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Carbon cycle – brief overview
Atmospheric CO2 concentration increased from about 280 ppm in 
pre-industrial times to the actual value of about 420 ppm due to 
antropogenic activities

Atmospheric increase 4.7 Pg/y

Sellers, P. J. et al.,  Observing carbon cycle–climate feedbacks from space. Proceedings of the National Academy of Sciences 
of the United States of America. National Academy of Sciences. https://doi.org/10.1073pnas.1716613115, 2018

https://doi.org/10.1073pnas.1716613115


Carbon cycle – brief overview
• Ocean interaction with CO2 has a great spatio-temporal variability not fully characterised with 

complex dependencies on phisycal, biological and chemical properties of the ocean

• CO2 absorption leads to the acidification of ocean waters which can trigger negative feedbacks on 
absorption efficency

• Climate feedbacks are unknown

• Lack of continuous in situ measurements

• Ocean CO2 absorption efficiency is strongly related with climate evolution

Monitoring atmosphere-ocean exchanges is crucial



Carbon cycle – ocean-atmosphere fluxes
F = Kwa KH (ΔpCO2)sea-atm

• Kwa = 0.251 <U2> (Sc/660)–0.5  is the Gas Transfer Velocity for U < 15 m/s

• Sc = A + B*SST + C*SST2 + D*SST3 + E*SST4 is the Schmidt Number

• ln(KH) = Α1 + Α2*(100/SSΤ) + A3*ln (SST/100) + SSS*[B1 + B2*(SST/100) + 
B3*(SST/100)2] is the gas solubility

• Sea pCO2 can be measured or derived

• Air pCO2 can be measured or derived

Wanninkhof, R., Relationship between wind speed and gas exchange over the ocean revisited, Limnol. Oceanogr. Methods, 12, doi:10.4319/lom.2014.12.351, 2014



Marine carbon cycle

• Current monitoring mainly rely on model-based estimates of 
pCO2 and CO2 fluxes

• Works on satellite-based estimates of pCO2 

• Sparse in situ continuos and naval occasional measurements

• Carbon global monitoring projects and datasets:

• Global carbon budget 
(https://www.globalcarbonproject.org/)

• Surface Ocean CO2 atlas (https://socat.info/)

https://www.globalcarbonproject.org/


Marine carbon cycle

Pagina 8

Still missing estimates, including large portion of marginal seas

K. Lee, C.L. Sabine, T. Tanhua, T.W. Kim, R.A. Feely, and H.C. Kim. Roles of marginal seas in absorbing and storing fossil fuel CO2. Energy & Environmental Science, 4:1133–1146, 2011. 
doi: https://doi.org/10.1039/C0EE00663G. 
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WP-2640* objectives

• Characterization of the Central 
Mediterranean carbon cycle using in 
situ data 

• Satellite pCO2 estimates using proxies 
for spatial monitoring

• CO2 fluxes estimates merging satellite, 
model and in situ data
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Mediterranean Sea

• Climate hotspot

• Semi-enclosed basin under environmental stress

• Few carbon in situ measurements

• Few studies on basin-wide carbon cycle

• Suffering long and intense marine heatwaves (2022-2023; 2023-2024)

S. Marullo, V. De Toma, A. di Sarra, R. Iacono, A. Landolfi, F. Leonelli, E. Napolitano, D. Meloni, E. Organelli, A. Pisano, R. Santoleri, and D. Sferlazzo. Has the 
frequency of Mediterranean Marine Heatwaves really increased in the last decades? In EGU General Assembly 2023, Vienna, Austria, 2023. URL 
https://doi.org/10.5194/ egusphere-egu23-4429. 



Study site
In situ measurements made at Lampedusa

• Small island with small pollution sources

• Far from land

• Representative for background conditions

• Host observatories (AO, OO, EO) for climate studies and 
carbon monitoring (within the Integrated Carbon 
Observation System - ICOS infrastructure)

• Ocean pCO2, temperature and salinity are available 
at 5 m depth from October 2021 at OO

• Wind speed, atmospheric pressure, atmospheric CO2 
concentration are available at AO



Study site
Variable Instrument Accuracy Height (asl)

Sea pCO2 ProOceanus CO2 

Pro-CV

± 3 ppm -5m (OO)

SST CTD SBE16+ ±0.005°C -5m (OO)

SSS CTD SBE16+ ±0.01 PSU -5m (OO)

Wind speed Gill windsonic 

sensor

±2% 10m (OO)

Wind speed Vaisala WS425 ±3% 60m (AO)

Atm. pressure Vaisala BARO-1 ±0.25 hPa 52m (AO)

Atm. CO2 conc. Picarro G2401 ±0.1 ppm 57m (AO)

pCO2 issue with the a/d zero measurements between March and July 2022. An empirical correction 
was applied with an increased associated uncertainty.



In situ pCO2 and CO2 fluxes
pCO2  ATM
pCO2 OCE



In situ pCO2 and CO2 fluxes



In situ pCO2 and CO2 fluxes

(-1.73 + 0.16)x10-5 t/m2
Dec21-Dec22



In situ pCO2 and CO2 fluxes

Reduction of about 30% 
in ocean absorption

A. Mignot, K. von Schuckmann, P. Landschützer, F. Gasparin, S. van Gennip, C. Perruche, J. Lamouroux, and T. Amm. Decrease in air-sea CO2 fluxes caused by 
persistent marine heatwaves. Nature Communications, 13(1):4300, 2022. doi: https://doi.org/10.1038/ s41467-022-31983-0. 

Hourly SST data; orange and red 
refers to 2022 and 2023

(-5.48 + 0.13)x10-5 t/m2
Dec21-May22

(-3.82 + 0.10)x10-5 t/m2
Dec22-May23
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Satellite algorithms

Regional regression algorithms are introduced to estimate pCO2 with satellite measurable proxies:

• Use of variables linked to physical and biological processes affecting the marine carbon cycle

• Introduction of new variables in the regression models

• Comparison of selected satellite data with in situ data to evaluate the reliability 

• Use of model or in situ-adapted data for variable with large deviation from the observations

• First validation of OLCI (Sentinel-3 satellite) PAR product in the Central Mediterranean

• Use of pCO2 uncertainty as weight in the regression models («weighted» models)



Satellite and model data
Variable Dataset Data type Reference

SST High Resolution and Ultra High-Resolution L3S 
SST Satellite CMEMS - Mediterranean Sea - High Resolution and Ultra High Resolution L3S Sea 

Surface Temperature. https://doi.org/10.48670/moi-00171

SSS Ocean Reanalysis System 5 (ORAS5) Model
C3S - ORAS5 global ocean reanalysis monthly data from 1958 to present. 
Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 
https://doi.org/10.24381/cds.67e8eeb7

Wind Speed Global Ocean Sea Surface Winds from 
Scatterometer Satellite CMEMS - Global Ocean Daily Gridded Sea Surface Winds from Scatterometer. 

Retrieved September 2023, from https://doi.org/10.48670/moi-00182

PAR OLCI – Sentinel-3 satellite Satellite
Pecci, M. et al. (2024). Validation of photosynthetically active radiation by OLCI on 
Sentinel-3 against ground-based measurements in the central Mediterranean and 
possible aerosol effects. European Journal of Remote Sensing, 57(1). 
https://doi.org/10.1080/22797254.2024.2307617

PAR MODIS – Aqua satellite Satellite NASA Ocean Biology Processing Group - Aqua Daily Photosynthetically Active 
Radiation https://oceancolor.gsfc.nasa.gov/l3/

CHL Med. Sea, Bio-Geo-Chemical, Satellite 
Observations Satellite CMEMS - Mediterranean Sea, Bio-Geo-Chemical, L3, daily Satellite Observations 

(1997-ongoing) https://doi.org/10.48670/moi-00299

Atm xCO₂ In situ data-based fit In situ-adapted

Atmospheric pressure ERA5 hourly reanalysis Model
Hersbach, H., et al., (2023). ERA5 hourly data on single levels from 1940 to present. 
Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 
https://doi.org/10.24381/cds.adbb2d47

https://doi.org/10.48670/moi-00171
https://doi.org/10.24381/cds.67e8eeb7
https://doi.org/10.48670/moi-00182
https://oceancolor.gsfc.nasa.gov/l3/
https://doi.org/10.48670/moi-00299
https://doi.org/10.24381/cds.adbb2d47


Satellite algorithms
Traditional regression algorithms to estimate pCO2 with 
satellite measurable proxies:

• Use of least-squares method

• Use of different functional forms, including multiple 
parameters and non-linear terms

• First selection of functional forms on smoothed 
datasets to reduce noise

• Training and test on in situ daily datasets

• Use of seasonal regression to exploit the pCO2 
hysteresis

• Best performing models applied to satellite data

Summer 
Models

Winter Models



Satellite algorithms
Machine learning approach to estimate pCO2 with satellite measurable proxies:

• Use of eXtreme Gradient Boosting (XGBoost) algorithm

• Trained on bi-hourly data and tested on daily data

• First selection of input parameters on smoothed datasets to reduce noise

• Use of default and cross-validated settings

• Best performing models applied to satellite data



Training and test set
The entire dataset spans from December 2021 to June 2023 (18 months):

• Single regression for the whole dataset («Annual models»)

• Training set is composed of 12 months of data (Dec21 to Dec22)

• Test set is composed of 6 months of data (Jan23-June23)

Dataset Bi-hourly Daily 

Training set 2400 data 
pairs

200 data 
pairs

Test set / 130 data 
pairs



Training and test set
• Traditional regression models divided to follow the branches of the 

hysteresis  («Seasonal models»):
• Summer models (Mar-Aug)

• Training set: Mar22-Aug22
• Test set: Mar23-Aug23 

• Winter models (Aug-Mar) 
• Training set: Dec21-Mar22 and Aug22-Dec22
• Test set: Dec22-Mar23

Dataset Summer 
models

Winter 
Models

Training 
set

120 data 
pairs

180 data 
pairs

Test set 80 data pairs 50 data 
pairs

Summer 
Models

Winter Models



Performance metrics
Bias = 1

𝑁
 σ𝑖(𝑦𝑖 − 𝑥𝑖)

RMSD = 1

𝑁
 σ𝑖 𝑦𝑖 − 𝑥𝑖

2 

 R2 = 1 −
σ𝑖 𝑦𝑖−𝑥𝑖

2

σ𝑖 𝑦𝑖− ത𝑦 2

 ത𝑅2 = 1 − (1 − R2)
𝑛−1

𝑛−𝑘−1 

Where
• y is the predicted values
• x is the observed value
• n is the dataset size
• k is the number of parameters used in the regression
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Traditional regression models

Model Functional Form SST [𝝁𝒂𝒕𝒎

°𝑪
] SST² [𝝁𝒂𝒕𝒎

°𝑪𝟐
] SSS [𝝁𝒂𝒕𝒎

𝑷𝑺𝑼
]

CHL 
[𝝁𝒂𝒕𝒎⋅𝑳

𝝁𝒈
]

PAR 

[𝝁𝒂𝒕𝒎⋅𝒎𝟐

𝑾
]

Wspd 
[𝝁𝒂𝒕𝒎⋅𝒔

𝒎
]

Const. 
[𝝁𝒂𝒕𝒎]

Mod4
A·SST+B·SSS+C·CHL+
D·PAR+E 9.20 0 10.35 -99.12 0.13 0 -146.36

Mod6
A·SST+B·CHL+C·PAR+
D·wspd+E 9.23 0 0 -98.99 0.11 -0.66 247.17

Mod9 A·SST+B·CHL+C·PAR+D 9.28 0 0 -99.99 0.14 0 238.68

Mod4_T2
A·SST+B·SST2 
+C·SSS+D·CHL+E·PAR+F 25.31 -0.36 18.06 -66.98 0.06 0 -599.96

Mod6_T2
A·SST+B·SST2+C·CHL+
D·PAR+E·wspd+F 24.56 -0.34 0 -68.94 0.05 -0.78 90.43

Models functional form and coefficient for the «seasonal summer» models weighted with the reciprocal of the pCO2 uncertainty



Traditional regression models

«Seasonal models» with MODIS PAR product non weighted 
regression

Model ഥ𝑹²
RMSD 
[𝝁𝒂𝒕𝒎]

Bias 
[𝝁𝒂𝒕𝒎]

NW Mod4 0.94 13.1 (3%) -1.5 ( < 1%)

Mod6 0.92 14.4 (3%) -5.8 (2%)

Mod9 0.93 13.7 (3%) -4.3 (1%)

Mod4_T2 0.75 24.1 (6%) -13.1 (3%)

Mod6_T2 0.74 25.1 (6%) -14.8 (3%)

W Mod4 0.93 13.2 (3%) -1.2 (< 1%)

Mod6 0.92 14.6 (3%) -5.9 (2%)

Mod9 0.92 14.0 (3%) -4.0 (1%)

Mod4_T2 0.72 25.0 (6%) -13.4 (3%)

Mod6_T2 0.71 26.1 (6%) -15.5 (3%)



Traditional regression models

«Annual models» with MODIS PAR product weighted 
regression

Model ഥ𝑹²
RMSD 
[𝝁𝒂𝒕𝒎]

Bias 
[𝝁𝒂𝒕𝒎]

NW Mod4 0.81 21.2 (5%) 17.2 (4%)

Mod6 0.82 20.1 (5%) 15.0 (3%)

Mod9 0.81 20.7 (5%) 15.8 (4%)

Mod4_T2 0.81 21.2 (5%) 17.2 (4%)

Mod6_T2 0.83 20.1 (5%) 15.0 (3%)

W Mod4 0.91 14.9 (3%) 9.2 (2%)

Mod6 0.93 13.2 (3%) 5.3 (1%)

Mod9 0.92 13.9 (3%) 6.8 (2%)

Mod4_T2 0.92 14.2 (3%) 7.9 (2%)

Mod6_T2 0.94 13.0 (3%) 4.4 (1%)



ML models Model Input variables

Mod1 SST

Mod3 SST, SSS, CHL

Mod5 SST, SSS, CHL, PAR, WSPD

Mod6 SST,  CHL, PAR, WSPD

Mod9 T, CHL, PAR

Model ഥ𝑹² RMSD  [𝝁𝒂𝒕𝒎] Bias [𝝁𝒂𝒕𝒎]

D Mod1 0.76 25.0 (6%) -1.4 (< 1%)

Mod3 0.30 37.0 (8%) 26.1 (6%)

Mod5 0.33 34.2 (8%) 24.3 (5%)

Mod6 0.51 31.4 (7%) 18.8 (4%)

Mod9 0.49 32.4 (7%) 19.9 (4%)

CV Mod1 0.76 25.0 (6%) -1.7 (<1%)

Mod3 0.35 37.4 (8%) 27.1 (6%)

Mod5 0.48 31.4 (7%) 23.5 (5%)

Mod6 0.61 28.7 (7%) 18.4 (4%)

Mod9 0.54 31.3 (7%) 17.9 (4%)



Performance summary

--- 5% bias, 7 
𝜇atm RMSD

--- 5% bias 
and RMSD



Fluxes estimates
• Fluxes computed using satellite-estimated pCO2 and satellite/model-based ancillary quantities

• The need of simultaneous data from different dataset leads to a reduced dataset (approximately 100 data pairs for 
the MODIS-based dataset and 50 for the OLCI-based dataset) 

Model R² RMSD [
𝒌𝒈

𝒎𝟐𝒔
] Bias [

𝒌𝒈

𝒎𝟐𝒔
]

O Mod6 0.74 1.2  ⋅ 10−9 (100%) -2.1 ⋅ 10−10 (18%)

Mod4_T2 0.74 1.2 ⋅ 10−9 (100%) -2.4 ⋅ 10−10 (20%)

Mod5_XGBoos
t 0.57 1.6  ⋅ 10−9 (140%) -6.0 ⋅ 10−10 (50%)

Mod9_XGBoos
t 0.56 1.6 ⋅ 10−9 (140%) -5. 3 ⋅ 10−10 (47%)

M Mod4 0.75 1.3 ⋅ 10−9 (110%) -8.1⋅ 10−11 (7%) 

Mod9 0.75 1.3 ⋅ 𝟏𝟎−𝟗 (110%) 1.0 ⋅ 𝟏𝟎−𝟏𝟐 (<< 1%) 

Mod6_T2 0.71 1.4 ⋅ 10−9 (120%) -3.0 ⋅ 10−10 (25%)

Mod1_XGBoos
t 0.64 1.5 ⋅ 10−9 (130%) -3.0 ⋅ 10−10 (25%)

Mod3_XGBoos
t 0.24 2.2 ⋅ 10−9 (190%) -1.2 ⋅ 10−9 (10%)

Mod6_XGBoos
t 0.37 2.0 ⋅ 10−9 (185%) -9.0 ⋅ 10−10 (80%)

Mod4 - MODIS dataset
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Conclusion and next steps
• Observed data of pCO2 and CO2 fluxes show a net 

sink effect

• Strong MHW impact on the magnitude of the 
exchanges

• The use of regional regression algorithms improve 
the agreement between estimated and observed 
pCO2 values (with traditional regressions 
performing better than ML, probably due to the 
small dataset)

• CO2 fluxes estimates using satellite-based pCO2 
and ancillary quantities show a good agreement 
with fluxes computed using observed data

Dataset Bias RMSD R2

CMEMS pCO2 28.4  [𝜇𝑎𝑡𝑚] (7%) 40.0 [𝜇𝑎𝑡𝑚] (10%) 0.91

MPNR algorithm -7.4  [𝜇𝑎𝑡𝑚] (2%) 31.9 [𝜇𝑎𝑡𝑚] (7%) 0.59

Mod6_T2 4.4 [𝝁𝒂𝒕𝒎] (1%) 13.0 [𝝁𝒂𝒕𝒎] (3%) 0.94

CMEMS Fluxes 9.8 ⋅ 10−10 [
𝑘𝑔

𝑚2𝑠
] (86%) 3.1 ⋅ 10−9 [

𝑘𝑔

𝑚2𝑠
] (270%) 0.22

Mod9 1.0⋅ 𝟏𝟎−𝟏𝟐 [
𝒌𝒈

𝒎𝟐𝒔
] (<< 1%) 1.3⋅ 𝟏𝟎−𝟗  [

𝒌𝒈

𝒎𝟐𝒔
] (110%) 0.75



Conclusion and next steps
• Despite being promising, a larger dataset is needed for a more robust statistics:

• Use of different satellite input (CMEMS L4 salinity, ERA5 or CCMP wind speed, SEVIRI daily 
PAR) to increase the dataset size for pCO2 and fluxes estimates

• Carry on the monitoring with a special focus on the SST and MHW impact on ocean absorption 
efficiency

• Extend the pCO2 and CO2 fluxes estimates to a broader area

• Compare the estimates with other Mediterranean carbon datasets (e.g., Integrated Carbon 
Observation System stations)



Contributions
• Datasets

• All the mentioned measurements and observatories specifics are 
available at: https://www.lampedusa.enea.it/

• Journal Papers 
• Pecci, M., Colella, S., Di Iorio, T., Meloni, D., Monteleone, F., Pace, G., Sferlazzo, D., & di Sarra, 

A. (2024). Validation of photosynthetically active radiation by OLCI on Sentinel-3 against 
ground-based measurements in the central Mediterranean and possible aerosol 
effects. European Journal of Remote Sensing, 57(1). DOI: 10.1080/22797254.2024.2307617.

• Pecci, M., di Sarra, A., et al. (manuscript in preparation). Air-sea CO2 fluxes in the Central 
Mediterranean: the first year of measurements at Lampedusa.

• Pecci, M., di Sarra, A. et al. (manuscript in preparation). Determination of pCO2 from satellite 
data in the Central Mediterranean Sea.
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Thank you!

mattia.pecci@enea.it
alcide.disarra@enea.it

https://www.lampedusa.enea.it



Marine carbon cycle
• Current monitoring mainly rely on model-based 

estimates of pCO2 and CO2 fluxes

• Works on satellite-based estimates of pCO2
 

K. V. Krishna, P. Shanmugam and P. V. Nagamani, "A Multiparametric Nonlinear Regression Approach 
for the Estimation of Global Surface Ocean pCO2 Using Satellite Oceanographic Data," in IEEE Journal 
of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 6220-6235, 2020, 
doi: 10.1109/JSTARS.2020.3026363.

In situ – Daily Mean
MPNR global algorithm

In situ – Daily Mean
Model – Daily MeanModel pCO2

Satellite pCO2

Mediterranean Sea Biogeochemistry Analysis and Forecast - 
https://doi.org/10.25423/cmcc/medsea_analysisforecast_bgc_00
6_014_medbfm3
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