

Overview of platform and communications technology for future EO in ESA

(Session-B9.04 – B9.04 Platform and Communications technology for future EO)

Josep.Rosello@esa.int & Frederik.Brauer@esa.int

EO Technology Coordination & Frequency Management, EOP-FMT EO Future Missions and Architecture Department, EOP-F ESTEC, 23 May 2022

- ESA EO Technology : Overview
- Focus on non-instruments \rightarrow enable more & setup the efficient path for constellations
 - Standard Platform
 - Space-Ground Communications & Operation
 - CleanSpace (5th presentation of the session)

2

ESA EO Satellites

Science + Copernicus + Meteo 15 in operation 39 under development 12 under preparation

Higher performance / cost ratio

- New Measurements/ EO instruments (enabler)
 - Higher spatial, temporal, radiometric resolution
 - **Full spectrum** from 10's of MHz (RF) to UV (optical)
 - Disruptive: e.g. from the "2nd Quantum Revolution"
- Lower recurring **development cost / faster adoption**
 - Platform Standardisation & multi source suppliers
 - Spin-in techno: e.g. COTS
 - Lifetime & flexibility (FPGAs)
 - Digitalisation (e.g. MBSE)
 - CleanSpace (e.g. demisable)
 - Big Data & Analytics (AI enabler) & Data continuity

Miniaturisation and constellations

Generic

- More **autonomous** platform & operations & synchronisation
- Distributed Ground Segment

Not limited to LEO: also HEO & GEO orbits relevant for EO

EOP technology (across and beyond ESA missions)

Platform and space-to-ground communication technologies Some achievements:

ADHA: Advanced **Data Handling** Architecture

Objectives:

- Reduce cost in recurring platform
- Reduce development & adoption time

<u>Status</u> :

- 2021-2024: Develop + integrate (multi-source) modules EM (TRL=6)
- Co-funded FutureEO + DPTDE (Corporate) 2 parallel studies running

Inspirational **Cubesats**Standard Interfaces
COTS enabler

STEPS TO ENABLE IT :

- Common Requirements by LSIs and ESA
- Standardisation by ESA and Industry
- Development of Units with interchangeable modules

What to standardize ?

- Interfaces: Electrical, mechanical, thermal, ... incl. backplane
- AIT approach (modules & units)
- Minimise the Death Valley gap

APA: Advanced **Power** Architecture

Same objectives as for ADHA:

- Reduce cost in recurring platform
- Reduce development & adoption time
- → Also standardize Interfaces & AIT

Scope is the PCDU

(Power Conditioning and Distribution Unit)

- Reduce cost
- Adoption time
- → Different modules wrt ADHA :
 - Solar Regulator for battery bus.
 - Battery Management Module.
 - DHS Module.
 - Distribution Module

STATUS :

- June 2022 IPC : Procureent Proposal for APA
- KO expected within 2022
- Same co-funding scheme as ADHA (DPTD+FutureEO)

Long Term vision for Ground Segment with > 30 operational sats: **Current + Expansion + Next-Gen Sentinels**

- → need to **do much more** with similar resources → **automation**, but also new Challenges \rightarrow Innovation with New technology:
- Higher data rates \rightarrow K-band downlink (~ 10 Gb/s)
- Data relay \rightarrow optical at 100 Gb/s (Hydron by D/TIA)
- Simultaneous downlink and TTC every orbit:
 - X-band (TTC) instead of S-band \rightarrow simpler antenna if multi-band
 - protocols
- More distributed systems + cloud technologies
- Timeliness & Higher autonomy (24/7) : e.g. IoT
- Federating systems (institutional NewSpace)

See 6th presentation of the session

Examples of Technology Developments for CubeSats FutureEO: only EO instruments – also for Small Sats (Scout type) TDE/GSTP : Platform and Instruments

6 DoF Cold Gas Propulsion (GomspaceSE)

RIT 3.5 Gridded Ion Engine (Mars Space UK)

Solar Array Drive Assembly (IMT IT)

Multi-Parallel Micro-Pumped Loop(Demcon, NLR, ISIS NL)

X-band Deep Space Transponder (IMT, TAS-I, Sitael, UniBoIT)

X-band Reflectarrayantenna (TICRA, GomspaceDK)

Ka-band Reflector antenna (LSS DE)

X to Ka-band Reflector antenna (Comet IngenieriaES)

12

Takes away

EOP Technology needs

- New + higher performance (EO instruments)
 - Higher efficiency (incl. platform / operations) \rightarrow key to grow towards constellations

Driven by institutional (Large Satellites),

and paving the path to constellations (incl. Standard Platform, Communication Network)

utureEO Programme

- Unique synergizer to build the EO ecosystem
- Enabler / entry to the whole range of ESA EO missions
- more ideas than resources (TDE complement insufficient)

Private initiatives

13

💶 📕 🛌 📲 🛶 📲 🚛 📲 🔚 📰 🔜 📲 🔜 📲 🛶 🔯 📲 🎞 🚼 🖬 🔛 🕍 🗰 👘 🔶 The European space agency

B9.04 Title	Presenter
Overview of platform and communications technology for future EO in	
ESA	ESA D/EOP
Airbus platform and communication technology for the future EO	Airbus
EOS - OHB's LEO Standard Platform	ОНВ
M.I.L.A Platform product line and its application for HPCMs	TAS
CleanSpace: ESA's solution for a sustainable space sector	ESA D/TEC
(R)evolution of EO satellite communications	ESA D/OPS

ID	Session Title	Theme	Nb. Sessions	Day	Time	Room
B9.07	Technologies in National Agencies for EO	Space Techno	1	Mon	13:30	H1.01
B9.04	Platform and Communications technology for future EO	Space Techno	1	Mon	15:40	H1-01
B9.02	New Mission Concepts	Not selected missions	2	Tue	08:30	H1-01
B9.06	Al@edge and Emerging Computing Paradigms for the Future of EO	Space Techno	1	Tue	10:40	Garden Room
B9.05	Microwave Instrument Technology for EO	Space Techno	1	Tue	13:30	H1-01
B9.03	Optical Instrument Technology for EO	Space Techno	1	Tue	15:40	H1-01
B7.04	CubeSats at NASA	NewSpace	1	3-Wed.	10:40	H2-02
B7.03	New Space missions with small and nanosatellites	NewSpace	2	4-Thu	13:30	H2-02
B7.05	GNSS RO – GNSS-R	NewSpace	1	5-Fri	08:30	Berlin
E1.05	New Space missions in InCubed	NewSpace	1	5-Fri	10:40	Berlin

C3	Emerging EO Technology in ESA and fostering European non-dependency	Agora	Wed.	12:30
----	---	-------	------	-------

🗕 👝 🧕 🚺 💶 🗧 🛨 💥 🚍 🦢 🍁 🔶 THE EUROP