WP 2140: Land validation over temperate and tropical forest WP 2680: Support CHIME Cal/Val

IDEAS-QA4EO WS#5 Thessaloniki 11.06. - 13.06.2024

Benjamin Brede, Linda Lück, Tim Stassin, Martin Herold (GFZ Potsdam)

Konstantin Schellenberg (Department for Earth Observation, Friedrich-Schiller-University, Jena; Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena)

Land validation over temperate and tropical forest

- StrucNet goal
 - Monitor vegetation dynamics through continuous monitoring of vegetation structure
 - GFZ StrucNet design principle: add vegetation structure support to ecosystem networks, primarily ICOS
- GFZ StrucNet instruments
 - LEAF
 - TreeTalker
 - GNSS-T VOD

LEAF: monitoring lidar

- Observable: PAD = vertical PAI distribution
- Total delivered: 5
- Installed
 - Oct 2023: 3x ICOS-GF-Guy (Paracou)
- Planned
 - 1 ICOS-DE-Hai (Hainich)
 - 1 travel/intercomparison campaigns
- QA processor for L0 data

LEAF deployed at Paracou

LEAF time series (Calders et al., 2023)

LEAF DIY

- Goal: develop monitoring lidar based on off-the shelf lidar sensors
- Robosense BPEARL hemispherical lidar
 - Range 100 m (30 m @10% NIST)
 - 0.1° (horizontal) *
 2.81° (vertical) resolution
 - 576 kHz return rate (single return) (LEAF has 20 Hz)
 - Comes with integration box (connection to lidar head)
 - 3.6 4.0 k€ (+ integration)

TreeTalker: VNIR transmission

- Low-cost multi-sensor IoT device, incl. spectrometer (450 – 860 nm)
- Systems installed at Demmin + Hainich
 - Failure of spectral reference sensors
- System evolution + spectral characterisation + towards FAPAR/LAI in HE RemoTrees http://remotrees.eu

TreeTalker TT+3.3

GNSS-T VOD: L-band transmission

- Transmissometry via SNR:
 - reference + measurement sensor pair

Mainly sensitive to soil moisture

Humphrey & Frankenberg (2023)

GNSS-T VOD: instrument

- Receiver Septentrio MOSAIC 5 + antenna Harxon GPS1000
 - Multi-constellation (GPS, GLONASS, Galileo, BeiDou)
 - Multi-band (L1, L2, L5) = multi-frequency, 1.2-1.6 GHz
- Typical site sampling design
 - 1 reference + 5 below-canopy sensors
 - Co-locate with physiological measurements
- Local sensor network design
 - PoE for power supply and data downlink
 - Managed switches for remote control (e.g. power-cycling)
 - NRT data access

GFZ GNSS VOD at ICOS Hainich

GNSS-T VOD: GFZ Sites

- Site decision:
 Aim for tree
 physiological
 measurements
 (e.g. sapflow)
- Not on map: GF-Guy (Paracou)
- VODnet: coordination with other VOD users

GNSS-T & LEAF system Paracou

GNSS-T VOD: first results

- Differences between constellations
 - FOV of sensor dependent on latitude: full hemisphere at equator, only low elevation angle at poles
 - Patterns:
 - GALILEO full hemispherical sampling
 - BeiDou full hemisphere with some gaps
 - GPS tendency to repeat orbits/patterns with gaps
 - GLONASS: strong repeat patterns

VOD at Paracou split by GNSS constellation

GNSS-T VOD: first results

- Difference between sensors:
 - low cost with lower apparent transmissivity (smaller signal) than high end/survey grade

 $-> VOD_{low} > VOD_{high}$

Antenna: RS ANT-GPSC Receiver: ublox NEO-M9N

Harxon GPS1000 Septentrio MOSAIC-5

GNSS-T VOD: GFZ Sites

- Paracou: Diurnal cycle of tree water status
 - Recharge during night
 - Depletion during the day

Support CHIME Cal/Val

- UAV hyperspectral system
 - System check (e.g. interferences UAV remote control & sensor downlink)
 - Pilot training (without payload)
- UAV Operations Manual for flights in the Specific category (VLOS, sparsely populated areas, >25 kg MTOW)
 - Submitted application 10.01.2024
 - First comments received 07.05.2024
 - Revisions submitted 03.06.2024

GFZ Acecore Noa 6 integrated with HySpex VS-620

Support CHIME Cal/Val

SOC

- Rent a field that will be ploughed for our flight mission once permissions are in
- Multi-level campaign planned for June/July

Outlook QA4EO-2

- Proposed baseline: Continued CHIME support:
 - NPV biomass for crops based on UAV lidar
- Possible:
 - CHIME thematic products cal/val (SOC, LAI, CCC)

