

# Use of TROPOMI data in the near-real-time global CAMS assimilation system

#### Antje Inness (ECMWF)

Melanie Ades, Anna Agusti-Panareda, Nicolas Bousserez, Richard Engelen, Johannes Flemming, Sebastien Garrigues, Zak Kipling, Joe McNorton, Mark Parrington, Vincent-Henri Peuch and Roberto Ribas (ECMWF)











#### Copernicus Atmosphere Monitoring Service

Atmosphere Monitoring







The CAMS portfolio includes Earth Observation based information products about:

- global atmospheric composition;
- the ozone layer;
- air quality in Europe;
- emissions and surface fluxes of key pollutants and greenhouse gases;
- solar radiation;
- climate radiative forcing.
- reanalysis of atmospheric compositon

Quarterly validation reports of

Europe's eyes on Earth

This is done by assimilating satellite retrievals of atmospheric composition into ECMWF's IFS (in addition to meteorological observations) - Including TROPOMI data



## Use of TROPOMI data by CAMS

| Monito Species | Status |  |
|----------------|--------|--|

| Species          | Status                                                                                                                                                                                  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCO3             | Active since 4 Dec 2018                                                                                                                                                                 |
| TCSO2 (volcanic) | Active since 5 Oct 2020                                                                                                                                                                 |
| TCSO2 (PBL)      | Used for tests. Waiting for COBRA algorithm implementation before further tests                                                                                                         |
| TCCO             | Passive since 26 November 2018. Biases prevented NRT assimilation. Tests after PDGS upgrade in June 2021 look promising. To be activated in CY48R1 (implementation planned for Q1/2023) |
| Trop column NO2  | Passive since 11 July 2018. Biases in early data versions prevented NRT assimilation. Active since 12 Oct 2021.                                                                         |
| тснсно           | Passive 17 December 2018. No immediate assimilation plans, but will be revisited in framework of CAMS inversion prototype (and HE CAMEO project – if funded)                            |
| CH4 (offline)    | Monitored in CAMS GHG analysis. Used for emission inversion. Assimilation tests due to begin.                                                                                           |













Shown are the number of volcanic TROPOMI SO2 observations for the period: 20210101 - 20220424









Monitoring

#### Current use of SO2 data in CAMS NRT system

- CAMS assimilates GOME-2BC and TROPOMI TCSO2 retrievals making use of the volcanic flags provided by data providers (AC-SAF, ESA; algorithm from DLR)
- We need to make assumptions about the plume height if this is not known in NRT
- Default: SO2 is placed in troposphere at model level 98 (~
  550 hPa, 5 km) by using a prescribed bg-error stdv profile
- This can be modified if injection height is known
- Currently: Globally constant injection height
- 'Baseline configuration: BLexp'
- DLR have developed algorithm to provide information about the plume height in NRT from TROPOMI (Hedelt et al., 2019, doi.org/10.5194/amt-12-5503-2019)
- SO2 LH project one of ESA's S5P Innovation projects
- Data useful for SO2 > 20 DU
- CAMS is testing the use of these data: 'LHexp'

SO2 background error standard deviation





#### Raikoe eruption 22 June-21 July 2019





#### Comparison of CAMS plume height with IAS



Period:

22 -29 June2019

CAMS SO2 analysis shows improved agreement with IASI LATMOS/ULB SO2 altitude data if TROPOMI SO2 LH data are used

**Biases against IASI:** 

BL exp:  $-5.1 \pm 2.1 \text{ km}$ 

LH exp:  $0.4 \pm 2.2 \text{ km}$ 

Using the LH data leads to improved SO2 analyses









#### Differences TROPOMI - CAMS TCCO

Atmosphere S5P CO has been monitored since Nov 2018

# Relative difference TROPOMI – CAMS CO 20181119-20211231



- TROPOMI TCCO is about 10% higher than CAMS in global mean
- CAMS CO also has a negative bias wrt other data



- Positive S5P bias for all data types (or negative CAMS bias)
- Differences between clear and cloudy data over land
- Impact of boreal and austral fires
- Impact of CAMS model upgrades and TROPOMI algo updates



#### Results from S5P CO assimilation tests



- Assimilation of TROPOMI CO leads to improved fit to independent data, especially in the lower troposphere.
- To be activated in next CAMS model upgrade (CY48R1, Q1/2023)
- Assimilation of TROPOMI CO can give additional information in lower troposphere in DA system that already assimilates MOPITT TIR and IASI CO retrievals



#### TROPOMI tropospheric NO2

Atmosphere

Period: 20211101-20220430

Active since 12 Oct 2021

#### S5P NO2 first-guess departures



#### 100 H 120 H 00 H 00 H 02 00 E 00 E 120



#### **ASSIM minus CONTROL**



ASSIM also assimilates GOME-2BC NO2

Assimilation of TROPOMI NO2 (and GOME-2BC) data reduces the CAMS NO2 analysis over Asia where it is known to have a positive bias









Atmosphere

### TROPOMICH4 in IFS emission inversions

Credit: Joe McNorton

TROPOMI, alongside GOSAT and IASI, has been used to perform short-window (24 hour) 80 km global inversions using an extension of the current 4D-Var system.



THE EUROPEAN UNION



#### Summary

- CAMS makes use of NRT TROPOMI O3, SO2, NO2, CO, CH4 and HCHO data
- NRT TROPOMI O3, volcanic SO2, NO2 are actively assimilated by CAMS
- Assimilation of TROPOMI CO assimilation improves fit of CAMS analysis to independent data and is planned for next CAMS model upgrade (Q1/2023)
- TROPOMI CH4 used in emission inversion. Routine assimilation tests about to begin.
- TROPOMI SO2 layer height data can improve CAMS SO2 analysis and forecasts (for strong volcanic eruptions)
- TROPOMI HCHO will be used to develop biogenic emission inversion framework in HE CAMEO project (if proposal is funded)
- CAMS data freely available from ADS: <a href="https://atmosphere.copernicus.eu/data">https://atmosphere.copernicus.eu/data</a>

http://atmosphere.copernicus.eu

@CopernicusECMWF











## The Atmosphere Data Store (ADS)

Atmosphere Monitoring

#### All CAMS data are freely available







#### https://atmosphere.copernicus.eu/data







https://atmosphere.copernicus.eu