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1 Stationary Iinverse ocean models ...

... compute oceanic flow fields from input variables such agptrature, salinity and cur-
rent velocitiesy. It Is very expensive to measure In-situ mean velocitiescefam currents!
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Velocity field from ocean model without MDT

Mass transport across sectidh9 + 64 Sv

Formal errors are calculated from inverting the Hessiamefcost function.

Surface velocities can also be determined by the geostrophic relation balance 77\

_____________________

from the mean dynamic topography the departure of the sea surface from the geoid.
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2 Gravity field models: Ocean surface currents from MDT

Global gravity field solutions are usually represented bhesigcal harmonic functions. To be used
In an ocean model, the series has to be truncated and p@ute the finite ocean model grid.
Complete covariance matrix ... Due to neglecting small scales, the “omission error’ ocamd leaks into large scales.

We show: Theomission error should betaken into account!!

The omission error has considerable influence on the ern@aremce matrix whose inverse Is
used as the weighting matrix during the optimization.
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T T RESULTS:
NO Omission Omission Full
so | MDT neg[;‘g{ed ;;:3; ormission e Mass transport across sectidir4 + 48 Sv (with full omission error)
considered |
60 | | e The omission error Is not negligible for the overall errairaate.
40 | | e Considering the omission error reveals that GRACE data ateaccurate enough for
20 | Improving transport estimations by ocean models signifigan
: > We expect significant Iimprovements

from GOCE with low omission error!

Formal errors for transport across section

3 Ocean surface currents from ice drift: an alternative approach

The presence of sea ice at high latitudes impedes altimetric SV — s 'U”
measurements. But satellite imagery allows for detectibn o with turning angle 6 = arctan SO and
mean sea ice motion, whose features are mainly attributable ] ]
atmospheric forcing. | _ cosO X u'U +sinf@ - v'U —sind@ - u'V' + cos§ > v'V’
Surface ocean currents beneath the ice cover can be degived b £ = :

| . | | . S u/2 + 3 U/2
subtracting the wind effect from the ice motion via called the speed reduction factors/ — u — u  etc.

(N. Kimura: Sea Ice Motion In Response to Surface Wind anda®Qce
Current in the Southern Ocean, IMSJ 2004.)
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Mass transport across sectidir3 + 46 Sv (with ice drift model)=— Error reduction is of same scale as with geoid model.

To improve this estimate, we would need: - | |
This Is far from being realized.

e refined radar Iimagery e improved image processing techniques
e more reliable wind field e error variance/covariance information!

> Therefore, we hope for GOCE
to iImprove the MDT method!




