The Earth's time-variable gravity field observed by GOCE

GOCE+Time-Variations, part of STSE (Theme 4, Innovative Feasibility Studies)

J. Bouman, M. Fuchs, C. Haberkorn, V. Lieb, M. Schmidt T. Broerse, E. Schrama, B. Vermeersen, P. Visser

CGE

Possible GOCE contribution

- GRACE K-Band ranging in principle better suited to detect timevariable gravity field than GOCE
- But:

GRACE	GOCE
Orbit height 450 km	Orbit height 260 km
Track coverage not fixed	Fixed repeat (61 days)
KBR = 1D	Gradients = tensor
Very accurate at long wavelengths	High resolution information
2002 - 2015 (?)	2009 - 2013 (?)

Innovative feasibility study

- 1. Focus on large mass variations
- 2. Aim for higher spatial resolutions
- Greenland ice mass variations
- Chile Mw 8.8 February 2010 & Japan Mw 9.0 March 2011 earthquake

Study Team

- Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, Germany
 - Gravity gradient analysis
 - Regional gravity field recovery
- TU Delft (DEOS), Delft, the Netherlands
 - Forward modelling
 - Interpretation of gravity analysis
- Study runs April 2011 October 2012

Greenland ice mass variations: State-ofthe-art

- Monthly GRACE solutions as input
- Spatial resolution ~ 300 km (Gaussian smoothed)
- Same overall mass loss from different studies, but significant regional differences exist
- Refined observation of regional ice mass losses will serve to improve model-based predictions of future mass loss from the Greenland Ice Sheet

Greenland ice mass variations: State-ofthe-art

Greenland: forward modelling

- Ice mass loss from simulations
- Agrees well with analysis from GRACE
- Linear trend in 7 yr period amounts to
 1 mE in V_{ZZ}

ZZ signal at GOCE altitude due to ice mass loss for a 7 year period

Greenland: Time series of gravity gradient residuals

- Compute difference GOCEV_{ZZ} GOCO03S
- Orbital repeat is 61 days
 - April 2011 \pm 15 days
 - June 2011 ± 15 days
 - August 2011 \pm 15 days
 - October 2011 ± 15 days
 - December 2011 \pm 15 days
 - Februar 2012 \pm 15 days
- Filter in tailored MBW + Gaussian smoothing
- Variation with respect to mean

V_{ZZ} variation with respect to mean (units are mE)

Average V_{ZZ} for Greenland

GOCE Solid Earth Workshop, Enschede

16-17/10/2012

Greenland's regional gravity field

- GOCE gradients have been used to compute time series of regional gravity fields for Greenland
- See presentation Lieb et al. later today

Earthquakes: Chile Mw 8.8, Japan Mw 9.0

GOCE Solid Earth Workshop, Enschede

Source: USGS

16-17/10/2012

Megathrust earthquakes: State-of-the-art

- Gravity field changes due to Sumatra 2004 (Mw 9.3), Chile 2010 (Mw 8.8) and Japan 2011 (Mw 9.0) earthquakes detected by the GRACE mission
- Monthly GRACE fields, SH = 60
- Reduction of longitudinal stripes

13

• Noise reduction by spatial filter with averaging radius of 300 – 350 km

Megathrust earthquakes: Possible GOCE contribution

- GOCE gravity gradients provide (incomplete) tensor information, K-Band ranging is 1D
- Improved spatial resolution
- Allow improvement of interpretation of larger earthquakes (> Mw 8)
 - Earth structure: e.g. lateral variations in crustal and lithospheric thickness
 - Earth rheology: discrimination between linear and non-linear rheologies
- Contributes to improving our knowledge of the mechanisms of stress accumulation and stress release

Co-seismic vertical deformation & gravity

Co-seismic vertical deformation & gravity

Simplified elastic model

16

Forward modelling

- Reference slip model =>
 - Location and nature of slip
- Solid earth model =>
 - semi-analytical normal mode model
 - spherically layered earth, compressible rheology
- Sea level model =>
 - sea level equation

Slip models

- **Chile**:Delouis et al. (2010) GPS, broadband teleseismic data, InSAR
- Japan:Hayes (2011), Wei et al. (2011) GPS, broadband teleseismic data

GOCE Solid Earth Workshop, Enschede

16-17/10/2012

Geoid height change from forward modelling

Japan: -1.2 – 1.6 cm

(Wei model)

GOCE GG: Nov 2009 – March 2011 & March 2011 - March 2012

20

Chile: -1.1 – 0.9 cm (Delouis model)

GOCE GG: Nov 2009 – February 2010 & February 2010 - March 2012

Japan Tohoku-Oki earthquake: SH geoid spectrum

Gradients at satellite altitude

V_{zz} from modelling

Gradient error PSD: 20 mE/Hz^{1/2} for V_{ZZ}

Band-pass and Gaussian filtering

- Noise V_{ZZ} two times that of V_{XX} and V_{YY}
- Use Laplace equation: $V_{ZZ}^C = (V_{ZZ} V_{XX} V_{YY})/2$
- Reduces error in vertical gradient with 40 %
- Analyse residuals with respect to GOCO03s
- Band-pass filter in MBW:
 - Low cut-on frequency includes 1/f errors
 - High cut-off frequency includes white noise
- Additional Gaussian smoothing with 220 km half- width

Japan Tohoku-Oki Earthquake

Forward model V_{ZZ} (Wei slip model)

GOCE data analysis

Summary

- Forward modelled Greenland ice mass loss and Chile 2010, Japan 2011 earthquakes
- Signals at GOCE altitude are 1 mE or less
- To detect these is very challenging
 - Measurement noise
 - Systematic errors for low frequencies
- Greenland: trend visible? (To be confirmed)
- Chile: probably insufficient amount of GOCE data before earthquake
- Japan: earthquake seems visible in GOCE data, difference in amplitude between model and GG to be explained yet

And what about Antarctica?

Results are very fresh (last week), but first comparisons with forward modelling are encouraging

GOCE Solid Earth Workshop, Enschede

16-17/10/2012

A word of advice

- Don't try this at home
- Unless you fancy to search the needle in the haystack
- Dedicated data editing and data massage are needed
- Time-variable gravity field signatures are likely to be visible in the GGs

www.jolyon.co.uk

27

16-17/10/2012