:
- An adequate density of the GCPs over the 1°x1° grids
- An adequate density in the overlaps between the S2 orbits (for the S2 refining optimisation)

→ THE EUROPEAN SPACE AGENCY

Product Info/ Tile Info

Version, Z Source, Ellipsoid Name, Geoid Name, Tile Name, Tile Extent

GCP Info

ID, Longitude & Latitude (°), MGRS Tiles, Altimetry, Planimetric Accuracy

Radiometry

Y&X gradient sums, Anisotropic ratio, Entropy, Clouds/Cloud shadows/Water/Snow Masks coverages(%)

Quality_Indicators

Quality Score , Seasonal correlation scores , Seasonal curvature scores

• GRI List

L1B: Product Name, Datastrip Name, S2 Detector, L1B Chip/ Image Coordinates, L1B Chip/Chip File L1C: L1C Chip / EPSG ChipFile, L1C Chip / Image Coordinates, L1C Chip/Chip File

GCP Validation L1C List

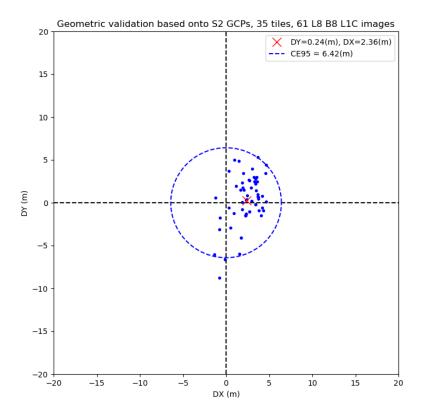
List of the L1C S2 products used to validate the GCP (from 2020 to 2021).

GRI GCP DB: JSON file metadata

GRI GCP DB expected added values

- Optimised performances:
 - easy to handle by the Sentinel 2 Level 1 processor and for users
 - relevant, preselected and validated points
 - multi-temporal registration improvement
- Accessibility:
 - freely distributed to users for their own geometric applications up to 50m resolution
 - easy to support spatial query: distributed in square degrees, include spatial information about points and MGRS tile
 - parameters accessible for query defined on priorities of the end-user: include quality indicators
- Easy to update and improve density locally (by other S2 refined products or external products)

14


→ THE EUROPEAN SPACE AGENC

Landsat 8 Collection 2 geometric accuracy results vs the GRI GCP DB

Example of use of the S2 GCP DB with L8 Collection 2 products

Over Europe

- 61 images used for geometric accuracy estimation
- Very good results: DY=0,24m, DX=2,36, CE95=6,42m

European Union

The views expressed herein can in no way be taken to reflect the official opinion of the European Space Agency or the European Union.

Thank you for your attention

💳 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔚 📲 🔚 📲 🔚 🛶 🚳 🛌 📲 🛨 📰 📾 🏣 🛶 ♦