earth online
  • All Categories
  • Data
  • News
  • Missions
  • Events
  • Tools
  • Activities
  • Instruments
  • Campaigns
  • Documents
  • News - General News

    prompt photo

    How to request level zero radar data from ERS and Envisat

    To apply to use level zero (A)SAR radar data from ESA’s European Remote Sensing satellites (ERS-1 and ERS-2) and its Envisat mission for research purposes, you should prepare and submit an online form – called a Data Service Request – to put forward your proposed project to ESA for evaluation.

  • Event - Conference

    prompt photo

    Dragon 3 2014 Symposium

    The Dragon 3 2014 Symposium was part of the Dragon 3 Programme, focussed on exploitation of ESA, ESA's Third Party Missions and Chinese Earth observation data for geo-science and applications development in land, ocean and atmospheric applications.

  • Event - Conference

    prompt photo

    Dragon 3 2015 Symposium

    The Dragon 3 2015 Symposium was part of the Dragon 3 Programme, focussed on exploitation of ESA, ESA's Third Party Missions and Chinese Earth observation data for geo-science and applications development in land, ocean and atmospheric applications.

  • Event - Conference

    prompt photo

    Dragon 3 2016 Symposium

    The Dragon 3 2016 Symposium served as the close of the Dragon 3 Cooperation Programme (2012 to 2016) and formal kick off for Dragon 4 Cooperation projects.

  • Activity - Projects

    Dragon 3 Cooperation Programme

    The Dragon 3 Programme focussed on the exploitation of ESA, ESA's Third Party Missions and Chinese Earth observation data for geo-science and applications development in land, ocean and atmospheric applications.

  • News - Thematic area articles

    prompt photo

    Transforming space data into climate action

    ESA’s Earth observation activities are playing a key role in the revitalised global drive to combat climate change.

  • News - General News

    prompt photo

    Introducing Mirko Albani

    In this short introduction, ESA's Heritage Missions Programme Manager describes what he likes most about ESA's long term archive of satellite mission data and his role in the programme.

  • Activity - Projects

    Dragon 2 Cooperation Programme

    The Dragon 2 Programme focussed on the exploitation of ESA, ESA's Third Party Missions and Chinese Earth observation data for science and applications development in land, ocean and atmospheric applications.

  • News - Success Stories

    prompt photo

    ERS' Contribution to Altimetry

    Satellite radar altimetry missions have transformed the way we see Earth and its oceans. Using the ranging capability of radars, they measure the surface topography profile along a satellite’s track.

  • News - Data Release news

    prompt photo

    New reprocessing of datasets celebrates 30 years of ERS

    The ERS programme celebrated its 30th anniversary on 17 July. Today, we are still exploiting ERS data and experts continue to work on improving the altimeter, radiometer and SAR data the programme acquired.

  • News - Success Stories

    prompt photo

    ERS Heritage Data allow for 30 years of science

    At their time of launch thirty years ago, the two ERS satellites were the most sophisticated Earth observation spacecraft ever developed and launched by Europe.

  • News - Infographics

    prompt photo

    ERS - ESA’s first Earth observation satellites

    To mark the 30th anniversary of ERS, we've released a new infographic summarising the mission.

  • Tools - Apps

    prompt photo

    Heritage Missions app for iOS

    Download the Heritage Missions application to discover what the missions were about, how it worked and what the elements of the space and ground segment that make these missions unique.

  • Tools - Apps

    prompt photo

    Heritage Missions app for Android

    Download the Heritage Missions application to discover what the missions were about, how it worked and what the elements of the space and ground segment that make these missions unique.

  • Instrument - Imaging Spectrometers/Radiometers

    prompt photo

    ATSR

    The Along Track Scanning Radiometer (ATSR) on board ERS-1 and ERS-2 mission consisted of two instruments, an Infra-Red Radiometer and a Microwave Sounder.

  • Instrument - Scatterometers

    prompt photo

    SAR (ERS)

    The Synthetic Aperture Radar (SAR) instrument aboard ERS-1 and ERS-2 was capable of high precision change detection of surface heights.

  • Instrument - Scatterometers

    prompt photo

    WS

    The Wind Scatterometer (WS) instrument, on board the ERS-1 and ERS-2 missions, obtained information on wind speed and direction over the sea surface.

  • Data - Data Description

    prompt photo

    ERS-1/2 SCATTEROMETER Nominal Resolution back-scattering measurements, Ocean Wind field [UWI]

    The ERS data reprocessed with the ASPS facility is also available in the UWI format to maintain the compatibility with the FD (Fast Delivery) products. The ASPS UWI product is organised in frames of 500 x 500 km providing the radar backscattering sigma nought for the three beams of the instrument plus the wind speed and direction. The wind retrieval is performed with the CMOD5N geophysical model function derived by ECMWF to compute the neutral winds rather than 10m winds. ASPS UWI products are provided with a spatial resolution of 50x50km and a grid spacing of 25 km. One product covers one orbit from ascending node crossing. Please consult the Product Quality Readme file before using the ERS ASPS data.

  • Data - Data Description

    prompt photo

    ERS-1/2 SCATTEROMETER Ocean Wind field and Sea Ice probability [ASPS20.H/ASPS20.N]

    Surface soil moisture records are derived from the backscatter coefficient measured by the Scatterometer on-board the European Remote Sensing satellite (ERS-2) using the Technische Universität (TU) Wien soil moisture retrieval algorithm called WARP (WAter Retrieval Package). In the WARP algorithm, the relative surface soil moisture estimates, given in degree of saturation Sd, range between 0% and 100% are derived by scaling the normalized backscatter between the lowest/highest backscatter values corresponding to the driest/wettest soil conditions. Surface Soil Moisture - Time Series product: The products generated are the surface soil moisture time series, where for each grid point defined in a DGG (Discrete Global Grid) is stored the time series of soil moisture and its noise, the surface state flag, the geolocation and the satellite parameters. The spatial resolution of the products is about 25 km x 25 km (high resolution) or 50 km x 50 km (nominal resolution) geo-referenced on the WARP grid. The location of the points can be viewed interactively with the tool DGG Point Locator. Surface Soil Moisture - Orbit product: In addition to WARP, a second software package, referred to as WARP orbit, was developed in response to the strong demand of soil moisture estimates in satellite orbit geometry. The Level 2 soil moisture orbit product contains a series of Level 1 data information, such as the backscatter, the incidence angle and the azimuth angle for each triplet together with the surface soil moisture and its noise, normalized backscatter at 40° incidence angle, parameters useful for soil moisture, the geolocation and the satellite parameters. The soil moisture orbit product is available in two spatial resolutions with different spatial sampling distances: Spatial sampling on a regular 12.5 km grid in orbit geometry with a spatial resolution of about 25 km x 25 km (high resolution) Spatial sampling on a regular 25 km grid in orbit geometry with a spatial resolution of about 50 km x 50 km (nominal resolution) The spatial resolution is defined by the Hamming window function, which is used for re-sample of raw backscatter measurements to the orbit grid in the Level-1 ground processor. Please consult the Product Quality Readme file before using the ERS-2 Surface Soil Moisture data.

  • Data - Data Description

    prompt photo

    ERS-1/2 ATSR Gridded Brightness Temperature/Reflectance [AT1/AT2_TOA_1P]

    The Gridded Brightness Temperature/Reflectance (GBTR) product contains top of atmosphere (TOA) brightness temperature (BT) values for the infra-red channels and reflectance values for the visible channels. Values for each channel and for the nadir and forward views occupy separate measurement data sets. Additional MDS contain cloud and land/sea flags and confidence flags for each image pixel. The 3rd reprocessing of ATSR data was performed in 2013; the processing updates that have been put in place and the scientific improvements are outlined in full in the User Summary Note for the Third ERS ATSR Reprocessing.

Cookies & Privacy

We use cookies which are essential for you to access our website and to provide you with our services and allow us to measure and improve the performance of our website. Please consult our Cookie Notice for further information or to change your preferences.