

The European Space Technology Master Plan

Edmund Williams Technology Coordination and Planning Office TEC-H Living Planet Symposium, 23 May 2022

||

ESA UNCLASSIFIED - For ESA Official Use Only

"To provide for and promote, for exclusively peaceful purposes, **cooperation** among European states in **space research and technology** and their space applications."

ESA Convention - Article 2

ESA BUDGET BY DOMAIN FOR 2022: 7.15 B€*

EUROPEAN SPACE TECHNOLOGY BUDGETS (2020) (ref. ESTMP 2021)

ESA Programmes and Initiatives with a strong Technology R&D Component

EOP Technology under 3 programmes:

- **FutureEO**: ~7 M€/yr + 30-40% of Ph.0/A studies (varies every year)
- **TDE:** ~6.5 M€/yr up to TRL 3-4
- **GSTP**: ~10 M€/yr higher TRLs

TRL 9 Actual system "flight proven" through successful mission operations																
TRL 8 Actual system completed and accepted for flight ("flight qualified")							i	P nple	roje men	ct tatic	n					
TRL 7 Model demonstrating the element performance for the operational environment																
TRL 6 Model demonstrating the critical functions of the element in a relevant environment																
TRL 5 Component and/or breadboard critical function verification in a relevant environment																
TRL 4 Component and/or breadboard functional verification in laboratory environment								C	for once	pts						
TRL 3 Analytical and experimental critical function and/or characteristic proof-of-concept								ŗ	has 0/A	25						
TRL 2 Technology concept and/or application formulated									/B1							
TRL 1 Basic principle observed and reported																
	TDE	стр	GSTP Develop	GSTP Make	GSTP Fly	ARTES AT	ARTES CG	ARTE6 SPLs	Future EO	InCubed	Sci SpacE	ExPeRT	H2020 HSNAV	NAVISP E1	NAVISP E2	FLPP

- TDE Technology Development Element
- CTP Science Core Technology Programme
- GSTP General Support Technology Programme
 - Element 1 Develop
 - o Element 2 Make
 - Element 3 Fly
- ARTES CC Advanced Research in Telecommunications Systems Core Competitiveness
 - ARTES Advanced Technology
 - ARTES Competitiveness & Growth
- ARTES SPLs ARTES Strategy Programme Lines
- FutureEO Future EO Programme, Development and Exploitation Components
 - Block-1 incl. Technology and Mission Definition
 - o Block-2 flying Research Missions
- SciSpacE Science in Space Environment
- ExPeRT Exploration, Preparation, Research and Technology
- H2020 HSNAV Horizon 2020 Satellite Navigation
 Programme
- NAVISP Navigation Innovation and Support
 Programme
 - Element 1 Innovation in Satellite Navigation
 - Element 2 Competitiveness in PNT

→ THE EUROPEAN SPACE AGENCY

• FLPP - Future Launchers Preparatory Programme

ESA AGENDA 2025

💻 📰 📲 📰 💳 🛶 📲 🔚 📰 📰 📲 📰 💏 📰 🚛 🚳 🛌 📲 🗮 ன 🖬

30%

IMPROVEMENT OF SPACECRAFT DEVELOPMENT TIME BY 2023

10X ONE ORDER OF MAGNITUDE BETTER COST EFFICIENCY WITH EVERY GENERATION

30%

FASTER DEVELOPMENT & ADOPTION OF INNOVATIVE TECHNOLOGY

2030

TARGET FOR INVERTING EUROPE'S CONTRIBUTION TO SPACE DEBRIS

3D visualisation system at ESA's Concurrent Design Facility (©ESA)

Unprecedented 30% more-efficient spacecraft solar cell (©Azur Space)

Martian meteorite on Earth calibrates camera bound for Mars ($\ensuremath{\mathbb{C}\text{ESA}}\xspace)$

ESA's e.Deorbit mission is developing robotic arms and nets to capture Envisat ($\ensuremath{\mathbb{C}\text{ESA}})$

EUROPEAN TECHNOLOGY COORDINATION AND PLANNING

HARMONISATION: AN INCLUSIVE PROCESS

- \rightarrow Over 2 decades of operation
- \rightarrow 52 active roadmaps
- ightarrow 10 technology topics / year
- \rightarrow Extensive consultation process

Eurospace, SME4Space, ESRE, EARTO, etc.

- Unique reference on European Space Technology
- 2021 ESTMP is 5th Edition jointly published with the European Commission (EC)
- Over a 100 contributors: 31 countries, EC, European Defence Agency (EDA), ESA programmes and experts

Contact for copies: ESTMP@esa.int

ESTMP CONTENT

- A snapshot of the space sector in the global context
- European Institutional space technology budgets
- Overview of all ESA/EU (31) Member States organisation of national space technology and budgets
- Technology Harmonisation and roadmaps
- ESA technology programmes
- EC and EDA technology programmes and initiatives

Contact/request for copies: ESTMP@esa.int

💳 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 📰 🔜 📲 🚍 🛶 🚳 🛌 📲 🖬 🖬 📾 🍁 ♦♦ ♦♦

User Driven (SCI or App) - (LIVING PLANET PROGRAMME) CSCI or App)

Open Calls : Ideas from <u>science</u> partners

• User needs from institutional partners & industry

EO TECHNOLOGIES AND TECHNIQUES ARE COMPLEX

New + Higher performance Instruments - (hungry for more knowledge)

- Higher spatial, temporal, radiometric resolution
- Full EM spectrum
- Very diverse observations (science observing geometry)
- Adopt **disruptive** : e.g. quantum sensing

EO Science & applications (EO Techniques) are complex

- data from >1 instrument \rightarrow more models + data fusion
- well calibrated (incl. in-situ measurements)
- → Big Data Analytics

There is much more: Systems / Architecture

including Commercial / NewSpace , ...

need to focus

More information on platform provided in later sessions

14

💻 📰 📲 🚍 💳 🛶 📲 🔚 📰 🚍 📲 📲 🚍 🛶 🞯 🛌 📲 🗮 🚍 😖 🔤 🛶 👘 🛨

Other Technology Sessions

ID	Session Title	Theme	Nb. Sessions	Day	Time	Room
B9.07	Technologies in National Agencies for EO	Space Techno	1	Mon	13:30	H1.01
B9.04	Platform and Communications technology for future EO	Space Techno	1	Mon	15:40	H1-01
B9.02	New Mission Concepts	Not selected missions	2	Tue	08:30	H1-01
B9.06	Al@edge and Emerging Computing Paradigms for the Future of EO	Space Techno	1	Tue	10:40	Garden Room
B9.05	Microwave Instrument Technology for EO	Space Techno	1	Tue	13:30	H1-01
B9.03	Optical Instrument Technology for EO	Space Techno	1	Tue	15:40	H1-01
B7.04	CubeSats at NASA	NewSpace	1	3-Wed.	10:40	H2-02
B7.03	New Space missions with small and nanosatellites	NewSpace	2	4-Thu	13:30	H2-02
B7.05	GNSS RO – GNSS-R	NewSpace	1	5-Fri	08:30	Berlin
E1.05	New Space missions in InCubed	NewSpace	1	5-Fri	10:40	Berlin

C3 Emerging EO Technology in ESA and fostering European non-dependency

Agora Wed. 12:30

+

B9.07 Title	Presenter			
The European Space Technology Master Plan	ESA			
Technology Developments in the German EO Programme				
CNES Earth Observation Programme overview - key examples of innovative technological EO developments				
Italian Space Agency technologies for the future of EO	ASI			
UK EO Technology Development	UKSA			
NASA Earth Science Technology development for future missions	NASA			

*

EOP Technology Needs

EOP Technology needs

- New + higher performance (EO instruments)
- Higher efficiency (incl. platform / operations)

Market pull (User driven: EE, Copernicus, Meteo) + Techno push (enabler for <u>new Mission Calls</u>)

• focus on the best : competitive processes

Driven by institutional (Large Satellites), ↓ but opening to constellations (incl. small sats) ► EO Architecture

Conclusion

- Technology development is fundamental to:
 - enable missions
 - strengthen competitiveness and ensure non-dependence
- Continued investment is needed, in coordination at European level (by ESA, National, EC, EDA + Industry)
- ESA-led Technology Harmonisation, working together with European institutional and industrial stakeholders
 - map current + roadmap for future developments
- European Space Technology Master Plan:
 - a concrete product of European cooperation on space technology
 - provides overview through the Technology Harmonisation
- EO technology is challenging and multi-dimensional
 - a combination of market (user) pull/mission driven and technology push for future Calls
- FutureEO programme (in ESA):
 - the key enabler for the whole range of EO missions
 - also key within ESA (Envelope-nature = flexibility)