

Temporal stability of Sentinel-2 information in tropical forests : influence of atmospheric correction method and implication for forest & biodiversity monitoring

> Eric Chraibi, Nicolas Barbier, Gaëlle Viennois, Florian de Boissieu, Sandra Luque, Jean-Baptiste Féret

Living Planet Symposium 2022, May 23rd, Bonn

Global biodiversity crisis

- Strong need for monitoring systems over all biomes
- 90% of deforestation between 1990-2020 occured in the tropics (FAO, 2020)
- Remote sensing holds strong potential for forest biodiversity monitoring
- Unprecedented amount of information collected from Earth observation systems

→ How can we get the most from satellite images of complex tropical systems?

<text><text><text><text><text><text>

INTRODUCTION

METHODS

Estimating biodiversity from remotely sensed information

- Various dimensions of biodiversity: taxonomic, functional...
- Various types of sensors : multispectral, imaging spectroscopy, LiDAR, radar...
- Various methods, hypotheses and metrics to relate RS information to biodiversity

INTRODUCTION

METHODS

Influence of atmospheric correction methods (ACMs) on forest monitoring

- Various ACMs available, method inter-comparisons exist
- Criterions of performance may not reflect suitability to specific applications land types

MDPI

Article
Atmospheric Correction Inter-Comparison Exercise

Georgia Doxani ^{1,*}, Eric Vermote ^{2,*}, Jean-Claude Roger ^{2,3}, Ferran Gascon ⁴, Stefan Adriaensen ⁵, David Frantz ^{6,4}, Olivier Hagolle ⁷, André Hollstein ⁸, Grit Kirches ⁹, Fuqin Li ¹⁰, Jérôme Louis ¹¹, Antoine Mangin ¹², Nima Pahlevan ^{2,13}, Bringfried Pflug ¹⁴

Doxani et al., Remote Sensing 2018

> ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2021 XXIV ISPRS Congress (2021 edition)

EVALUATING THE IMPACT OF LASRC AND SEN2COR ATMOSPHERIC CORRECTION ALGORITHMS ON LANDSAT-8/OLI AND SENTINEL-2/MSI DATA OVER AERONET STATIONS IN BRAZILIAN TERRITORY

Rennan F. B. Marujo ^{a,b}*, José G. Fronza ^{a,b}, Anderson R. Soares ^a, Gilberto R. Queiroz ^a and Karine R. Ferreira ^a

Marujo et al., ISPRS Annals 2021

INTRODUCTION

Influence of atmospheric correction methods (ACMs) on forest monitoring

- Various ACMs available, method inter-comparisons exist
- Criterions of performance may not reflect suitability to specific applications land types
- Strong artefacts and differences between methods observed over tropical forests may compromise reliability of spectral metrics used to monitor biodiversity

Overall description of our analytical framework

Our objective: assess the influence of ACMs on bottom of atmosphere reflectance and products derived from spectral information, in the context of dense tropical forest monitoring

INTRODUCTION

METHODS

Materials: S2 time series identified for our study

Hypotheses:

- Forests experience moderate changes during a relatively short period of time
- 'Stable' canopy reflectance expected

Selection of cloudfree/moderately cloudy S2 images for one tile over ~ 1 month

Two spatial scales of analysis:

•Full tile: includes improperly masked clouds, non forest pixels, sensor artifacts...

•Subset of dense tropical forest: minimum environmental and sensor artifacts

INTRODUCTION

METHODS

Methods: computation of spectral diversity metrics with biodivMapR

Methods: Definition of the temporal stability of an ACM

INTRODUCTION

METHODS

RESULTS

Temporal stability of S2 BOA reflectance

INTRODUCTION

METHODS

RESULTS

Stability of spectral Indices over a time series

NDVI : important differences among acquisitions
 → Influence of VIS inconsistency across time

EVI : more stable despite using 2 VIS bands → Enhancement does its job !

NDWI: globally more stable
→ Stability of SWIR for all methods

LaSRC and Overland tend to be more consistent

RESULTS

Comparison between ACM : case of NDVI

Distribution of values for each date

Comparison between two methods over the whole time period

INTRODUCTION

Comparison between ACM– Alpha Diversity (Shannon index)

Distribution of values for each date

Comparison between two methods over the whole time period

INTRODUCTION

Correlation and RMSE between two methods at each date

Stability of results- Beta Diversity (Bray Curtis dissimilarity)

- Spectral dissimilarity across space is influenced by spatial extent analyzed
- Relatively consistent spectral dissimilarity computed from subset with minimum artifacts
- Strong decrease in consistency of spectral dissimilarity for most ACMs when considering full tile

RESULTS

Conclusions & perspectives

- Temporal stability of VIS Bands & NDVI over tropical forests varies depending on ACM
- NIR & SWIR bands are less affected
- LaSRC appeared as the most suitable ACM for tropical forest monitoring in our study
- Need to perform direct validation using in situ mesurements and forest inventories
- ... This may not hold across land surface types (Temperate vs. Tropical, Forest vs. agricultural land vs. bare soil...)

				Tem	poral Sta	bility			Tile vs.	subset	
		BOA reflectance			Vegetation indices			Spectral diversity		Spectral diversity	
		(S2 bands)					, , ,		, , , ,		
AND THE REAL		B02-	B06-	NDVI	EVI	NDWI	Alpha	Beta	Alpha	Beta	
The Market Street		B05	B12								
	MAJA	Θ	\bigotimes	Θ	\oslash	\bigcirc	Θ	\otimes	\otimes	Θ	
	Sen2cor	Θ	\oslash	Θ	\oslash	\oslash	Θ	\otimes	\otimes	\otimes	
ALL TON	Overland	Θ	\oslash	Θ	\oslash	\oslash	Θ	Θ	Θ	Θ	
	LaSRC	\oslash	\oslash	\oslash	\bigcirc	\oslash	\oslash	Θ	Θ	\oslash	

Thank you

Questions?

We thank CNES & THEIA data & service center for MAJA, ESA for Sen2Cor, NASA for distribution of LaSRC, and Airbus for Overland

This research was funded by the Agence Nationale de la Recherche (France) (BioCop project— ANR-17-CE32-0001)

Most data processings can be reproduced with open source packages, including :

https://jbferet.github.io/biodivMapR/

https://jbferet.gitlab.io/prosail/

https://jbferet.gitlab.io/preprocs2/

eric.chraibi@inrae.fr