

living planet symposium BONN 23-27 May 2022

TAKING THE PULSE OF OUR PLANET FROM SPACE

On the use of UAV systems for in-situ validation of BRDF parameters

Dr. Daniele Latini | GEO-K srl | Italy Dr. Ilaria Petracca | University of Rome "Tor Vergata" | Italy Dr. Fabrizio Niro | Serco for ESA/ESRIN | Italy Dr. Stefano Casadio | Serco for ESA/ESRIN | Italy Prof. Fabio Del Frate | University of Rome "Tor Vergata" | Italy

ESA UNCLASSIFIED – For ESA Official Use Only

23/05/2022

💳 💶 📕 🛨 💳 🔚 📕 🏣 🔲 📕 🚛 👫 💳 🛶 👰 🖵 📲 🚼 💳 ன 🖓 🖿 👘

Overview

Operational algorithms for BRDF correction are based on parameters that are estimated by the integration of acquisitions from satellite MODIS instrument on board of Terra and Aqua platforms.

This work aims to develop an UAV system and flight protocols for collecting **reference in-situ validation dataset** optimal for assessing the quality of operative BRDF correction algorithms.

Key activities:

- Set-up of a system composed by UAV + Multispectral sensor S2 likes
- > Design of flight plan for multi-angular acquisitions on selected surfaces
- Dataset elaboration
- Evaluation and modelling of BRDF using Ross-Li model

Under natural condition BRDF can not be derived. For the sake of clarity what we can derive with satellite and UAV

measurements is **HDRF** (hemispherical – direct reflectance factor) which can be considered as an approximation.

System Set-up

→ THE EUROPEAN SPACE AGENCY

UAV + Multispectral sensor S2 likes

GEO-K

•9 CMOS sensor with global shutter

- GSD: 6cm at 120m flight height
- FOV: 75m x 60 m at 120m flight height
- Size and weight 10 x 13 x 4,6 cm, 470 g

- •Hexarotor MTOM up to 6 kg
- •Up to 20 minutes of flight time
- •Automatic flight capabilities
- •Execution of flight plan (pilot program)
- •Controlled acquisition geometry (azimuth orientation and camera tilt between 0° and 90° zenith angle)

The **Incident Light Sensor (ILS)** measures the level of the down-welling light in each band.

ILS **provides irradiance data at the exact time of shooting for each image and spectral band**, substantially improving the accuracy of radiometric correction.

Multispectral Camera Sentinel-2 likes

Technical Features							
Sensors	9 CMOS sensor 1.2Mpix (1280x960) with global shutter						
Acquisition	Single shot or continuous up to 5fps						
Image Format	Multi-layer/multi-band RAW 8 - 10 - 12bits per pixel; TIFF						
File Size	from 10.7 to 21.2MB depending on the format						
Internal Storage	210GB internal storage						
Size and weight	99 x 129 x 46 mm³, 470 g						

Height (m)	GSD (mm/pixel)	FOV (m²)
50	23	30 x 23
75	35	45 x 34
100	47	60 x 45
150	70	90 x 68

Spectral Specification: Bands compliant with Sentinel-2

	Central wavelength			-															
Sentinel-2 bands	(μm)	MAIA S	N-2 BANDS		0,8 -														
Band 1 – Coastal aerosol	0.443	Band (nm)	Name		0.7											S	NI-2	-1	
Band 2 – Blue	0.490	433-453	Violet (Coastal)		1 0 ,7 T				P ~-							3	N-2		
Band 3 – Green	0.560			- (;	0,6			×		}									
Band 4 – Red	0.665	457-523	Blue	(a.	0.5														
Band 5 – Vegetation red edge	0.705	542-578	Green	ivity	0,5														
Band 6 – Vegetation red edge	0.740	650 680	Rod	nsit	0,4 -							$+\Lambda$	Λ						
Band 7 – Vegetation red edge	0.783		heu	e Se	0.2								n						
Band 8 – NIR	0.842	<mark>697-713</mark>	Red Edge 1	ative	0,5									m.					
Band 8A – Vegetation red	0.865	732-748	Red Edge 2	Rela	0,2 -							+++		++					
edge				-	0.1											\sim			
Band 9 – Water vapour	0.945	773-793	NIR1		0,1														
Band 10 – SWIR – Cirrius	1.375	784-900	NIR2		0,0 +											1			_
Band 11 – SWIR Band 12 – SWIR	1.610 2.190	855-875	NIR3		35	0 400	450	500	550	600 W	650 /avele	ngth (n	750 m)	800	850	900	950	100	0

Flight Plan: Acquisition Strategy

Goniometer Acquisition System for BRDF measurements

- Limits:
- Costs
- Accessibility
- Target representation and integrity

View Zenith Angle (VZA) variation

THE EUROPEAN SPACE AGENCY → THE EUROPEAN SPACE AGENCY

Flight Planning and Dataset Elaboration: Vegetation Surface

→ THE EUROPEAN SPACE AGENCY

Flight Planning – Vegetation Test site

GEO-K

•Acquisition details:

- **View Azimuth Angles**: 0° to 360° with 30° steps
- View Zenith Angles: 0° to 60° with 10° steps
- **Dataset amount:** 84 acquisition each survey
- More info:
 - Survey time about 15min
 - Flight altitude: 120m
 - Sun Azimuth angle: 168°
 - Overlapping Sentinel-2 passage (30/04/2021)

On ground picture: Wheat Field

MAIA Field Measurements – Evaluation of BRDF

→ THE EUROPEAN SPACE AGENCY

· e e sa

BRDF Modeling: Ross-Li model

Inversion of the model using least squared method

💳 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔚 📲 🚍 💏 🔜 👘 🕼 🐂 🖛 🖓 🛌 📲 🗮 🖬 🖬 📰 🖛 👘

• (2)

GEO-K

BRDF Comparison: Measured vs Model

THE EUROPEAN SPACE AGENCY → THE EUROPEAN SPACE AGENCY

Flight Planning and Dataset Elaboration: Asphalt Surface

💳 🔜 📕 🛨 💳 🔚 📕 🏣 📕 📕 📥 📕 🔚 💳 👬 🔤 🛶 🚳 🛌 📲 👫 🛨 📰 🔤 😭 🐂 🗤

💳 📰 📲 📰 💳 ┿→ 📲 🚟 📰 📲 📲 📰 🛻 🚳 🖿 📲 📰 🖛 🖉

Flight Planning – Asphalt Test site

- Acquisition details:
 - **View Azimuth Angles**: 0° to 360° with 30° steps
 - View Zenith Angles: 0° to 60° with 10° steps
 - **Dataset amount:** 84 acquisition each survey
 - More info:
 - Flight time about 15min
 - Flight altitude: 120m
 - Sun Azimuth angle: 110°
 - Overlapping Sentinel-2 passage (03/07/2021)

Flight Planning – Asphalt Test site

→ THE EUROPEAN SPACE AGENCY

BRDF Comparison: Measured vs Model

BRDF model parameters: Sensitivity and Statistical analysis

💳 🔜 📕 🛨 💳 🔚 📕 🏥 🔜 📕 📕 🚍 📲 📲 层 🔤 வ 🚳

Sensitivity of Ross-Li Parameters to Surfaces and λ

Parameters on Vegetation

Spectral Signature

Parameters on Asphalt

Random Uncertainty - RossLi

	MAIA Band	RMSE	CORRcoeff	f1 - f _{iso}	Confidence Interval - f1	f2 - f _{vol}	Confidence Interval - f2	f3 - f _{geo}	Confidence Interval - f3
	Band2490nm	0.004	0.933	0.044	0.046 - 0.042	0.098	0.109 - 0.087	0.004	0.006 - 0.002
	Band3560nm	0.007	0.891	0.087	0.091 - 0.083	0.181	0.204 - 0.159	-0.003	0.0010.007
	Band4665nm	0.005	0.913	0.062	0.065 - 0.059	0.075	0.091 - 0.059	0.015	0.018 - 0.013
Vegetation	Band5705nm	0.009	0.859	0.12	0.125 - 0.115	0.184	0.213 - 0.155	0.002	0.0070.004
	Band6740nm	0.024	0.829	0.256	0.269 - 0.242	0.5	0.577 - 0.423	-0.067	-0.0530.081
	Band7783nm	0.032	0.813	0.298	0.315 - 0.28	0.563	0.663 - 0.462	-0.098	-0.080.116
	Band8842nm	0.031	0.802	0.308	0.326 - 0.291	0.536	0.634 - 0.438	-0.09	-0.0720.108
	Band9865nm	0.033	0.787	0.364	0.382 - 0.345	0.561	0.666 - 0.457	-0.087	-0.0680.106
	Band1443nm	0.012	0.848	0.168	0.176 - 0.16	0.114	0.143 - 0.085	0.017	0.024 - 0.01
	Band2490nm	0.014	0.83	0.17	0.179 - 0.161	0.123	0.157 - 0.088	0.019	0.027 - 0.011
	Band3560nm	0.014	0.853	0.194	0.203 - 0.185	0.128	0.162 - 0.094	0.022	0.03 - 0.014
	Band4665nm	0.014	0.863	0.214	0.223 - 0.205	0.123	0.157 - 0.089	0.026	0.034 - 0.018
Asphalt	Band5705nm	0.012	0.862	0.194	0.202 - 0.186	0.108	0.139 - 0.077	0.024	0.031 - 0.017
	Band6740nm	0.012	0.867	0.199	0.207 - 0.191	0.112	0.143 - 0.081	0.025	0.032 - 0.017
	Band7783nm	0.012	0.874	0.211	0.219 - 0.203	0.112	0.141 - 0.082	0.024	0.031 - 0.017
	Band8842nm	0.011	0.884	0.214	0.221 - 0.206	0.108	0.137 - 0.08	0.025	0.032 - 0.019
	Band9865nm	0.013	0.887	0.241	0.25 - 0.233	0.113	0.145 - 0.082	0.03	0.038 - 0.023

Cesa GEO-K

Optimal confidence intervals: Quality and Completeness of multiangular dataset collected by UAV

Comparison with RossLi Parameters from MODIS

eesa GEO-K

19

MODIS/MCD43A1 (30/04/2021)

UAV Survey (30/04/2021)

MAIA SN-2 BANDs	Central wavelength MAIA						
Bar	nd (nm)						
433-453 (band 1)	443						
457-523 (band 2)	490						
542-578 (band 3)	560						
650-680 (band4)	665						
697-713 (band 5)	705						
732-748 (band 6)	740						
773-793 (band 7)	783						
784-900 (band 8)	842						
855-857 (band 9)	865						

Comparison with RossLi Parameters from MODIS

GEO-K

MODIS

→ THE EUROPEAN SPACE AGENCY

Bands (nm)

665

659

560

555

490

470

500 m

• MODIS parameters details:

- **Extracted by integrating 16 days reflectance** measurements from TERRA & AQUA satellites
- Narrow spectral bands

30/04/2021

MODIS

	 Lower Spati 	ial Resolutio	n: 500m x 5	00m			er of the second
Spatial Resolution	Date	Sensor	f_iso	f_vol	f_geo		
6 cm	30/04/2021	MAIA	0.062	0.075	0.015]]]	
500 m	30/04/2021	MODIS	0.079	0.085	0.011		240
							180'
6 cm	30/04/2021	MAIA	0.087	0.181	-0.003		BRDF Modeled Polar Diagram
500 m	30/04/2021	MODIS	0.088	0.096	0.009		
6 cm	30/04/2021	MAIA	0.364	0.561	-0.087		247
500 m	30/04/2021	MODIS	0.328	0.267	0.003		2007 1007
							BRDF Modeled Polar Diagram - MAI
6 cm	30/04/2021	MAIA	0.044	0.098	0.004]]	

UAV-MAIA

Weaker shadow effects in NIR caused by the lower chlorophyll absorption

0.045

0.053

0.004

Comparison with RossLi Parameters from literature

Literature Reference Dataset⁽¹⁾

Band	Cover Type	f _{iso}	f _{vol}	f _{geo}
Band1_485nm	Bare Soil	0.1936	0.1193	0.0199
Band2_555nm	Bare Soil	0.2323	0.1331	0.0258
Band3_665nm	Bare Soil	0.2566	0.1373	0.0298
Band4_805nm	Bare Soil	0.2656	0.1308	0.0322

Table 2 The f_{iso} , f_{vol} , and f_{geo} of the RossThick–LiSparse model for the WFI sensor.

(1) Pan, Z., Zhang, H., Min, X., & Xu, Z. (2020). Vicarious calibration correction of large FOV sensor using BRDF model based on UAV angular spectrum measurements. Journal of Applied Remote Sensing, 14(2), 027501.

MAIA-S2 Dataset

					RossLi				
Band	CoverType	RMSE	CORRcoeff_RL	f1 - fiso	Confidence Interval - f1	f2 - fvol	Confidence Interval - f2	f3 - fgeo	Confidence Interval - f3
Band2490nm	Vegetation	0.004	0.933	0.044	0.046 - 0.042	0.098	0.109 - 0.087	0.004	0.006 - 0.002
Band3560nm	Vegetation	0.007	0.891	0.087	0.091 - 0.083	0.181	0.204 - 0.159	-0.003	0.0010.007
Band4665nm	Vegetation	0.005	0.913	0.062	0.065 - 0.059	0.075	0.091 - 0.059	0.015	0.018 - 0.013
Band8842nm	Vegetation	0.031	0.802	0.308	0.326 - 0.291	0.536	0.634 - 0.438	-0.09	-0.0720.108
Band2490nm	<mark>Asphalt</mark>	0.014	0.83	0.17	0.179 - 0.161	0.123	0.157 - 0.088	0.019	0.027 - 0.011
Band3560nm	<mark>Asphalt</mark>	0.014	0.853	0.194	0.203 - 0.185	0.128	0.162 - 0.094	0.022	0.03 - 0.014
Band4665nm	<mark>Asphalt</mark>	0.014	0.863	0.214	0.223 - 0.205	0.123	0.157 - 0.089	0.026	0.034 - 0.018
Band8842nm	<mark>Asphalt</mark>	0.011	0.884	0.214	0.221 - 0.206	0.108	0.137 - 0.08	0.025	0.032 - 0.019

→ THE EUROPEAN SPACE AGENCY

Conclusion

\times .

Achievements

- > Development of an automatic and repeatable flight plan for acquiring multi-angular UAV dataset using multispectral camera Sentinel-2 likes.
- Planning and execution of the UAV-based Cal/Val surveys over different landcover types (vegetation, asphalt).
- > Dataset analysis and estimation of surface BRDF parameters using linear model (Ross-Li).
- > Sensitivity and statistical analysis on estimated parameters, comparison with MODIS operative parameters

Next..

- > Further investigations and analysis including surveys on different test sites (QA4EO phase 2).
- > Consider the integration with atmospheric measurements (aerosol) on the area of the survey.
- Support to the cal/val activities of Sen2Like processor, providing UAV multi-angular dataset.
- Participation to SRIX4VEG initiative in Barrax (ES) planned in July 2022 (https://frm4veg.org/srix4veg/).

→ THE EUROPEAN SPACE AGENCY

GEO-K

Thanks

daniele.latini@geo-k.co

💳 💶 📲 💶 🔚 📕 🖆 📕 📕 📕 📲 📲 📲 层 🔤 வ 🚱 🚬 📲 👫 🛨 🔤 🔤 🐏 🔹 the European Space Agency