

Comparison of satellite and airborne radar and laser data in Northwest Greenland

Inès Otosakal, Andrew Shepherd¹, René Forsberg², Andreas Groh³, Sine Hvidegaard², Jeremie Mouginot⁴, Louise Sandberg Sorensen², Sebastian Simonsen², Henriette Skourup², Xavier Fettweis⁵, Tânia Casal⁶

i.n.otosaka@leeds,ac.uk

¹Centre for Polar Observation and Modelling, University of Leeds, United Kingdom
 ²DTU Space, Technical University of Denmark, Denmark
 ³Institut für Planetare GeodäsieTechnische Universität Dresden, Germany
 ⁴Institut des Géosciences de l'Environnement, Université Grenoble Alpes, France
 ⁵Université de Liège, Belgium
 ⁶ESTEC, The Netherlands

Northwest Greenland

- Greenland contributed 13.6 mm to GMSL since 1992 (IMBIE)
 ~1/3 of Greenland's mass loss comes from the Northwest sector
- Northwest Greenland counts a large number of marine-terminating glaciers which have experienced sustained retreat triggered by ocean-induced melting
- The pattern of retreat and thinning is complex and suggests that their response to oceanic forcing is modulated by their bed topography and fjord geometry

Wood *et al.* 2018

Measuring Northwest Greenland mass balance from space

- Altimetry measures surface elevation changes at high spatial and temporal resolutions
- But there are uncertainties related to changes in the radar scattering horizon
- Airborne campaigns are key to validate surface elevation changes measured from space and improve mass balance measurements from altimetry

A decade of CryoSat-2 observations

A decade of CryoSat-2 observations + airborne campaigns

June 2010 to June 2021 24.4 million observations	Ku-band SAR/Inteferometic Radar Altimeter (SIRAL)
Annual campaigns from 2010 to 2019	Scanning laser altimeter: ATM

A decade of CryoSat-2 observations + airborne campaigns

	June 2010 to June 2021 24.4 million observations	Ku-band SAR/Inteferometic Radar Altimeter (SIRAL)
	Annual campaigns from 2010 to 2019	Scanning laser altimeter: ATM
Rolante	2017 & 2019-Spring campaigns	Ku-band radar: ASIRAS Ka-band radar: KAREN Scanning laser altimeter: ALS

Comparison of surface elevation measurements

Coverage: 99.0%

34.4%

0.02%

CryoSat-2 VS OIB

CryoVEx 2017

Runway calibration offset (TCOG) ASIRAS: 3.57 m KAREN: -0.07 m

CryoVEx 2019

Runway calibration offset (TCOG) ASIRAS: 3.23 m KAREN: -0.35 m

CryoSat-2 surface elevation change

Comparison of surface elevation change rates

Operation IceBridge

CryoSat-2 VS OIB

Mass balance of the Northwest sector from CryoSat-2

- We estimate mass change in 73 individual glacier basins of the sector
- Largest losses are recorded at:
- Upernavik-Isstrom-N
- Steenstrup-Dietrichson
- Kjer Gletscher
- 456 Gt of ice lost

Comparison to gravimetry and the input-output method

Technique	dM/dt (Gt/yr)
Altimetry	-52.0 ± 1.9
Gravimetry (Groh & Horwath)	-57.2 ± 2.2
Input-Output (Mouginot et al., 2019, updated)	-53.4 ± 0.2

Difference in mass balance in sub-regions of the sector

Comparison of altimetry and input-output in glacier basins

Conclusions

- Overall there is a good agreement between CryoSat-2 and airborne laser data in elevation (0.6 m) and elevation change (6.7 cm/yr)
- The Northwest sector lost ice at a rate of 54.2 Gt/yr between 2010 and 2019
- Agreement between altimetry, gravimetry and the input-output method is variable regionally

- Now that Operation IceBridge has ended, we need to think about how to calibrate and validate CryoSat-2 and ICESat-2
- There is still more to learn on Ku/Ka radar penetration, especially in preparation for CRISTAL
- More CryoVEx tracks with Ku/Ka/Laser in Greenland and Antarctica would be useful for CRISTAL

ESA CryoVEx 2022 EGIG line campaign

