

IDEAS-QA4EO Cal/Val

Synergies between Pandora and MAX-DOAS systems for the retrieval of tropospheric aerosol and trace gas vertical profiles, as well as total NO₂ columns

Dimitris Karagkiozidis, Dimitris Nikolis, Alkis Bais and Dimitris Balis

Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

IDEAS-QA4EO Cal/Val Workshop#5, 11th - 13th June 2024, Thessaloniki, Greece

MAX-DOAS measurements at Thessaloniki

- □ Research-grade system
- Increased accuracy in trace gas measurements
- Direct sun and MAX-DOAS observations
- □ NO₂, HCHO, Aerosols

Part of PGN

- Two spectrograph units (UV and VIS)
- Direct sun and MAX-DOAS observations
- \Box NO₂, HCHO, O₃, SO₂

Aim

□ Retrieval of tropospheric aerosol NO₂ and HCHO vertical profiles in Thessaloniki using as input Pandora's spectra and dSCDs

□ Comparison with the operational MAX-DOAS products

□ Comparison with the operational Pandora L2 products

□ dSCDs have been recalculated with QDOAS using the sequential zenith-sky spectra as reference

- □ DOAS retrieval settings based on recommendations of CINDI-2 (Kreher et al., 2020)
- □ Period of study: Nov 2023 Apr 2024

Evaluation of retrieved dSCDs (Delta vs Pandora)

Comparison of measured dSCDs

Species in the visible range

Comparison of measured dSCDs

Species in the UV range

Flagging of data by the profiling algorithms

Flagging of data by the profiling algorithms

MAPA flagging

Species in the visible range

NO₂

Species in the visible range

AOD at 477 nm

Species in the UV range

НСНО

Species in the UV range

AOD at 360 nm

Comparison of Pandora AOD (MAPA) with AERONET data

Preliminary results

AOD at 477 nm

Comparison of Pandora AOD (MAPA) with AERONET data

Preliminary results

AOD at 360 nm

Retrieval of total NO₂ columns by Delta

Adaptation of a DOAS-based algorithm using direct-sun spectra by Delta

Two different methods:

- □ 2T method: NO₂ absorption cross sections at two temperatures for tropospheric (294K) and stratospheric absorption (220K) + climatology of stratospheric NO₂
- □ 1T method: NO₂ absorption cross section at one temperature (254.5K) (interpolated)

The SCD of the reference spectrum is estimated by applying the Bootstrap Estimation method (Herman et al., 2009)

Evaluation of the total NO₂ columns by Delta

Differences between the two methods are minimal when the tropospheric NO2 VCD is low

The 2T method works better irrespective of tropospheric NO₂ VCDs

Evaluation of the retrieved total NO₂ columns

- Very good agreement with mean bias of 1.69% and correlation coefficient of 0.97.
- 50% of the data agree to within ±6.5%

Thanks for your attention!

Backup Slides

Comparison with the operational Pandora product

 NO_2

Comparison with the operational Pandora product

HCHO

