CryoTEMPO-EOLIS Elevation Over Land Ice from Swath Product Handbook Land Ice Elevation Thematic Point Product Land Ice Elevation Thematic Gridded Product Issue: 3.0 Date: 15th February 2023 # **Approval** | Name | Date | Signed | |---|-----------------------------|--------| | Jerome Bouffard
ESA | | | | Noel Gourmelen
University of Edinburgh | 23 rd March 2023 | 122 | | Martin Ewart
Earthwave | 15 th March 2023 | MENA | # **Document Versions** | Issue | Date | Doc ID | Reason for change | |-------|-------------|-----------------------|------------------------------| | 1.0 | 10 Oct 2019 | CS_CTS_PHB_EWAVE_0100 | First version of document | | 1.1 | 25 Apr 2020 | CS_CTS_PHB_EWAVE_0101 | Revisions for first release | | 1.2 | 11 Oct 2020 | CS_CTS_PHB_EWAVE_0102 | Added Antarctica | | 2.0 | 22 Nov 2021 | CS_CTS_PHB_EWAVE_0200 | Added Glacier regions | | 3.0 | 15 Mar 2023 | CS_CTS_PHB_EWAVE_0300 | Updated for EOLIS Baseline 2 | # Contents | 1. Inti | roduction | 1 | |---------|---|----| | 1.1 | Scientific Background | 1 | | 1.2 | Product Access | 3 | | 1.3 | Product Citation | 3 | | 1.4 | Versioning | 3 | | 1.5 | Contacts | 3 | | 1.6 | Reference Websites | 4 | | | duct Details | 5 | | | | | | 2.1 | Coordinate System & Geographic Projection | 5 | | 2.2 | Geographic Extent | 5 | | 2.3 | Thematic Point Product Overview | 6 | | 2.3. | • | 6 | | 2.3. | | 7 | | 2.3. | 3 Point Product Temporal Coverage | 9 | | 2.4 | Thematic Gridded Product | 9 | | 2.4. | 1 Gridded Product Uncertainty Score | 9 | | 2.4. | | 9 | | 2.4. | 3 Gridded Product Temporal Coverage | 10 | | 3. Da | ta Format | 11 | | 3.1 | Nomenclature | 11 | | 3.1. | 1 Point Product Nomenclature | 11 | | 3.1. | 2 Gridded Product Nomenclature | 12 | | 3.1. | 3 Shapefile Nomenclature | 12 | | 3.1. | 4 Previous Baseline Data | 12 | | 3.2 | Thematic Point Product – Variables & Attributes | 12 | | 3.2. | | 12 | | 3.2. | | 13 | | 3.2. | | 13 | | 3.2. | 4 Point Product HDR files | 14 | | 3.3 | Thematic Gridded Product - Variables & Attributes | 14 | | 3.3. | | 14 | | 3.3. | | 14 | | 3.3. | | 14 | | 3.3. | 4 Gridded Product HDR Files | 15 | | 3.4 | Data Format Differences Between Baseline 1 & Baseline 2 | 15 | | 4. Imp | provements From Previous Baseline | 16 | | 4.1 | Coverage | 16 | | 4.2 | Data Volume | 17 | # Issue 3.0 CryoTEMPO-EOLIS Product Handbook | 4. | 3 | Uncertainties | 17 | |-----------|-------|---|----| | | 4.3.1 | Point Product | 17 | | | 4.3.2 | Gridded Product | 18 | | <i>5.</i> | Сар | abilities and Known Limitations | 19 | | 5. | 1 | Elevation Change Timeseries Derived from Gridded Products | 19 | | 5. | 2 | Spatial and Temporal Coverage of Gridded Product | 20 | | 5. | 3 | Phase Model Adjustment | 21 | | 5. | 4 | LRM Boundary | 23 | | 5. | 5 | Single-Precision Floating-Point Errors | 23 | | 5. | 6 | Dataset Overlap | 24 | | 6. | Refe | rences | 25 | # List of acronyms **CRS** Coordinate Reference System **DEM** Digital Elevation Model **EO** Earth Observation **EOLIS** Elevation Over Land Ice from Swath **ESA** European Space Agency **FTP** file transfer protocol **GDAL** Geospatial Data Abstraction Library **GS** Ground Segment InSAR Interferometric Synthetic Aperture Radar **LRM** Low Resolution Mode of the CryoSat-2 radar sensor **NetCDF** Network Common Data Form (binary file format) OIB Operation Ice Bridge **PDGS** Payload Download Ground Segment POCA Point-Of-Closest-Approach **SARIn** The CryoSat-2 SAR Interferometry mode STSE Science, Technology, Society and Environment education **UoE** University of Edinburgh **UTC** Coordinated Universal Time XML Extensible Mark-up Language # 1. Introduction ## 1.1 Scientific Background CryoSat-2's primary mission objectives are to monitor the changes affecting the world's sea and land ice to quantify thickness, mass trends, and the contribution to sea-level change. In practice, CryoSat's revolutionary interferometric design has allowed several technical breakthroughs and led to the application of radar altimetry to environments that were previously unforeseen. One such breakthrough is Swath processing of CryoSat's SARIn mode, making full exploitation of the information contained in CryoSat's waveforms and leading to one to two orders of magnitude more measurements than the conventional so-called POCA technique. Following on from the early demonstration of the technique and its potential impact, the "CryoSat ThEMatic PrOducts - SWATH Cryo-TEMPO" project (CryoTEMPO-EOLIS) aims to consolidate the research and development undertaken during the CryoSat+ CryoTop / CryoTop evolution ESA STSE projects (Gourmelen et al., 2018) and the CryoSat+ Mountain Glaciers project (Jakob et al., 2021; Foresta et al., 2018; Foresta et al., 2016) into operational products. The purpose of the thematic products is to make the data available to the wider scientific community in a form that does not require a detailed understanding of the sensor used and extensive post-processing. The CryoTEMPO-EOLIS consists of two distinct products; - 1) a point product containing a cloud of elevations with an associated uncertainty in geospatial units; and - 2) a gridded product containing a spatial interpolation of the point product onto a uniform grid of elevation and uncertainty. The products were first released over Greenland and Antarctica, and the second phase includes products covering Glacier regions. This Product Handbook describes the operational products, which provide analysis-ready data to a wider community of scientists rather than altimetry experts. The CryoTEMPO-EOLIS Algorithm Technical Baseline Document (ATBD) (<a href="https://cryotempo-eolis.org/cry Figure 1: a) Example EOLIS digital elevation model of the Greenland ice sheet, overlayed on the MODIS Greenland dataset and drainage basins (Gourmelen et al., 2018; Haran et al., 2018; Shepherd et al., 2020); b) Ice thinning history using timeseries of CryoTEMPO-EOLIS digital elevation models near to the Jakobshavn Isbrae Glacier; c) Example EOLIS digital elevation model of the Antarctica ice sheet overlayed on the drainage basins. #### 1.2 Product Access The products are published to the ESA science server and are downloaded via an FTP client. Details of how to log in to the FTP can be found on ESAs CryoSat products page at https://earth.esa.int/eogateway/catalog/cryosat-products. The FTP server is located at: http://science-pds.cryosat.esa.int/. The point and gridded products are stored in the TEMPO_SWATH_POINT and TEMPO_SWATH_GRID directories respectively. As described in Section 3.1.3, a shapefile file containing a mosaic of the point product is available in the TEMPO_SWATH_POINT directory. Additionally, CryoTEMPO-EOLIS products can be downloaded via the altimetry portal https://cs2eo.org/. This service allows for interactive visualisation of available CryoTEMPO-EOLIS data. Useful features include queries using a bounding box or drawn polygons, custom temporal querying, and immediate visualisation of the spatial coverage of query result. For more information about the CryoTEMPO-EOLIS products, please see the project website: https://cryotempo-eolis.org/. Besides general information about the product access, the website provides interactive tutorials that enable quick and simple access to either the point or gridded products, and show examples of the kinds of analysis that are possible. These tutorials run in Jupyter Notebooks via the Google Colab interface and can be accessed and run by anyone with a Google account, and no knowledge or experience of python programming is required. The tutorials can be found at https://cryotempo-eolis.org/tutorials/. #### 1.3 Product Citation When using these products, please cite
as: "EOLIS elevation data generated using swath processing of CryoSat data (Gourmelen, N., Escorihuela, M., Shepherd, A., Foresta, L., Muir, A., Garcia-Mondejar, A., Roca, M., Baker, S., & Drinkwater, M. R. (2018)) and provided by the ESA CryoTEMPO project (https://cryotempo-eolis.org/)." **Reference paper:** Gourmelen, N., Escorihuela, M.J., Shepherd, A., Foresta, L., Muir, A., Garcia-Mondéjar, A., Roca, M., Baker S.G., Drinkwater M.R. CryoSat-2 swath interferometric altimetry for mapping ice elevation and elevation change, Advances in Space Research, Volume 62, Issue 6, 2018, Pages 1226-1242, https://doi.org/10.1016/j.asr.2017.11.014. #### 1.4 Versioning The chapters below describe the processing of Baseline 2 of the CryoTEMPO-EOLIS products. When a new version of the products is released, you will be informed via the https://cryotempo-eolis.org/ website. The version number indicated in the product filename will be incremented. Both the current (Baseline 2) and previous (Baseline 1) versions of the CryoTEMPO-EOLIS products are available to access via the ESA Science Server (see Section 3). #### 1.5 Contacts Feedback or questions about the CryoTEMPO-EOLIS Thematic Products is welcomed. Please use the following contact details: e-mail: support@cryotempo-eolis.org | Website: http://www.cryotempo-eolis.org # 1.6 Reference Websites CryoTOP Evolution: https://cryotop-evolution.org/ ESA CryoSat-2 Data Download: https://science-pds.cryosat.esa.int/ Arctic DEM: https://www.pgc.umn.edu/data/arcticdem/ REMA DEM: https://www.pgc.umn.edu/data/rema/ Gapless-REMA100: https://figshare.com/articles/dataset/Gapless-REMA100/19122212 TanDEM-X: https://earth.esa.int/web/eoportal/satellite-missions/t/tandem-x SRTM DEM: https://srtm.csi.cgiar.org/ ICESat-2: https://icesat-2.gsfc.nasa.gov/ Randolph Glacier Inventory (RGI) 7.0: https://glims-rgi.github.io/rgi user guide/welcome.html # 2. Product Details # 2.1 Coordinate System & Geographic Projection The latitude and longitude scales have distortion at the poles, which is a particular issue for the regions of interest in the CryoTEMPO-EOLIS operational products. Polar Stereographic coordinates have been chosen for the Greenland and Antarctica products, as these are commonly used in the community. For the Glacier regions, those within the polar regions also use Polar Stereographic coordinates. In areas outside of the polar regions, where distortion is not an issue, the World Geodetic System (WGS84) is used as its reference coordinate system. Polar coordinates are consistent in terms of area and can be used in distance calculations. Table 1: Regional Projections | Region | EPSG Code | Proj4 Code | |-------------------------------|-----------|---| | Greenland | 3413 | "+proj=stere +lat_0=90 +lat_ts=70 +lon_0=-45 +k=1 +x_0=0 | | Ice sheet/Periphery | | +y_0=0 +datum=WGS84 +units=m +no_defs" | | Antarctica | 3031 | "proj4":"+proj=stere +lat_0=-90 +lat_ts=-71 +lon_0=0 +k=1 | | Ice sheet/Periphery | | +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs" | | Iceland | 3413 | "+proj=stere +lat_0=90 +lat_ts=70 +lon_0=-45 +k=1 +x_0=0 | | | | +y_0=0 +datum=WGS84 +units=m +no_defs" | | Svalbard | 3413 | "+proj=stere +lat_0=90 +lat_ts=70 +lon_0=-45 +k=1 +x_0=0 | | | | +y_0=0 +datum=WGS84 +units=m +no_defs" | | Arctic Canada | 3413 | "+proj=stere +lat_0=90 +lat_ts=70 +lon_0=-45 +k=1 +x_0=0 | | North/South | | +y_0=0 +datum=WGS84 +units=m +no_defs" | | Alaska | 3413 | "+proj=stere +lat_0=90 +lat_ts=70 +lon_0=-45 +k=1 +x_0=0 | | | | +y_0=0 +datum=WGS84 +units=m +no_defs" | | Russian Arctic | 3413 | "+proj=stere +lat_0=90 +lat_ts=70 +lon_0=-45 +k=1 +x_0=0 | | | | +y_0=0 +datum=WGS84 +units=m +no_defs" | | Southern Andes | 4326 | "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" | | | | | | Central/South East/South West | 4326 | "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" | | Asia | | | ## 2.2 Geographic Extent The CryoTEMPO-EOLIS product is available only over the CryoSat-2 SARin zone (the SARin mask is available here: https://earth.esa.int/web/guest/-/geographical-mode-mask-7107, date accessed: 13th March 2023). The product uses land ice masks for the two ice sheets and the glacier regions. - 1) For the Greenland Ice Sheet and the Antarctic Ice Sheet the drainage basins masks charted in the Rignot data set are used (Rignot et al., 2011). - The glacier regions use the Randolph Glacier Inventory (RGI) 7.0 masks (RGI Consortium, 2017) retrieved from: https://glims-rgi.github.io/rgi_user_guide/welcome.html (date accessed: 13th March 2023). Product coverage is illustrated in Figure 2. Further detail of the regions covered by the CryoTEMPO-EOLIS point and gridded products is provided in Sections 2.3.2 and 2.4.2 respectively. Figure 2: CryoTEMPO-EOLIS product coverage. ## 2.3 Thematic Point Product Overview The CryoTEMPO-EOLIS point product is a set of high-quality CryoSat-2 swath altimetry point data. It is published for 14 regions (see section 2.3.2), in each case providing a monthly elevation dataset with associated uncertainties in geospatial units. This product is designed to be user-friendly; for use by non-altimetry experts. Due to the high volume of data, the monthly product is split spatially into tiles of $100 \times 100 \text{ km}$. ## 2.3.1 Point Product Uncertainty Score The CryoTEMPO-EOLIS Quality Control is a critical process applied to guarantee that the products use only the most accurate altimeter data. A quality flag is generated for each elevation point. Only high-quality points are used in the Thematic Point and Gridded products. Published point products contain elevation measurements with associated uncertainties, in units of meters. To assign uncertainty scores to each swath point, an uncertainty look-up table is generated. For this, a subset of the swath elevation points is binned into a six-dimensional array using all combinations of 6 swath quality variables. In each bin the uncertainty is calculated as the 95th percentile of the standard deviation of the elevation differences to an auxiliary altimetry dataset. # 2.3.2 Point Product Spatial Coverage The CryoTEMPO-EOLIS point product is published in 100 x 100 km tiles. These tiles are shown for all regions using Northern and Southern Polar Stereographic projections in Figure 3 and Figure 4 respectively. Tiles for regions using the WGS84 projection are shown in Figure 5. There are some overlapping tiles, predominantly between the ice sheets and their periphery glaciers as well as in High Mountain Asia. Figure 3: CryoTEMPO-EOLIS point product coverage for all regions using the Northern Polar Stereographic projection system. Tiles are 100 x 100 km. Figure 4: CryoTEMPO-EOLIS point product coverage for regions using the Southern Polar Stereographic projection system. Tiles are 100 x 100km. Figure 5: CryoTEMPO-EOLIS point product coverage for all regions using the WGS84 projection system. Tiles are 100×100 km. ## 2.3.3 Point Product Temporal Coverage #### Baseline 2 – Currently in operation All regions will have monthly data available from January 2023. Data will be available from July 2010 once the back processing has been completed. #### Baseline 1 – No longer in operation Point products are available from July 2010 for Greenland and Antarctica, from July 2021 for Iceland, Svalbard, Canadian Arctic, Russian Arctic, Alaska, and Southern Andes, and from October 2021 for regions in Asia. Data is available up to December 2022. After this date, CryoTEMPO-EOLIS Baseline 1 was retired from operations, and as such, no new data will be available. # 2.4 Thematic Gridded Product CryoTEMPO-EOLIS gridded products are produced for four geographic regions: the Greenland ice sheet, the Antarctic ice sheet, Austfonna ice cap in Svalbard, and Vatnajökull ice cap in Iceland. The gridded product is published on a monthly basis on a 2 km grid in polar stereographic coordinates. The monthly product contains 3 months of data on a rolling basis each month and uses the Thematic point product as its input. For example, the January 2023 gridded product will contain point data for a window starting on 1st December 2022 and ending on 28th February 2023. Details of the temporal window can be found in the HDR file for each product (see section 3.3.3). # 2.4.1 Gridded Product Uncertainty Score Each pixel of the gridded product has an uncertainty associated with its elevation value, in units of meters. These gridded uncertainties are derived from the point uncertainty, which is propagated by taking spatial autocorrelation into account for each region. The coefficients for calculating spatial autocorrelations are generated for each region separately with a semi-variogram. # 2.4.2 Gridded Product Spatial Coverage Spatial coverage of the CryoTEMPO-EOLIS gridded product for the Greenland ice sheet and the Antarctic ice sheet is same as for the point product detailed in section 2.3.2. The gridded product for Svalbard covers Austfonna ice cap, and the gridded product for Iceland covers Vatnajökull ice cap. The locations of both ice caps are highlighted in Figure 6. Figure 6: CryoTEMPO-EOLIS gridded product coverage for a) Svalbard and b) Iceland. # 2.4.3 Gridded Product Temporal Coverage #### Baseline 2 - Currently in operation All regions will have monthly data
available immediately from December 2022. Gridded products will be back processed to August 2010. ## Baseline 1 – No longer in operation Gridded products are available from August 2010 for Greenland and Antarctica, and from August 2021 for Iceland and Svalbard. Data is available up to November 2022. After this date, CryoTEMPO-EOLIS Baseline 1 was retired from operations, and as such, no new data will be available. ## 3. Data Format #### 3.1 Nomenclature There are 2 files for each instance of a data product: - XML HDR file that contains detailed product metadata. This follows the specification: "EO GS File Format Standard", with small modifications to refer to polar coordinates rather than longitude and latitude. - NetCDF data file that contains the point cloud and gridded products respectively. #### 3.1.1 Point Product Nomenclature Each CryoTEMPO-EOLIS TEMPO_SWATH_POINT product consists of a pair of files: - a header file (with extension .HDR) in XML format. - a data block file (with extension .nc) in netCDF format. The folder structure on the ESA Science Server is: TEMPO SWATH POINT/YYYY/MM/<ZONE> The file naming convention is: #### Where: • <ZONE> = Fixed number of chars 9 selectable among one of the following: Table 2: CryoTEMPO-EOLIS product zone names. | Zone Name | <zone></zone> | |---------------------|---------------| | Greenland | GREENLAND | | Antarctica | ANTARCTIC | | Russian Arctic | RUSSIANAR | | Iceland | ICELAND | | Svalbard | SVALBARD_ | | Arctic Canada North | ARCCANNOR | | Arctic Canada South | ARCCANSOU | | Southern Andes | SOUTHANDE | | South Asia East | SOUASIAEA | | South Asia West | SOUASIAWE | | Central Asia | CENTRASIA | | Alaska | ALASKA | - <YYYY> = Year in format YYYY (e.g., 2012) - <MM> = Month in format MM (e.g., 10 for October) - <X> = Coordinate of the south west corner of the grid (in metres), in format (+/-) XXXXXXXX - <y> = Coordinate of the south west corner of the grid (in metres), in format (+/-) XXXXXXXX - <VERSION> = four characters string VVVV where the first character can be alphanumeric and the remaining 3 numeric. The first numeric character refers to the baseline, and the third numeric character refers to the version of the product (this is incremented if the file is replaced with a newer version). #### 3.1.2 Gridded Product Nomenclature The gridded product closely follows the nomenclature of the point product. There is a pair of NetCDF and HDR files with the data in the former and the metadata in the latter. The file naming convention for the gridded product is: CS_OFFL_THEM_GRID__<ZONE>_<YYYY>_<MM>_<VERSION> Where <ZONE>, <YYYY>, <MM>, and <VERSION> have the same definitions as set out in 3.1.1. #### 3.1.3 Shapefile Nomenclature A tar archive containing a shapefile that has the data tiles in a spatial format. The attributes of the file contain the path to the data on the PDGS server. The naming of the tar archive is as follows: CS_OFFL_THEM_POINT_<ZONE>_<YYYY>_<MM>.tgz, where <ZONE>, <YYYY> and <MM> where <ZONE>, <YYYY> and <MM> are defined in 4.1.1. The shapefile format consists of a collection of files(.shp, .shx, .dbf, and .prj), e.g.: - CS_OFFL_THEM_POINT_index_GREENLAND_2019_05.shp - CS_OFFL_THEM_POINT_index_GREENLAND_2019_05.prj - CS OFFL THEM POINT index GREENLAND 2019 05.shx - CS_OFFL_THEM_POINT_index_GREENLAND_2019_05.dbf #### 3.1.4 Previous Baseline Data Although it is recommended that users use the latest version of the CryoTEMPO-EOLIS products, the previous operational version of CryoTEMPO-EOLIS Baseline 1 data is still available for download from the FTP Server. The Baseline 1 products can be found in the following directories: TEMPO_SWATH_POINT_Baseline-1 TEMPO SWATH GRID Baseline-1 This location follows the same folder structure and filename conventions as described above for Baseline 2 products. #### 3.2 Thematic Point Product – Variables & Attributes #### 3.2.1 Dimensions The defined dimension is "row". Each row in the data file represents a spatial temporal point. #### 3.2.2 Point Product Data Columns Table 3: CryoTEMPO-EOLIS point product parameter definitions. | Variable Name | Туре | Content | Unit | |---------------|-----------|--|------------| | time | Integer32 | Number of seconds that have | Seconds | | | | elapsed since January 1, 1970 | | | | | (midnight UTC/GMT) | | | х | Float32 | Spatial position on the x-axis using | Metres | | | | the projection defined for the region. | | | у | Float32 | Spatial position on the y-axis using | Metres | | | | the projection defined for the region. | | | elevation | Float32 | Elevation of the point in space-time. | Metres | | uncertainty | Float32 | Quality indicator of the estimated | Metres | | | | height. | | | is_swath | Integer32 | Indicates if the observation is from | 0,1 | | | | the swath (1) processor or is from | | | | | ESA's L2 dataset (0). | | | input_file_id | Integer32 | Identifier of the input L1b and L2 | Numeric ID | | | | products for swath and POCA | | | | | respectively. | | For data covering the Southern Andes and Asia, the reference coordinate system used is WGS84, and therefore latitude and longitude coordinates will be provided instead of the x, and y coordinates used in all other regions. These coordinates are in units of degrees. #### 3.2.3 Point Product NetCDF Metadata The metadata contains global attributes that reference documentation and variable attributes that describe the content and units of measurement. The full NetCDF header is provided in Appendix A1. A selection of fields that may be of most interest to users include: - **geospatial_projection:** this field contains a proj4 string, which describes the projection used to create this product (and corresponds to the region projection given in Table 1). - **baseline:** the software baseline used to create the products. The current operational CryoTEMPO-EOLIS baseline is '2'. - **version:** the version of this product file that has been downloaded. This number will be incremented if the file has been replaced with a newer version on the ESA Science Server, and starts from '1'. - **time_coverage_duration:** this field contains a shorthand for the temporal duration of the product. For point product files it is set to 'P1M', where the integer defines how many months of data the product includes. - **fileids:** this field contains a list of filenames for each of the individual swath data files that are used to generate the point product. #### 3.2.4 Point Product HDR files Each data file has an associated HDR file that is in XML format. The HDR file contains metadata about the product including the spatial extent, the time window of validity, and details about the products that have been used as inputs for the construction of the product. In the specific header, the product location specifies the spatial area in polar coordinates that the product refers to. The Data Structure Definitions (DSDs) section of the specific header provides the data lineage of the inputs into the TEMPO_SWATH_POINT product. There are both L1B and L2 references because the POCA from the L2 and the swath derived from the L1B product are included. An example of a point product HDR file is shown in Appendix A2. The following fields from each HDR file may be of particular interest to users: - <Product_Location> tag contains the coordinates of the extent of the product in polar stereographic coordinates. - <Proc_Time> tag gives the timestamp for the creation of each product file. - **<Data_Set_Descriptor>** tag contains details of each Swath or POCA data file that contributes to the point product. #### 3.3 Thematic Gridded Product - Variables & Attributes #### 3.3.1 Dimensions The gridded product file has 3 dimensions: - **time**: with a single value corresponding to midnight of the first day of the month. - **x**: spatial position on the x-axis using the projection defined for the region. - **y**: spatial position on the y-axis using the projection defined for the region. #### 3.3.2 Gridded Product Data Columns Table 4: CryoTEMPO-EOLIS gridded product parameter definitions. | Variable Name | Туре | Content | Unit | |---------------|-----------|---|---------| | time | Integer32 | Number of seconds that have elapsed since January | Seconds | | | | 1, 1970 (midnight UTC/GMT) | | | х | Float32 | Spatial position on the x-axis using the projection | Metres | | | | defined for the region | | | у | Float32 | Spatial position on the y-axis using the projection | Metres | | | | defined for the region | | | x_bnds | Float32 | The upper and lower bound of x for each pixel | Metres | | y_bnds | Float32 | The upper and lower bound of y for each pixel | Metres | | nv | Integer32 | Index of nearest vertex, where 0 is westerly or | 0,1 | | | | southerly and 1 is northerly or easterly | | | elevation | Float32 | Elevation of the point in space-time | Metres | | uncertainty | Float32 | Quality indicator of the estimated elevation | Metres | # 3.3.3 Gridded Product NetCDF Metadata The metadata in the file contains global attributes that reference documentation and variable attributes that describe the content and units of measurement. The full NetCDF header is provided in Appendix A3. A selection of fields that may be of most interest to users include: - **time_coverage_duration:** this field describes the temporal coverage of the data used to generate the product. For gridded product files it is set to 'P3M' by default, i.e., 3 months. - **geospatial_resolution:** the resolution of the gridded products in meters. #### 3.3.4 Gridded Product HDR Files The HDR file contains the metadata for the gridded thematic product. An example of a point product HDR file is shown in Appendix A4. Sections that are of particular interest are in the Specific Product Header <SPH>, for example: - < Product_Location > tag contains the coordinates of the extent of the product in polar stereographic
coordinates. - < Resolution > pixel height and width in metres. - <Interpolation_Window> is the time window for which data has been contributed to the product. - <Window_Start> tag contains the UTC when the first swath and POCA products are included. - < Window_End > tag contains the time of the last data contribution. - **<Window_Centre>** publication date that the product is effective for. #### 3.4 Data Format Differences Between Baseline 1 & Baseline 2 There are some minor differences between the metadata and product variable names of EOLIS Baseline 1 and Baseline 2 data. For users wishing to work with data from the previous baseline, the following differences should be noted: #### NetCDF Metadata: - 'product_version': this metadata field refers to the baseline used to create the product (equivalent of 'baseline' in current operational baseline). - No 'region' parameter was provided in Baseline 1. #### Point Product Variables; - The 'is_swath' parameter is named 'isSwath' in Baseline 1 products. - The 'input_file_id' variable is named 'inputfileid' in Baseline 1 products # 4. Improvements From Previous Baseline There are several significant improvements in the CryoTEMPO-EOLIS baseline 2 products. These include swath processing advancements such as waveform filtering and a more robust phase model adjustment, which together result in an increase in data quality and volume across all product regions. Additionally, gridding algorithms for the Greenland ice sheet and the Antarctic ice sheet have been updated to use the same algorithm that was used in the baseline 1 gridded products for Iceland and Svalbard. This gridding algorithm reduces noise and increases coverage compared to the baseline 1 gridded product as well as newly providing a gridded uncertainty. Filtering of POCA data in the point products has been revised to remove points where the POCA retracker has failed. This section will detail some of the observed improvements in the CryoTEMPO-EOLIS baseline 2 products compared to baseline 1. # 4.1 Coverage The CryoTEMPO-EOLIS Baseline 2 products show an overall increase in coverage across all gridded regions. Coverage of the two ice sheets has improved dramatically, in particular around the ice sheet periphery (see Figure 7). Figure 7: Improvement in coverage over a) the Antarctic ice sheet and b) the Greenland ice sheet between EOLIS Baseline 1 and 2. Left: EOLIS Baseline 1 gridded product for February 2019. Middle: EOLIS Baseline 2 gridded product for February. 2019. Right: Coverage change between the two baselines: blue = gain of coverage from Baseline 1 to 2, red = loss of coverage from Baseline 1 to 2. #### 4.2 Data Volume CryoTEMPO-EOLIS baseline 2 boasts a significant data volume increase compared to baseline 1 products due to increased data quality (see Figure 8). The Greenland ice sheet and the Antarctic ice sheet have a volume gain of 42% and 60% respectively, largely due to the improved phase model adjustment (see Section 5.3). Data volume in Asia has also increased significantly due to an algorithm change which removes the reliance on POCA for each swath waveform. Additionally, data volume for all other glacier regions has increased in the range of 5-14%. Figure 8: Percentage difference in point counts between CryoTEMPO-EOLIS baseline 2 and baseline 1 point products for December 2022, showing increase in data volume from baseline 1 to baseline 2 across all regions. #### 4.3 Uncertainties # 4.3.1 Point Product The CryoTEMPO-EOLIS point product uncertainties for baseline 2 have been observed to decrease across all regions compared to baseline 1. Figure 9 illustrates the reduction in uncertainty for Svalbard, with uncertainties reducing on average by approximately 1m. Figure 9: Mean point product uncertainty over time for Svalbard. The uncertainty calculation for the Greenland ice sheet and the Antarctic ice sheet has been updated to use ICESat-2 ATL06 data in baseline 2, compared to OIB data in baseline 1. This has greatly increased our spatial and temporal coverage for the point uncertainty calculation. Point product uncertainties had reduced significantly with 82% of points on the Antarctic ice sheet having an associated uncertainty less than 5m, compared to 40% in baseline 1. A similar observation can be made for the Greenland ice sheet with 82% of points with uncertainty less than 5m in baseline 2, compared to 47% in baseline 1. #### 4.3.2 Gridded Product Gridded uncertainties are now available for both the Greenland and Antarctic ice sheet gridded products. This is a new feature in Baseline 2. Gridded uncertainties for the Austfonna ice cap in Svalbard and Vatnajökull ice cap in Iceland (which were also available in Baseline 1) have been reduced, due to the reduction in point uncertainties described above and the increase in data volume. Uncertainties in Austfonna have reduced by approximately 0.5 m on average, and in Vatnajökull by 1 m on average. Figure 10: Reduction of uncertainties for the Vatnajökull ice cap between EOLIS Baseline 1 (top) and EOLIS Baseline 2 (bottom). The data shown is from the gridded product for February 2019. Left: uncertainty maps for the region, right: distributions of uncertainty values, with mean and median values indicated, as well as the standard deviation. # 5. Capabilities and Known Limitations ## 5.1 Elevation Change Timeseries Derived from Gridded Products Derived average monthly changes from CryoTEMPO-EOLIS DEMs over glaciers are shown for Austfonna, Svalbard and Vatnajökull, Iceland in Figure 11 and Figure 12, respectively. These figures illustrate that the CryoTEMPO-EOLIS gridded products are able to capture well-known events such as the surge of Basin-3, associated with rapid ice loss from mid-2012 onwards (McMillan et al., 2014; Dunse et al., 2015), and the slow-down in ice loss in Iceland between 2013 and 2015 due to recent large winter accumulation (Foresta et al., 2016). Both figures show trends comparable to other published studies using independent datasets (Wouters et al., 2019; Hugonnet et al., 2021). Figure 11: Cumulative monthly changes derived from the CryoTEMPO-EOLIS gridded products over Austfonna, Svalbard from 2011 to 2021. Figure 12: Cumulative monthly changes derived from the CryoTEMPO-EOLIS gridded products over Vatnajökull, Iceland from 2011 to 2021. # 5.2 Spatial and Temporal Coverage of Gridded Product #### **Greenland and Antarctic ice sheets** Overall, gridded product coverage over Greenland ice sheet and Antarctic ice sheet is high at an average of 83% and 92% of total coverage respectively, where total coverage is calculated from the drainage basins masks charted in the Rignot data set (Rignot et al., 2011) minus the CryoSat-2 LRM mask. CryoSat-2 coverage in south Greenland is less extensive than further north due to latitudinal change in orbit separation, coverage can also be sparse over the Antarctic peninsula due to the complex topography. Therefore, there are some data gaps for each monthly DEM. Figure 13: CryoTEMPO-EOLIS gridded products for February 2019 over the Antarctic (left) and Greenland (right) ice sheets. #### Ice sheet margins Due to more complex terrain at the margins of the two ice sheets the data coverage in the CryoTEMPO-EOLIS gridded products is lower. Examples of this over the Antarctic Peninsula and East Greenland are shown in Figure 14. Figure 14: Coverage of the CryoTEMPO-EOLIS Gridded Product (February 2019) for two examples on the margins of the icesheets. Left: the Antarctic Peninsula, Right: an area of East Greenland south of Scoresby Sund. #### Austfonna and Vatnajökull ice caps Coverage in Austfonna and Vatnajökull are extensive with monthly averages of 99% of total coverage for Austfonna and 88% of total coverage for Vatnajökull, where total coverage is calculated from the Randolph Glacier Inventory (RGI) 7.0 masks (RGI Consortium, 2017). Coverage from August to November 2010, the first few months when CryoSat2 was first in operation, is slightly sparser for Vatnajökull with the total coverage ranging from 20-70%. The impact on Austfonna is negligible with the total coverage ranging from 88-97%. Figure 15: CryoTEMPO-EOLIS gridded products covering Austfonna (left) and Vatnajökull (right) for February 2019. ## 5.3 Phase Model Adjustment Due to CryoSat's slight mis-pointing, the conversion from interferometric phase to angle of arrival is complex and leads to systematic errors in the angle of arrival (Wingham et al., 2004; Recchia et al., 2017). These errors are a function of surface slope, roll angle and distance from POCA. This affects predominantly areas of low surface slopes and leads to artefacts in the EOLIS elevation products. We mitigate this effect using a simple empirical model applied on a waveform basis to the elevation difference between swath and a reference DEM, taking advantage of the systematic nature of the error. In some instances, residual phase error patterns may persist. Due to the nature of the phase model adjustment, the shapes of some topographic features such as subglacial lakes can be altered. As shown in Figure 16, this comes from the phase model adjustment flattening out the features. Figure 16: Elevation difference between CryoTEMPO-EOLIS DEM for February 2015 and the REMA DEM mosaic (Howat et al., 2019), over a section of Thwaites Glacier, Antarctica. The left DEM difference plot is generated with no phase model adjustment, and the right with the adjustment applied. Figure 17 illustrates the minor subglacial lake outline deformation and blurring when the adjustment is applied compared to no adjustment. Future improvements to the products will include further development of this method. Figure 17: Rate of surface elevation change in meters per year, calculated over 5 years from January 2011 to December 2015, covering subglacial lakes located underneath Thwaites Glacier, Antarctica. The dataset with no phase model adjustment is shown on the left, and with the adjustment
is presented on the right. # 5.4 LRM Boundary At the boundaries between the CryoSat-2 LRM mode and SARIn mode, we observe higher levels of noise. This results in a higher level of missing data and residual noise in the gridded product. Figure 18: Example LRM boundary holes in West and South Greenland, December 2022. The red ovals highlight holes in the CryoTEMPO-EOLIS DEM next to the LRM boundary due to poor-quality data. # 5.5 Single-Precision Floating-Point Errors The EOLIS products make regular use of the float32 data type (single precision floating point). This data type is capable of accurately representing numbers that have up to 7-to-8 significant figures. The exact number of significant figures that can be represented by a float32 is dependent on the specific value of the float32. Coordinates with 6-to-7 meaningful significant figures are occasionally encountered within EOLIS products. For example, the y-axis coordinate of southern tip of Greenland in Northern Polar Stereographic coordinates contains 7 significant figures (y=3,329,000). When this coordinate is represented as single precision float it will have an effective resolution of 0.1-1m. Lower absolute coordinate values will have better effective resolutions. Within CryoTEMPO-EOLIS processing, whenever two or more points fall within a single float32-imposed geospatial "bin", we select the highest coherence swath point to represent the bin, and discard all other points. In practice, this results in the loss of less than a hundredth of one percent of the points within the product. # 5.6 Dataset Overlap The CryoTEMPO-EOLIS products for the Greenland ice sheet and the Antarctic ice sheet use the drainage basins masks charted in the Rignot data set (Rignot et al., 2011). For publication of the periphery glaciers of both ice sheets RGI 7.0 masks were used and as such there is cross over between both masks. Areas that are included in both the ice sheet and periphery glacier products for Greenland and Antarctica are highlighted in black in Figure 19. Figure 19: Map of ice sheets and glaciers over a) Greenland and b) Antarctica. Blue: area covered only by the Rignot mask, red: areas only in the RGI 7.0 mask, black: areas which are present in both masks and will be included in both products. # 6. References - Dunse, T., Schellenberger, T., Hagen, J. O., Kääb, A., Schuler, T. V., & Reijmer, C. H. (2015). Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt. *The Cryosphere*, *9*(1), 197-215. https://doi.org/10.5194/tc-9-197-2015 - Foresta, L., Gourmelen, N., Pálsson, F., Nienow, P., Björnsson, H., & Shepherd, A. (2016). Surface elevation change and mass balance of Icelandic ice caps derived from swath mode CryoSat-2 altimetry. *Geophysical Research Letters*, *43*(12), 138-145. https://doi.org/10.1002/2016GL071485 - Foresta, L., Gourmelen, N., Weissgerber, F., Nienow, P., Williams, J. J., Shepherd, A., Drinkwater, M. R., & Plummer, S. (2018). Heterogeneous and rapid ice loss over the Patagonian Ice Fields revealed by CryoSat-2 swath radar altimetry. *Remote Sensing of Environment, 211*, 441-455. https://doi.org/10.1016/j.rse.2018.03.041 - German Aerospace Center (DLR). (2018). TanDEM-X Digital Elevation Model (DEM) Global, 90m. https://doi.org/10.15489/ju28hc7pui09 - Gourmelen, N., Escorihuela, M. J., Shepherd, A., Foresta, L., Muir, A., Garcia-Mondéjar, A., Roca, M., Baker, S. G., & Drinkwater, M. R. (2018). CryoSat-2 swath interferometric altimetry for mapping ice elevation and elevation change. *Advances in Space Research*, 62(6), 1226-1242. https://doi.org/10.1016/j.asr.2017.11.014 - Haran, T., Bohlander, J., Scambos, T., Painter, T., & Fahnestock, M. (2018). MEaSUREs MODIS Mosaic of Greenland (MOG) 2005, 2010, and 2015 Image Maps, Version 2. *Distributed by NASA National Snow and Ice Data Center Distributed Active Archive Center*. Retrieved March 14, 2023. - Howat, I. M., Porter, C., Smith, B. E., Noh, M. -J., & Morin, P. (2019). The Reference Elevation Model of Antarctica. *The Cryosphere*, *13*(2), 665-674. https://doi.org/10.5194/tc-13-665-2019 - Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth., C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., & Kääb, A. (2021). Accelerated global glacier mass loss in the early twenty-first century. *Nature*, *592*, 726–731. https://doi.org/10.1038/s41586-021-03436-z - Jakob, L., Gourmelen, N., Ewart, M., & Plummer, S. (2021). Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019. *The Cryosphere*, *15*(4), 1845-1862. https://doi.org/10.5194/tc-15-1845-2021 - McMillan, M., Shepherd, A., Gourmelen, N., Dehecq, A., Leeson, A., Leeson, A., Leeson, T., Leeson, A., Leeson, L., Benham, T., van den Broeke, M., Dowdeswell, J. A., Fettweis, X., Noël, B., & Strozzi, T. (2014). Rapid dynamic activation of a marine-based Arctic ice cap. *Geophysical Research Letters*, 41, 8902–8909. https://doi.org/10.1002/2014GL062255 - Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., & Nakamura, H. (2018). ArcticDEM, Version 3. *Harvard Dataverse*. https://doi.org/10.7910/DVN/OHHUKH - Recchia, L., Scagliola, M., Giudici, D., & Kuschnerus, M. (2017). An Accurate Semianalytical Waveform Model for Mispointed SAR Interferometric Altimeters. *IEEE Geoscience and Remote Sensing Letter*, 14, 1537-1541. - RGI Consortium. (2017). Randolph Glacier Inventory A Dataset of Global Glacier Outlines, Version 6. **NSIDC: National Snow and Ice Data Center.** https://doi.org/10.7265/4m1f-gd79 - Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., & Lenaerts, J. T. (2011). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. *Geophysical Research Letters*, *38*. https://doi.org/10.1029/2011GL046583 - Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., & The IMBIE Team. (2020). Mass balance of the Greenland Ice Sheet from 1992 to 2018. *Nature, 579*(7798), 233-239. https://doi.org/10.1038/s41586-019-1855-2 - Smith, B., Adusumulli, S., Csathó, B. M., Felikson, D., Fricker, H. A., Gardner, A., Holschuh, N., Lee, J., Nilsson, J., Paolo, F. S., Siegfried, M. R., Sutterley, T., & ICESAT-2 Science Team. (2021). ATLAS/ICESat-2 L3A Land Ice Height, Version 5. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/ATLAS/ATL06.005 - Studinger, M. (2014). IceBridge ATM L2 Icessn Elevation, Slope, and Roughness, Version 2. *NASA National Snow and Ice Data Center Distributed Active Archive Center*. https://doi.org/10.5067/CPRXXK3F39RV - Wingham, D., Phalippou, L., Mavrocordatos, C., & Wallis, D. (2004). The mean echo and echo cross product from a beamforming interferometric altimeter and their application to elevation measuremen. *IEEE Transactions on Geoscience and Remote Sensing*, 40(10), 2305-2323. https://doi.org/10.1109/TGRS.2004.834352 - Wouters, B., Gardner, A. S., & Moholdt, G. (2019). Global Glacier Mass Loss During the GRACE Satellite Mission (2002-2016). *Frontiers in Earth Science, 7*. https://doi.org/10.3389/feart.2019.00096 #### A1. Example Point Product NetCDF metadata ``` <class 'netCDF4._netCDF4.Dataset'> root group (NETCDF4 data model, file format HDF5): cdm_data_type: Point Conventions: CF-1.7 Metadata_Conventions: Unidata Dataset Discovery v1.0 contact: support@cryotempo-eolis.org creator_email: support@cryotempo-eolis.org creator url: http://cryotempo-eolis.org/ date_created: 2023-02-16T11:48:15.818130 date modified: 2023-02-16T11:48:15.818142 DOI: 10.5270/CR2-2xs4q4l title: CryoTEMPO-EOLIS Thematic Point Product comment: CryoTEMPO-EOLIS: Elevation Over Land Ice from Swath. Point product containing elevation estimates baseline: 2 region: alaska summary: CryoTEMPO-EOLIS: Elevation Over Land Ice from Swath. Point product containing elevation estimates project: CryoTEMPO-EOLIS, which is an evolution of CryoSat+ CryoTop geospatial_y_min: 820.731191373291 geospatial_y_max: 4433.319789836094 geospatial_x_min: -3672866.90617234 geospatial_x_max: -3653905.1970112757 geospatial_y_units: metres geospatial_x_units: metres geospatial_projection: +proj=stere +lat_0=90 +lat_ts=70 +lon_0=-45 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m institution: ESA, UoE, Earthwave, isardSAT keywords: Land Ice > Elevation Model > Elevation Points > Swath Processing > CryoSat2 keywords_vocabulary: NetCDF Climate and Forecast Standard Names platform: Cryosat-2 processing_level: L3 version: 1 references: Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019, https://tc.copernicus.org/articles/15/1845/2021/ source: Swath data generated from CryoSat-2 SARIn data. time_coverage_duration: P1M time coverage start: 2022-12-08T13:44:58 time coverage end: 2022-12-08T13:44:58 file ids: 232572336772334: CS_OFFL_SIR_SIN_2__20221208T134458_20221208T134914_E001.nc dimensions(sizes): row(6) variables(dimensions): int32 time(row), float32 x(row), float32 y(row), float32 elevation(row), float32 uncertainty(row), int32 isSwath(row), int32 inputfileid(row) ``` #### A2. Example Point Product HDR file ``` <Earth_Explorer_Header> <Fixed Header>
<File_Name>CS_OFFL_THEM_POINT_ALASKA____2022_12_-3400000__+100000___V201//70000/7000/<pr <File_Description>L3 Point thematic product containing swath data generated from CryoSat2 SARIN data.</File_Description> <Notes/> <Mission>CryoSat</Mission> <File_Type>THEM_POINT</File_Type> <Validity Period> <Validity Start>UTC=2022-12-12T13:41:15</Validity Start> <Validity Stop>UTC=2022-12-23T00:51:49</Validity Stop> </Validity_Period> <File_Version>0001</File_Version> <Source> <System>Tempo IPF</System> <Creator>Earthwave</Creator> <Creator_Version>0.1</Creator_Version> <Creation_Date>UTC=2023-02-16T11:49:06.634923</Creation_Date> </Source> <File_Class>Off-Line Processing</File_Class> </Fixed Header> <Variable Header> <MPH> <Product>CS_OFFL_THEM_POINT_ALASKA____2022_12_-3400000__+100000___V001/Product> <Proc_Stage_Code>OFFL</Proc_Stage_Code> <Ref_Doc>http://www.cryotempo-eolis.org</Ref_Doc> <Software_Version>Earthwave/1.2.86</Software_Version> <Proc_Time>UTC=2023-02-16T11:49:06.662978</Proc_Time> <Tot_size unit="bytes">86478</Tot_size> </MPH> <SPH> <Product_Location> <Min X proj4="+proj=stere +lat 0=90 +lat ts=70 +lon 0=-45 +k=1 +x 0=0 +y 0=0 +datum=WGS84 +units=m +no defs" unit="metres">-3397695.4263887038</Min X> <Max_X proj4="+proj=stere +lat_0=90 +lat_ts=70 +lon_0=-45 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no defs" unit="metres">-3300180.9978591907</Max X> <Min Y proj4="+proj=stere +lat 0=90 +lat ts=70 +lon 0=-45 +k=1 +x 0=0 +y 0=0 +datum=WGS84 +units=m +no defs" unit="metres">103046.08777459974</Min Y> <Max Y proj4="+proj=stere +lat 0=90 +lat ts=70 +lon 0=-45 +k=1 +x 0=0 +y 0=0 +datum=WGS84 +units=m +no defs" unit="metres">199943.33384680894</Max Y> </Product_Location> <DSDs> <List of DSDs count="7"> <Data Set Descriptor> <SIR SIN L1/> <Data Set Type>M</Data Set Type> <File Name>CS OFFL SIR SIN 1B 20221214T133924 20221214T134307 E001.nc</File Name> <Data Set Offset unit="bytes"/> <Data Set Size unit="bytes"/> <Num of Records/> <Record Size/> <Byte_Order>3210</Byte_Order> </Data Set Descriptor> <Data_Set_Descriptor> <SIR SIN L1/> <Data Set Type>M</Data Set Type> <File Name>CS OFFL SIR SIN 1B 20221221T005333 20221221T005732 E001.nc</File Name> <Data Set Offset unit="bytes"/> <Data Set Size unit="bytes"/> <Num of Records/> <Record Size/> <Byte_Order>3210</Byte_Order> ``` ``` </Data_Set_Descriptor> <Data_Set_Descriptor> <SIR_SIN_L1/> <Data_Set_Type>M</Data_Set_Type> <File_Name>CS_OFFL_SIR_SIN_1B_20221223T005149_20221223T005541_E001.nc/File_Name> <Data Set Offset unit="bytes"/> <Data Set Size unit="bytes"/> <Num of Records/> <Record Size/> <Byte Order>3210</Byte Order> </Data_Set_Descriptor> <Data_Set_Descriptor> <SIR_SIN_L2/> <Data_Set_Type>M</Data_Set_Type> <File_Name>CS_OFFL_SIR_SIN_2__20221212T134115_20221212T134509_E001.nc/File_Name> <Data_Set_Offset unit="bytes"/> <Data_Set_Size unit="bytes"/> <Num_of_Records/> <Record Size/> <Byte_Order>3210</Byte_Order> </Data Set Descriptor> <Data Set Descriptor> <SIR_SIN_L2/> <Data_Set_Type>M</Data_Set_Type> <File_Name>CS_OFFL_SIR_SIN_2__20221214T133924_20221214T134307_E001.nc <Data_Set_Offset unit="bytes"/> <Data_Set_Size unit="bytes"/> <Num_of_Records/> <Record_Size/> <Byte_Order>3210</Byte_Order> </Data Set Descriptor> <Data Set Descriptor> <SIR SIN L2/> <Data_Set_Type>M</Data_Set_Type> <File_Name>CS_OFFL_SIR_SIN_2__20221221T005333_20221221T005732_E001.nc</file_Name> <Data_Set_Offset unit="bytes"/> <Data_Set_Size unit="bytes"/> <Num_of_Records/> <Record_Size/> <Byte_Order>3210</Byte_Order> </Data_Set_Descriptor> <Data_Set_Descriptor> <SIR_SIN_L2/> <Data Set Type>M</Data Set Type> <File Name>CS OFFL SIR SIN 2 20221223T005149 20221223T005541 E001.nc <Data_Set_Offset unit="bytes"/> <Data_Set_Size unit="bytes"/> <Num_of_Records/> <Record_Size/> <Byte_Order>3210</Byte_Order> </Data_Set_Descriptor> </List_of_DSDs> </DSDs> </SPH> </Variable Header> </Earth_Explorer_Header> ``` #### A3. Example Gridded Product NetCDF metadata ``` <class 'netCDF4._netCDF4.Dataset'> root group (NETCDF4 data model, file format HDF5): cdm_data_type: Gridded Conventions: CF-1.7 Metadata_Conventions: Unidata Dataset Discovery v1.0 contact: support@cryotempo-eolis.org creator_email: support@cryotempo-eolis.org creator url: http://cryotempo-eolis.org/ date_created: 2023-02-24T01:03:41.921442 date modified: 2023-02-24T01:03:41.921473 DOI: 10.5270/CR2-2xs4q4l title: CryoTEMPO-EOLIS Thematic Gridded Product comment: CryoTEMPO-EOLIS: Elevation Over Land Ice from Swath. Gridded product containing elevation estimates on a regular grid region: antarctic baseline: 2 summary: CryoTEMPO-EOLIS: Elevation Over Land Ice from Swath. Gridded product containing elevation estimates on a regular grid version: 1 geospatial_y_min: -2200000 geospatial_y_max: 2200000 geospatial x min: -2600000 geospatial_x_max: 2700000 geospatial_y_units: metres geospatial_x_units: metres geospatial_projection: '+proj=stere +lat_0=-90 +lat_ts=-71 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs' geospatial_resolution: 2000 geospatial_resolution_units: metres institution: ESA, UoE, Earthwave, isardSAT keywords: Land Ice > Gridded > Elevation Model > Elevation Points > Swath Processing > CryoSat-2 keywords_vocabulary: NetCDF Climate and Forecast Standard Names platform: Cryosat-2 processing level: L3 project: CryoTEMPO-EOLIS, which is an evolution of CryoSat+ CryoTop references: CryoSat-2 swath interferometric altimetry for mapping ice elevation and elevation change, In Advances in Space Research, (2017), ISSN 0273-1177, https://doi.org/10.1016/j.asr.2017.11.014 source: Gridded Swath data generated from CryoSat-2 SARIn data. time coverage duration: P3M time coverage start: 2019-01-01T00:00:00+00:00 time_coverage_end: 2019-03-31T23:59:59+00:00 dimensions(sizes): x(2650), y(2200), time(1), nv(2) variables(dimensions): int32 time(time), float32 x(x), float32 y(y), float32 elevation(x, y, time), float32 uncertainty(x, y, time), int32 nv(nv), float32 x bnds(x, nv), float32 y bnds(y, nv) ``` #### A4. Example Gridded Product HDR file ``` <Earth_Explorer_Header> <Fixed_Header> <File_Name>CS_OFFL_THEM_GRID__ANTARCTIC_2019_02_V201</File_Name> <File_Description>L3 Gridded thematic product containing interpolated swath data that is generated from CryoSat2 SARIN data.</File_Description> <Notes/> <Mission>CryoSat</Mission> <File_Type>THEM_GRID_</File_Type> <Validity Period> <Validity Start>UTC=2019-01-01T00:00:00+00:00</Validity Start> <Validity_Stop>UTC=2019-03-31T23:59:59+00:00</Validity_Stop> </Validity_Period> <File_Version>0001</File_Version> <Source> <System>Tempo IPF</System> <Creator>Earthwave</Creator> <Creator_Version>0.1</Creator_Version> <Creation_Date>UTC=2023-02-24T01:03:42.000937/Creation_Date> </Source> <File _Class>Off-Line Processing</File_Class> </Fixed Header> <Variable_Header> <MPH> <Product>CS_OFFL_THEM_GRID__ANTARCTIC_2019_02_V001</Product> <Proc_Stage_Code>OFFL</Proc_Stage_Code> <Ref_Doc>http://www.cryotempo-eolis.org</Ref_Doc> <Software_Version>Earthwave/1.3.1</Software_Version> <Proc_Time>UTC=2023-02-24T01:03:42.068448</Proc_Time> <Tot_size unit="bytes">46716314</Tot_size> </MPH> <SPH> <Product Location> <Min X proj4=""+proj=stere +lat 0=-90 +lat ts=-71 +lon 0=0 +k=1 +x 0=0 +y 0=0 +datum=WGS84 +units=m +no_defs'" unit="metres">-2600000</Min_X> <Max X proj4=""+proj=stere +lat 0=-90 +lat ts=-71 +lon 0=0 +k=1 +x 0=0 +y 0=0 +datum=WGS84 +units=m +no defs'" unit="metres">2700000</Max X> <Min_Y proj4=""+proj=stere +lat_0=-90 +lat_ts=-71 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no defs'" unit="metres">-2200000</Min Y> <Max Y proj4=""+proj=stere +lat 0=-90 +lat ts=-71 +lon 0=0 +k=1 +x 0=0 +y 0=0 +datum=WGS84 +units=m +no defs'" unit="metres">2200000</Max Y> </Product Location> <Resolution> <Grid Pixel Width units="metres">2000</Grid_Pixel_Width> <Grid Pixel Height units="metres">2000</Grid Pixel Height> </Resolution> <Interpolation Window> <Window Start>UTC=2019-01-01T00:00:00+00:00</Window Start> <Window End>UTC=2019-03-31T23:59:59+00:00</Window End> <Window Centre>UTC=2019-02-15T00:00:00+00:00</Window Centre> </Interpolation Window> <DSDs> <List_of_DSDs count="0"/> </DSDs> </SPH> </Variable Header> </Earth Explorer Header> ```