

Living Planet Symposium Take The Pulse Of Our Planet

EXAMPLES OF INNOVATIVE TECHNOLOGICAL EO DEVELOPMENT IN CNES

EO National Missions Strategy and Programmes 23 May 2022 – 13:30-15:10

Dr. Selma Cherchali
Head of Earth Observation Program
Strategy Directorate

Prepare to the Future

Technical

developments:

R&T & Demonstrators R&T call of ideas Research & Industrial partership

Technical Roadmap

COMET

Additive Fabrication @ Almia-CNES

Visible Caméra @ 3Dplus

Mission & System: Phases 0 (PASO) and Phase A

Microcarb @ CNES

Thesis

Project development: Phases B, C, D, E

R&T Structuring (1/2)

Preparing new generation orbital infrastructures for Localisation, **Navigation & system**

Developing methodologies and technologies needed to **Protect** the future systems

RE+VN

Promote the emergence of new generation Earth **Observation** system

Improving the use of **Space** Telecommunication and their competitive positionning

Enhance space infrastructure and data to strengthen their use and develop **Applications**

Develop French skills in preparation of the future programmes for **Universe** studies and Exploration

R&T Structuring (2/2)

Constantly improving the **Platform** families (including balloons) and their corresponding key technologies

Simplifying Satellite to Ground communications systems to make them more reliable and reduce price projections

BS

Mastering Micro-technologies in the space environment and keeping abreast of the evolution of nanotechnologies with a view for their use in the space sector

Developing **Generic** Techniques and technologies for spacecrafts

R&T for Orbital Systems

Conducted with various institutional research organisations and industrials

Co-financing is the rule

Earth **Observation**

Telecoms

Space **Sciences** **PPRT 2021**

OT: dedicated to EO payloads development

- VHR optic imagers
- Multi/Hyper spectral radiometers
- **Optic Active & passive sounding** instruments
- Microwave sounding instruments
- Altimeter and radar

EO Priorities

Science

- The study of the radiative impact of aerosols and clouds, in particular by lidar techniques
- Improvement of the reference system and measurement of the gravity field,
- > The measurement of the surface ocean current,
- Monitoring of biodiversity and terrestrial ecosystems by high resolution hyperspectral measurements,
- Measurement of ocean salinity and soil moisture at high resolution,
- > The strong involvement of France in the definition of Copernicus long term

General

- Repetitiveness of observations,
- Miniaturization,
- Combination and assimilation of multi-source and voluminous data
- > Support for industrial competitiveness and a technical basis for institutional missions

R&D Atom accelerometers for space

- On-board metrological performances.
- Vibrations and rotations effect study.
- Validating key technologies

- Laser system:
 - Fiber telecom based laser system.
 - Frequency doubling (MUQUANS).
 - Qualification TRL 6. SODERN

Ultra-cold atomic source:

- Ultra-cold atomic sources in microgravity.
- Atom-chips for atom trapping and cooling.

Phase 0 GRICE (2017-2019)*

Mission concept:

- Dual satellite mission concept
- Composite acceleration gradient measurement

Mission performances:

- Numerical simulation of the mission performances
- Composite acceleration gradient measurement

Phase 0 CARIOQA (2019-2021)

Quantum Pathfinder mission definition:

- Instrument definition
- Mission study

^{*}T. Lévèque et al, « Gravity Field Mapping Using Laser Coupled Quantum Accelerometers in Space », Journal of Geodesy, 95, 1 (2021).

Magnetometer: from SWARM to NanoMagSat

> 2013 to 2019 : Development of key technologies to miniaturize the sensor & test of a complete probe

NanoMagSat probe Vs SWARM probe

Inside design of the NanoMagSat probe

Output TRL: 4/5 (development of a complete engineering model (EM), fully operational tests on EM, environmental tests on critical components)

- 2019 2021 : Improvement of the vector mode to complete NanoMagSat payload + new target applications ("space weather", planetary science...)
- Then switch to a ESA framework

From R&T to orbit: SARAL AltiKa

1998 - 2003 (CNES R&T)

Technological: Ka amplifier, waveform generator, ASIC ...

Physic of measurement: propagation, wave/surface interaction

1999:Instrument feasability study (phase 0)

2000: End of Phase A

Franco-Indian cooperation (CNES/ISRO)

Dec 2005: K.O. phase C/D

Dec 2008: Instrument delivery (TAS. Fr): 2010

Fev 2013 Launch SARAL

SWOT/KaRIN/RFU:From R&T to SWOT AIT

RFU development

- CNES responsible for the dev of the analog part of the KaRIn instrument (JPL lead)
- Development entrusted to TAS-Fr (Honeywell-UK has developed the Dx)

R&D [2012]

Tx BB

Interferometric Rx chains [2015]

* Credit THALES ALENIA SPACE

SWOT AIT [2022]

RFU PFM [2020]