

Thessaloniki | Greece | 11 June 2024

Laboratory of Atmospheric Physics (LAP) Aristotle University of Thessaloniki (AUTH)

Research activities

Dimitris Balis

Head of LAP-AUTH

On behalf of all staff members and researchers of LAP-AUTH

Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece

Research at LAP-AUTH

Long-term atmospheric monitoring

- Total Ozone Column
- Solar Radiation (spectral and broadband)
- Aerosols
- Trace Gases
- Experimental campaign-based studies
- Satellite validation on atmospheric composition
- Modelling studies
 - Radiation
 - Air-quality
 - Climate (global and regional)
 - Weather

Scientific infrastructure of LAP-AUTH

- Single Brewer spectrophotometer #005 (1982)
- Double Brewer spectrophotometer #086 (1993)
- UV and SW Radiometers (1991, 1993 & 1998-)
- Aerosol Lidar (1994)
- CIMEL sunphotometer (2003)
- MaxDOAS spectrophotometers (2011)
- Pyrheliometer (2017)
- **FTIR** spectrometer (2019)
- Sky Camera (2014-)
- Meteorological station (2020-)

Ground-Based instruments (Brewer): Total ozone and spectral UV radiation

Ground-Based Instruments: Aerosol LIDAR measurements

- Multi-wavelength Raman Lidar (3b+2a+1d) since 2000
- 2023 Upgrade: Fluorescence retrievals $(3B+2\alpha+1\delta + fluorescence + water vapor)$

Member of EARLINET since 2000

Aerosol LIDAR activities

- Detection of special events (dust, fires)
- Aerosol typing and characterization
- CALIPSO and AEOLUS validation
- Evaluation of ESA satellite products (i.e., aerosol layer height)
- Validation of volcanic ash products from passive sensors

Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece

DOAS / MAX-DOAS systems

A CONTRACT OF A

Instruments:

- Phaethon (home made since 2006)
- **Delta** (research grade since 2022)
- Pandora (Pandonia network) since 2022)

Measurements:

- Direct-sun/sky-radiance spectra (UV / VIS ranges)
- 2-axis trackers (3D observations elevation/azimuth)
- CCD-based spectrographs

Products:

- Total and tropospheric columns
- Vertical profiles surface concentrations
- Species NO₂, O₃, HCHO, SO₂
- O₄ proxy for aerosol extinction profiles & optical depth

Medium-term Tropospheric NO₂ VCD

Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece

Total NO2 vertical column comparison between Delta and Pandora system

EM27/SUN FTIR spectrometer

- Developed in Karlsruhe Institute of Technology (KIT) in collaboration with Bruker Optics.
- Measures direct solar irradiance spectra in the near infrared (NIR).
- Products: Column-averaged dry air mole fraction of greenhouse gases [CO₂, CO, CH₄, H₂O].
- Part of the COllaborative Carbon Column Observing Network (COCCON) infrastructure

Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece

FTIR time series of CO₂, CO and CH₄

- Increase of 3 ppmv per year in XCO2 due to anthropogenic emissions. Seasonal cycle of 14.2 ppm (peak-to-peak). Decreases of CO_2 during the local growing season due to photosynthesis.
- Increases in XCO concentrations during the cold period owing to fossil fuel combustion and heating. Increases due to transport from forest fires were detected in August 2021.
- XCH4 is lower in spring and higher in summer (higher temperatures and more OH)

Air quality modeling system

Components:
✓ Anthropogenic emissions
✓ Natural emissions (NEMO)
✓ Meteorological modeling (WRF)
✓ Photochemical modeling (CAMx)

Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece

LAP-AUTH Air Quality Forecasting

Operational 72-hour forecasts of O_3 , NO_2 , NO, CO, SO_2 , PM2.5 and PM10 Based on WRF (3.2.1) – CAMx (5.3) system

Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece

LOTOS-EUROS CTM v2.2

LOTOS-EUROS runs

Meteorology	ECMWF (7 km x 7 km)
Input emissions	CAMS REG AP v5.1 base year 2018

EEA groundbased measurements

https://airqualitymodeling.tno.nl/lotos-euros/open-source-version/

https://www.eea.europa.eu/data-and-maps/explore-interactive-maps/up-to-date-airguality-data

We wish you a fruitful workshop!

Sorry for the heatwave, it was not planned....

https://lapweb.physics.auth.gr

lap@physics.auth.gr

Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece