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Field Boundaries Information Is

an Enabler for Agricultural

App”cations It removes inefficiencies associated with
low accuracy maps and error-prone
manual insertion;

Why An Automatic Detection?@@

Existing maps are based on historic

administrative maps or on observational data Integrated Administration and Control
with low accuracy. System (IACS) with an accuracy better

than 1:5000 is a prerequisite to monitor the
EU’s Common Agricultural Policy (CAP)

Solve complex tasks due to the limited subsidy expenditures;
number of available data and lack of detection
methodology benchmark.
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_ It produces relevant input for crop
monitoring and yield forecasting
applications;

rgb_batch pred
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It provides a foundation in countries
without cadastral data [1].
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1. Wang, S., Waldner F., Lobell, D. (2022). Unlocking large-scale crop field delineation in smallholder farming systems with
transfer learning and weak supervision. Under submission.



Main Purpose: A Reusable Framework

An open Al-ready data set to map field
boundaries with Sentinel-2 and aerial
photography (Al4Boundaries).
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Open-source TensorFlow scripts for creating
an optimised data set, coding and running
Deep Learning (DL) architectures.

open source

"‘:’TensorFIow » TFRecord Files
Open-source
_ _ _ Scripts ‘
3 Flexible, high-performance serving Google
system for deep learning models. Models Training on @
Tensor Processing
Unit (TPU)

“® Tensorflow Serving
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— AldBoundaries: An open Al-ready dataset to map field boundaries
= with Sentinel-2 and aerial photography.

Look at our poster!

Motivations

« Recent advances on Deep Learning methods have highlighted the capacity to
extract field boundaries from satellite and aerial images.

« Deep Learning requires accurate data to be calibrated and assessed.
=) No benchmark data set currently exists to easily achieve comparisons.

 To foster the sense of community in this research topic.

How can we know as scientific community
what works best?

Wang, S., Waldner F., Lobell, D. (2022). Unlocking large-scale crop field delineation in smallholder farming systems with transfer learning and weak supervision. Under
submission.

Waldner, F., et al, (2021), Detect, Consolidate, Delineate: Scalable Mapping of Field Boundaries Using Satellite Images. Remote Sensing.

Waldner F, et al., (2020), Deep learning on edge: Extracting field boundaries from satellite images with a convolutional neural network. Remote Sensing of Environment.
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Al4Boundaries Data set - Samples

Al4Boundaries consists of 7,831 samples of 512x512 pixels for 3-specific data sets along with the corresponding
ground-truth parcel.
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https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/AI4BOUNDARIES/

Base Model: U-Net + EfficientNetB6 + Noisy

Student Learning Approach
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« T. Agrawal, et al., EfficientUNet: Modified encoder-decoder architecture for the lung segmentation in chest x-ray images, Expert Systems, April 2022

+ B Babheti et al., Eff-UNet: A Novel Architecture for Semantic Segmentation in Unstructured Environment, Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), June 2020.
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Just to Start: Loss function, Callbacks, Cyclical
Learning Rate and Metrics.

Loss Function Callbacks & Live Tracking

« EarlyStopping
* ModelCheckpoint
« TensorBoard

Segmentation Boundary Loss

Only the beginning:
we §,eq 9(p)se(p)dp +wp § (1 —g(p))(1 — se(p))dp

0o Vo l5 ) T 901dp + wn ol —sap) —9)]dp . )

Lepr(9) =1-2 Building Deep Learning models without callbacks is
like driving a car with no functioning brakes.
H. Kervadec et al., Boundary loss for highly unbalanced

segmentation, Medical Image Analysis, 2021.
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CLR types: Linear, Parabolic and Sinusoidal. 3



The Model Predicts Boundaries Missing In
the Mask
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The Model Falils to Detect Small Features

0 0 < I"

100 100 -

- ¢t D

N\

200 20(. ; \_/
300 300 -
400 400 1
500 500 -

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Test input image Mask Prediction

10

European
Commission



Lessons Learnt From Preliminary Results
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Extremely imbalanced data set 0.027% boundary vs 99.973% interior
pixels.

Techniques to deal with Imbalanced Classes in Machine Learning:
Oversampling: Adding more copies to the minority class.

Undersampling: Removing some observations of the majority class.
Filtering: Removing masks with less than X percentage of boundary pixels.
Removing exact and near duplicate using percentual hashing algorithm.
Image Augmentation: flip(H/V reflections), random brightness.

akrwNE
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No random rotation & zoom in/out as they
may break field symmetry.
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Towards Real-time Service Mapping & Mosalic

\ Example of inferenced maps
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Next Steps

To advance and facilitate research, development

To automate the delineation of field and comparison for field boundary detection.

boundary around the world, especially
in under-served smallholder regions.

Can Vision Transformers outperform
CNNs? [1,2,3]

To publish the full comparison results, 000

model weights and source code. ﬂ
open source

To foster scientific collaborations in the community.

Z.Liu, et al., (2021), Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, IEEE Xplore.

M.Pu, et al., (2022), EDTER: Edge Detection with Transformer, Accepted by CVPR2022.

Z. Dong, et al.,(2022), Computer vision to recognize construction waste compositions: A novel boundary-aware transformer (BAT) model,
Journal of Environmental Management.
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Only Some Deep Learning

Architectures

Semantic Segmentation

DeepLabVi

FCN ‘ U-Net

Instance Segmentation

3D U-Net
V-Net  SegNet PSPNet

YOLO

I CNN-based methods p

DeepLabV2 DeepLabV3

I Mask RCNN  C

|

DWT

Source: ResearchGate, DOI:10.3389/fmedt.2021.767836
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