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Aid agencies warn of looming famine in Tigray
(LWI) - Time is running out to prevent a looming famine in Ethiopia's Tigray

region, where an estimated 5.2 million people are facing acute...
Jul 23, 2021
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Famine Stalks Ethiopia's Embattled Tigray Region

For months, the United Nations has warned of famine in this embattled corner
of northern Ethiopia, calling it the world's worst hunger crisis in...
Sep 20, 2021
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Planted area estimation approach

. Crop D Non-crop

Crop mask for region and year of interest

Based on Kerner & Tseng et al., 2020, Rapid
response crop maps in data sparse regions.



Planted area estimation approach
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. Crop D Non-crop Crop ® Non-crop
Crop mask for region and year of interest Stratified reference sample

Based on Kerner & Tseng et al., 2020, Rapid
response crop maps in data sparse regions.

Based on Olofsson et al., 2014, Cood practices for estimating area and
assessing accuracy of land change.



Planted area estimation approach
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. Crop D Non-crop Crop ® Non-crop
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Based on Kerner & Tseng et al., 2020, Rapid
response crop maps in data sparse regions.

Based on Olofsson et al., 2014, Cood practices for estimating area and
assessing accuracy of land change.



Planted area estimation approach
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Labeled reference sample
‘| Reference
. D Map Planted Not planted Total
Cro Non-cro Cro ® Non-cro
P P P P Planted P11 P12 P1x
Crop mask for region and year of interest Stratified reference sample | Notplanted | py P22 Pas
Total . . 1
Based on Kerner & Tseng et al., 2020, Rapid P P2
response crop maps in data sparse regions. Confusion matrix

Based on Olofsson et al., 2014, Cood practices for estimating area and
assessing accuracy of land change.



Planted area estimation approach
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Labeled reference sample
‘| Reference
. D Map Planted Not planted Total
Cro Non-cro Cro ® Non-cro
P P P P Planted P11 P12 P1x
Crop mask for region and year of interest Stratified reference sample | Notplanted | py P22 Pas
Total . . 1
Based on Kerner & Tseng et al., 2020, Rapid P P2
response crop maps in data sparse regions. Confusion matrix

Adjust map-based areas — planted area + error at 95% confidence interval

Based on Olofsson et al., 2014, Cood practices for estimating area and
assessing accuracy of land change.



Planted area change estimation approach

. Crop D Non-crop . Crop D Non-crop

Crop mask for year 1 Crop mask for year 2



Planted area change estimation approach

. Crop D Non-crop . Crop D Non-crop . Stable planted Stable not planted

Crop mask for year 1 Crop mask for year 2 . Planted area loss . Planted area gain
4-class change map



Planted area change estimation approach

. Cro D Non-cro
P P

Crop mask for year 1

¥ Tigray 2020-2021 Change Reference Sa...
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Labeled reference sample

. Cro D Non-cro
P P

Crop mask for year 2

. Stable planted

Stable not planted

. Planted area loss . Planted area gain
4-class change map

NP -> NP NP -> P P -> NP P->P Total
NP -> NP P11 P12 P13 DP1a D1«
NP ->P P21 P22 D23 D24 D2«
P->NP P31 P32 P33 P34 D3«
P->P Pa1 P42 Pa3 Paq P
Total Pe1 P2 D3 Pa 1

Adjust map-based areas

l

class area + error



Crop mask generation approach
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Crop mask generatlon approach
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Crop mask generation approach
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Step 1:
Gather >n labels for validation and test data

Crop mask generation approach
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Tigray planted area change estimation

Classify predicted change map

not planted -> not planted
. not planted -> planted
B planted -> not planted
[l planted -> planted
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Tigray planted area change results

(quantitative)
P loss P gain Stable P Stable NP
Estimated 36,242 85.038 1,292,500 3,846,817
area [hal
0,
95% Clof 34913 +55.872 +175,806 +177.235
area [hal
Estimated area values as fraction of total area
P loss P gain Stable P Stable NP
Estimated
area 0.01 0.02 0.25 0.72
95% Cl of
area + 0.01 + 0.01 + 0.03 + 0.03

Summary

§# Small fraction of area
detected as planted
area loss (0-2%) and
gain (1-3%)

§ Most of total area was
stable not planted (69-
75%), stable planted
(22-28%)

17



Tigray planted area change results
(qualitative)

ACLED: Armed Conflict Location & Event Data

Event Type (Count) o Protests (21)
& Battles (660) o Strategic developments (11)
® Violence against civilians (84) ® Riots (5)

e Explosions/Remote violence (22)

0 375 75 150
I I 1 Miles

Reference label: planted loss

Mapped class: planted loss

PlanetScope basemap Jul-Oct 2020
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Tigray planted area change results
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Tigray planted area change results
(qualitative)
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Discussion and limitations

§# Changes in planted area highly localized localized
§% Method only detects total loss of a field

* Delays in ploughing, planting or other variables
* Blockades of supplies, lack of access to markets, blockage
of food aid, different timelines or non-traditional crops, etc.

§# Attribution of changes to conflict requires
additional analysis

§ Standard errors account for error in our estimate, il T oot
but do not account for reference Sample label Ploughing activity visible in Google Earth image,

. . April 2021
errors / interpretations Pr

*  Very hard to verify without ground-truthing

26



Lessons learned / takeaways for future work

Labeling extremely difficult and time consuming
Baseline of expected change

Strategies for improving crop mask accuracies
*  More training data # better map
*  Error analysis needed for informed decisions

Pixel counting faster, but estimates not reliable
More granular estimates (e.g., admin2)

- H Planet Labs Global Mosaic | © Planet Labs, Inc ||
PlanetScope basemap Jul-Oct 2021
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Open source, open data
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Tigray Planted Area Change 2020-2021

This 10m resolution map of planted area change

. in Tigray in 2020-2021 was developed by NASA

Harvest at University of Maryland. The map has
four change classes: stable planted (dark green),
stable not planted (gray), planting gain (light
green), and planting loss (red). The change map
is the result of comparing the binary
classification maps of cropped area in 2020 and
2021. The maps of cropped area in each year
were generated by our machine learning
classifier based on Sentinel-2 observations
covering the 2020 and 2021 growing seasons.

You can read more about the classification method in the
following reference: Kerner, H. R., Tseng, G., Becker-Reshef, I.,
Barker, B., Munshell, B., Paliyam, M., Hosseini, M. (2020). Rapid
Response Crop Maps in Data Sparse Regions. Proceedings of the
'ACM SIGKDD Conference on Knowledge Discovery and Data
Mining Workshops.

Keyboard shortcuts || Imagery ©2022 TerraMetrics | 20 km L

https://hkerner-umd.users.earthengine.app/view/tigraychange2020-2021

Earth Engine Apps




Conclusion

Workflow for estimating annual planted
area and inter-annual change in support of
Rapid Action for Policy Support (RAPS)
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Planted area change estimation approach

. Cro D Non-cro
P P

Crop mask for year 1

Why not estimate
each year

independently
and compare?

. Cro D Non-cro
P P

Crop mask for year 2

Compounding standard errors
Suppose X ha planted in year 1 and
Y ha planted in year 2:
Vi=Xt a
y2=Y + B
Yi—=Y2=X=Y)x(a+p)

B stable planted Stable not planted

. Planted area loss . Planted area gain
4-class change map



Planted area change estimation approach

. Cro D Non-cro
P P

Crop mask for year 1

Why not estimate
each year

independently
and compare?

. Cro D Non-cro
P P

Crop mask for year 2

Compounding standard errors
Suppose X ha planted in year 1 and
Y ha planted in year 2:
n=X=ta
y2=Y £ P
y1=y:=X-Y)x(a+p)

B stable planted Stable not planted

. Planted area loss . Planted area gain
4-class change map

Compounding classification error
Suppose map for each year has 80%
accuracy:

ACCchange = ACCy1 * ACCyy
aCCehange = 0.8 x 0.8 = 0.64
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