Explore instruments used in the GHGSat mission.


GHGSat data is freely and openly available to everyone.

The GHGSat mission is dedicated to measuring emissions of greenhouse gases.

About GHGSat

Artist's depiction of GHGSat satellites in orbit. Credit: UTIAS-SFL

GHGSat's vision is to become the global reference for the remote sensing of greenhouse gas (GHG) emissions from any source in the world. No other commercial or government satellite mission is specifically designed for detecting and quantifying GHG emissions from point sources as small as individual oil and gas wells.

The GHGSat constellation currently consists of three satellites, GHGSat-D (Claire) launched in June 2016, GHGSat-C1 (Iris) launched in September 2020, and GHGSat-C2 (Hugo) launched in January 2021. Each satellite is equipped with a wide-angle Fabry-Perot (WAF-P) imaging spectrometer designed to measure the vertical column abundances of greenhouse gases. GHGSat-D is capable of measuring both methane and carbon dioxide, while GHGSat-C1 and GHGSat-C2 are optimised for methane. Contracts have been awarded for the next three satellites and payloads (GHGSat-C3 to -C5) towards a goal of having a constellation of 10 satellites in orbit by 2023.

This mission is considered a Third Party Mission (TPM) under assessment. The evaluation will tackle cal/val activities and assess the products specifications. This analysis will be performed in the framework of the Earthnet Data Assessment Pilot (EDAP). The evaluation will also allow any interested users to investigate the suitability of the data for scientific and R&D activities.

GHGSat Mission Parameters
Launch Date 22 June 2016 2 September 2020 24 January 2021
Nominal Altitude 512 km 523 km 530 km
Inclination 97.3° 97.5° 97.5°
Orbital Period 95 minutes 95 minutes 95 minutes
Equator Crossing 09:30 LTDN 10:30 LTDN 10:30 LTDN
Orbits per Day 15 15 15
Repeat Cycle 14 days 14 days 14 days
Design Lifetime 4 years (exceeded) 4 years (minimum) 4 years (minimum)
Mission Status On-orbit On-orbit On-orbit

GHGSat Objectives

GHGSat's overall mission objective is provide actionable information to operators, regulators, and other stakeholders interested in understanding, controlling, and ultimately reducing facility-level emissions of greenhouse gases.

GHGSat Instruments

Each GHGSat satellite carries a proprietary imaging spectrometer for measuring facility-level greenhouse gas emissions.

Property GHGSat-D Information GHGSat-CX1 Information
Primary Sensor
Name Wide-Angle Fabry-Perot (WAF-P) Imaging Spectrometer Wide-Angle Fabry-Perot (WAF-P) Imaging Spectrometer
Sensor Type Optical Optical
Bands and spectral ranges SWIR 1630-1675 nm, multiple bands in a proprietary configuration, unpolarized SWIR 1630-1675 nm, multiple bands in a proprietary configuration, unpolarized
Methane column density precision (% of background) 13% 1%
Detection Threshold 1,000 kg/hour in 3 m/s wind (for methane) 100 kg/hour in 3 m/s wind (for methane)
Field-of-View 12 km × 12 km 12 km × 12 km
On-Board Calibration No Yes
Spatial Resolution < 50 m 25 m
Swath width < 15 km < 20 km
Depth of imaging 12 bit 12 bit
Along-track imaging capacity Yes Yes
Sensor Pointing +/- 15 degrees from nadir along & cross-track +/- 15 degrees from nadir along & cross-track
Geometric accuracies < 5 m < 5 m
Secondary Sensor
Name C&A-1: Clouds and Aerosols Sensor VIS-1: Visible Sensor
Sensor Type Optical Optical
Bands and spectral ranges Visible and Near-Infrared Visible
Spatial Resolution <150 m <20m
Swath width <30 m <35m
Sampling Depth 12 bit 12 bit


1Instrument parameters common to GHGSat commercial satellites, which are generally referred to as "CX".


The primary sensor on all GHGSat satellites is a Wide-Angle Fabry-Perot (WAF-P) Imaging Spectrometer. This primary sensor produces a hypercube consisting of a stack of overlapping, spectrally selected images acquired within <30 seconds. This hypercube embeds, for each ground pixel, information equivalent to hundreds of wavelengths from the top-of-the-atmosphere spectral radiance. Once downloaded, the hypercube is corrected for sensor response and instrument optics. The gas column density and surface reflectance information are then retrieved for each ground pixel using a measurement model which includes surface, instrument and atmospheric contributions to radiance. The resulting arrays are georeferenced, giving the "Surface Reflectance Image" and one "Abundance Dataset" for methane.

GHGSat satellites typically have a spatial resolution of 25 m (>50 m for GHGSat-D) and the Field of View (FOV) of approximately 12 km x 12 km of these datasets allow gas plumes emitted from industrial sources to be captured and distinguished from the surrounding background concentrations, constituting a differential measurement.

The reflectance and abundance products can be combined into a high readability "Concentration Map" for human interpretation.

The abundance datasets from multiple observations of a given site can be combined to form a monitoring product for semi-automatic detection of emitter activity or large changes in emission rates using pre-determined thresholds.

Abundance datasets also allow emission rates to be estimated for individual sources. Plume dispersion is modelled using site information and weather data from global meteorological models or local weather stations and matched to the measured datasets.

GHGSat Data


ESA is offering, for scientific research and application development, access to archive and new tasking data from the GHGSat mission upon submission and acceptance of a project proposal.

ESA will support as many high-quality and innovative projects as possible within the quota limit available, therefore only a limited amount of products can be made available to each project.

People also search for