

Atmospheric Correction Inter-comparison eXercise (ACIX-II Land): the second implementation of an atmospheric correction assessment for Landsat 8 and Sentinel-2 over land

Georgia Doxani	I Serco for ESA-ESRIN
Ferran Gascon	I ESA-ESRIN
Eric Vermote	I NASA GSFC
Jean-Claude Roger	I NASA GSFC, University of Marylan
Sergii Skakun	I NASA GSFC, University of Marylan

ESA UNCLASSIFIED – For ESA Official Use Only

Atmospheric Correction Inter-comparison eXercise (ACIX-II Land): the second implementation of an atmospheric correction assessment for Landsat 8 and Sentinel-2 over land

Alan Collison	I Planet Labs PBC	Jérôme Louis I <i>Telespazio France</i>
Liesbeth De Keukelaere	I <i>VITO</i>	Fabio Pacifici I <i>Maxar</i>
Camille Desjardins	I CNES	Bringfried Pflug I DLR, German Aerospace Center
David Frantz	I Humboldt-Universität zu Berlin	Hervé Poilvé I Airbus Defence and Space
	& Earth Observation and Climate Processes	Didier Ramon I HYGEOS
Olivier Hagolle	I CNES/CSEBIO	Rudolf Richter I DLR, German Aerospace Center
Minsu Kim	I KBR, Contractor to USGS	Feng YinIUniversity College London, NCEO
ESA UNCLASSIFIED – For ESA Official Use	Only	

₩HÅ5

Free and open access policy to Sentinel-2 and Landsat-8 imagery has stimulated the development and operational use of AC processors for generating Bottom-of-Atmosphere (BOA) products

The objective is to point out:

- <u>Strengths & Weaknesses</u>
- <u>Commonalities & Differences</u>

Definition of the inter-comparison protocol

Coordinators & Participants discussed all the major points and defined the intercomparison procedure. Application of the AC processors

Participants applied their AC schemes on a set of test sites keeping the processing parameters constant. The results were submitted for analysis to ACIX coordinators. Analysis of the results

Coordinators

processed the AC results and assessed the inter-comparison metrics. The results presented and discussed with the participants.

Developer Teams from various Space Agencies, R&D Companies, Research Institutes and Universities Study Sites spread globally based on the AERONET stations (coincident measurements availability) Image Scenes to be processed acquired by Sentinel-2A, -2B and Landsat-8 Months for participants to submit results

Developer Teams from various Space Agencies, R&D Companies, Research Institutes and Universities Study Sites spread globally based on the AERONET stations (coincident measurements availability) Image Scenes to be processed acquired by Sentinel-2A, -2B and Landsat-8 Months for participants to submit results

*

MHO5

AC Processors	Participants	Organization/Company DigitalGlobe [USA]		
AComp	Fabio Pacifici			
ATCOR	Bringfried Pflug	DLR Remote Sensing Technology Institute [Germany]		
EMBAC	Kim Minsu	USGS [USA]		
FORCE	David Frantz	Humboldt-University [Germany]		
iCOR	Liesbeth Dekeukelaere Erwin Wolters	VITO [Belgium]		
LaSRC	Eric Vermote Jean-Claude Roger Sergii Skakun	NASA GSFC [USA] Maryland University [USA]		
MAJA	Olivier Hagolle Aimé Meygret	CNES/CESBIO [France]		
Overland	Hervé Poilvé	Airbus Defence and Space [France]		
Planet SR	Alan Collison	Planet [USA]		
Sen2Cor	Jérôme Louis Bringfried Pflug	European Space Agency (ESA), Telespazio [France] DLR Remote Sensing Technology Institute [Germany]		
SIAC	Feng Yin	University College London [UK]		
SMAC-G/MERRA2 Didier Ramon		HYGEOS [France]		

+

→ THE EUROPEAN SPACE AGENCY

*

WHERE?

÷

Aerosol Optical Depth

AERONET

Estimated AOD (/WV) & compared to Level 1.5 (cloud screened) AERONET data

- 1. Interpolate AERONET values @ λ =550 nm using Angstrom Exponent
- 2. Average AERONET values over time period within ± 15 min from AOD retrieved values (L-8/S-2A, -2B overpass)
- 00-00

+

= | x]

 Average estimated AOD values over an image subset of 9 km x 9 km centred on the AERONET Sunphotometer station

Statistics

No. of samples R² (Coefficient of determination) RMSE bias

Scatterplots and APU Plots

Accuracy, Precision, Uncertainty

Accuracy (A): $A = \frac{1}{n_{\lambda}} \left(\sum_{i=1}^{n_{\lambda}} \Delta \rho_{\iota,\lambda}^{SR} \right)$

Precision (P):
$$P = \sqrt{\frac{1}{(n_{\lambda}-1)} \sum_{i=1}^{n_{\lambda}} (\Delta \rho_{\iota,\lambda}^{SR} - A)^2}$$

Uncertainty (U):
$$U = \sqrt{\frac{1}{n\lambda} \sum_{i=1}^{n\lambda} (\Delta \rho_{i,\lambda}^{SR})^2}$$

--- Sentinel-2

Accuracy

the degree to which a measured value agrees with the reference value

Mostly inside the suggested specifications

→ unbiased results

Precision

the degree to which repeated measurements agree with each other

Mostly close to specifications

Uncertainty

estimate of amount by which measurement differs from the reference value

Consistent performance of most processors in retrieving relative light to medium aerosol loading (AOD<0.2)

iCOR and SMACG: lowest U <0.12, SIAC, AComp, MAJA, Sen2Cor: U< 0.14 Water Vapour

---- Sentinel-2

Percent

More than 90% of the results are falling within the specifications for all the processors except LaSRC (89.5%), SIAC (85%) and FORCE (70%) whose results are more dispersed, mainly for WV values over 3 g/cm2.

01. Ground based validation

RadCalNet [La Crau] (France), Gobabeb (Namibia)], SR are provided by CNES in the same angular conditions as L8, S2A & S2B

05. SR inter-comparison

Plotting the SR time series per date, band and AC approach.

04. Distance Matrix

Distance Matrix was shaped based on the Euclidean distances calculated for the corresponding bands, dates and sites for every combination of couple of processors

02. AERONET corrected data

AC data generated by 6SV radiative transfer model using AERONET data. AOT, aerosol model and column water vapour will be derived from AERONET sunphotometer measurements and will be used in the radiative transfer model in order to perform the AC of TOA reflectance.

03. Noise Estimation

Assuming that there is a linear SR variation between two consecutive acquisition days; for three successive observations the statistical difference between, the center measurement and the linear interpolation between the extremes quantifies two the "noise" :

--- Sentinel-2

01. Ground based validation

La Crau [France]: 44 S2 scenes

--- Sentinel-2

01. Ground based validation

Gobabeb [Namibia]: 40 S2 scenes

---- Sentinel-2 & Landsat 8

01. Ground based validation

La Crau [France]

Gobabeb [Namibia]

---- Sentinel-2

B01 0.05 Accuracy Precision Uncertainty 0.04 *specs=0.05*SR_{ref} + 0.005 0.03 0.02 0.01 0.00 ACOMP ATCOR FORCE LASRC WERLAND PLANET SIAC

02. AERONET corrected data

- Improved results from VNIR (V: B01, B02, B03, B04, (RE/NIR: B05, B06, B07, B08, B8a) to SWIR (B11, B12),
- FORCE & Planet retrievals within the specifications across all bands (not for B01 & B09), similar for
 LaSRC and SIAC (not for B01, B02 & B09)
- AComp's SR retrievals closer to specifications from VNIR to SWIR spectral range, apart from B05 and B12 for which uncertainty exceeds the suggested requirements.

---- Sentinel-2 & Landsat 8

Noise criterion for Arid sites

--- Sentinel-2

03. Noise Estimation

Only sites with >20 scenes from the same orbit

Common sites, dates and quality pixels for all processors [available masks union]

- Similar variability of
 SR over short time
 amongst al processors
 for both site types
- LaSRC produces the
 'smoothest' time series
 for both site types

SUMMARY

ACIX-II Land in Numbers

11 processors implemented on 1500 Sentinel-2 scenes over 80 common sites

9 processors implemented on 1000 Landsat 8 scenes over 74 common sites

Aerosol Optical Depth

mostly in moderate agreement with the AERONET reference values, ~ 0.65

 $< R^2 < 0.775$ and $\sim 0.115 < RMSE < 0.2$

Water Vapour

strong correlations with the AERONET data, $R^2 > 0.9$ and RMSE<0.25

SUMMARY

Surface Reflectance

RadCalNet measurements: similar results for most processors in the SR comparison [La Crau, Gobabeb]

Simulated SR reference using 6SV and AERONET : Overall the results are improving from VNIR to SWIR, variation in the results amongst processors with improved results for the processors using variation of 6S RTM

Overall

No clear superiority - Similar results for most processors when compared to in-situ

measurements and variance when compared to simulated reference

Suggestions

More in situ SR measurements are needed (CESBIO agricultural site [RadCalNet], HyperNet) Some geographical areas were missing (Africa, South America, Australia) & many sites close to big cities, deserts

→ THE EUROPEAN SPACE AGENCY

https://calvalportal.ceos.org/acix-ii-land

ACIX	II Results	S			Search	Everything V	
		1 Mary 1				Welcome GUEST <u>Sign In</u>	
HOME	PROCESSORS	<u>SITES</u>	METRICS	RESULTS	CONTACT	ACIX II Land	
	and					ACIX II Processors ACIX II Sites ACIX II Metrics ACIX II Results	
ease fill out the	form to get ACIX II Land	results.				ACIX II Contact	
atellite se	nsors and proce	ssors					
ease select a Sa	atellite sensor and one or	otion in the proces	ssor's list			and the states	
atellite Sensor: Sentinel-2 MS Landsat-8 OLI							
C Processors: Choose an option	~						
·							
					Next Page	ALCONTRACTOR	
age 1 of 3						Carl Start	
ACIX aims to be Bottom-Of-Atmo inter-comparison	ring together the developers osphere (BOA) products. The n procedure is agreed and follo	s of Atmospheric Co input data are Lands owed by all the partic	rrection (AC) processors, sat-8 and Sentinel-2 imag ipants.	who are invited to gen ery of various sites. A c	erate the corresponding ommon and harmonised	J.C.	
The first ACIX ex comparison resu the participating its second imple	xperiment started in June 20 Its can be found in the dedica processors and the increasing mentation (ACIX II).	16 with its descriptio ated to <u>ACIX I web p</u> g interest of AC devel	n and conclusions to be <u>age</u> . ACIX I was complete opers to be part of the ex	summarised in Doxani e d in February 2018, but periment stimulated the	t al. (2018). All the inter- the improved versions of continuation of ACIX and		
Following the re	ecommendations of ACIX particular	rticipants and Earth (Observation data users, a	an additional inter-comp	arison of cloud masking		

https://calvalportal.ceos.org/acix-ii-land

Way Forward

*PRISMA ad-hoc acquisitions over the selected set of sites for each of the exercises will be provided by ASI

*

WAY FORWARD

1st Workshop ACIX-III Land, Aqua and CMIX-II

-- 20-21 June 2022, ESA/ESRIN, Frascati (Italy) --

https://earth.esa.int/eogateway/events/1st-workshop-of-acix-iii-land-aqua-and-cmix-ii

Thank you for your attention!

ACIX-Land: https://calvalportal.ceos.org/acix-ii-land

ACIX-Aqua: https://calvalportal.ceos.org/acix-ii-aqua CMIX: https://calvalportal.ceos.org/cmix

💳 🔜 📲 🚍 💳 📥 📲 🔚 🔚 🔚 🔚 🚍 💏 📥 🚳 🍉 📲 🚼 🛨 📰 📾 🏣 🔶 • THE EUROPEAN SPACE AGENCY