Inès Oto rakar andrew Shepherd ${ }^{1}$, René Forsberg ${ }^{2}$, Andreas Groh ${ }^{3}$, Sine HVielegaard², Jeremie Mouginot ${ }^{4}$, Louise Sandberg Sorensen², Sebastian
Simonsen², Henriette Skourup², Xavier Fettweis ${ }^{5}$, Tânia Casalº
i.n.otosaka@leeds,ac.uk

Centre for Polar Observation and Modelling, University of Leeds, United Kingdom

- ²DTU'Space, Technical University of Denmark, Denmark
${ }^{3}$ Institut für Planetare Geodäsie Technische Universität Dresden, Germany
- Institut des Géosciences de l'Envirơnnement, Université Grenoble Alpes, France

5 Université de Liège, Belgium
${ }^{6}$ ESTEC, The Netherlands

Northwest Greenland

- Greenland contributed 13.6 mm to GMSL since 1992 (IMBIE)
$\sim 1 / 3$ of Greenland's mass loss comes from the Northwest sector
- Northwest Greenland counts a large number of marine-terminating glaciers which have experienced sustained retreat triggered by ocean-induced melting
- The pattern of retreat and thinning is complex and suggests that their response to oceanic forcing is modulated by their bed topography and fjord geometry

Measuring Northwest Greenland mass balance from space

- Altimetry measures surface elevation changes at high spatial and temporal resolutions
- But there are uncertainties related to changes in the radar scattering horizon
- Airborne campaigns are key to validate surface elevation changes measured from space and improve mass balance measurements from altimetry

A decade of CryoSat2 observations

	June 2010 to June 2021 24.4 million observations	Ku-band SAR/Inteferometic Radar Altimeter (SIRAL)

A decade of CryoSat2 observations + airborne campaigns

	June 2010 to June 2021 24.4 million observations	Ku-band SAR/Inteferometic Radar Altimeter (SIRAL)
	Annual campaigns from 2010 to 2019	Scanning laser altimeter: ATM

A decade of CryoSat2 observations + airborne campaigns

$\left.\begin{array}{|c|c|c|}\hline \text { June 2010 to June 2021 } \\ 24.4 \text { million observations }\end{array} \quad \begin{array}{c}\text { Ku-band SAR/Inteferometic } \\ \text { Radar Altimeter (SIRAL) }\end{array}\right\}$

Comparison of surface elevation measurements

Gryosat-2 VS OIB

Gryovex 2017

GryoVEx 2019

KU-ALS KA-ALS

Mean (m)	-1.0	-0.62
Median (m)	-0.80	-0.64
STD (m)	0.67	0.23

Runway calibration offset (TCOG) ASIRAS: 3.23 m
KAREN: -0.35 m

GryoSat-2 surface elevation change

Comparison of surface elevation change rates

GryoSat-2 VS OIB

	NW sector	LRM	SARIn
Mean (cm/yr)	6.7	-0.7	9.5
Median (cm/yr)	0.4	-1.1	2.1
STD (cm/yr)	72.9	37.0	82.1
$\#$	6,951	1,878	5,073

Mass balance of the Northwest sector from CryoSat-2

- We estimate mass change in 73 individual glacier basins of the sector
- Largest losses are recorded at:
- Upernavik-Isstrom-N
- Steenstrup-Dietrichson
- Kjer Gletscher
- 456 Gt of ice lost

Comparison to gravimetry and the input-output method

Technique	$\mathbf{d M / d t} \mathbf{(G t / \mathbf { y r })}$
Altimetry	-52.0 ± 1.9
Gravimetry (Groh \& Horwath) Input-Output (Mouginot et al., 2019, updated)	-57.2 ± 2.2

Difference in mass balance in sub-regions of the sector

Close agreement

 between gravimetry and the inputoutput estimatesClose agreement between altimetry and the inputoutput estimates

Large spread of all three estimates

All techniques are in good agreement

Large spread of all three estimates

All techniques are in good agreement

Comparison of altimetry and input-output in glacier basins

conclusions

- Overall there is a good agreement between CryoSat-2 and airborne laser data in elevation (0.6 m) and elevation change ($6.7 \mathrm{~cm} / \mathrm{yr}$)
- The Northwest sector lost ice at a rate of $54.2 \mathrm{Gt} / \mathrm{yr}$ between 2010 and 2019
- Agreement between altimetry, gravimetry and the input-output method is variable regionally
- Now that Operation IceBridge has ended, we need to think about how to calibrate and validate CryoSat-2 and ICESat-2
- There is still more to learn on Ku/Ka radar penetration, especially in preparation for CRISTAL
- More CryoVEx tracks with Ku/Ka/Laser in Greenland and Antarctica would be useful for CRISTAL

ESA GryoV Ex 2022 EGIG line campaign

