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What can we learn from the geoid on the solid Earth?

Newton’s law of gravity:
Q
_ G / 2(Q)
dPQ

e The inverse gravimetric problem (IGP):
Find the volume-mass distribution ¢ of the Earth, provided that the
potential V is known outside the Earth.

e Aninverse problem is called well-posed if each of the following three
criteria is satisfied (Hadamard):
¢ a solution exists
e the solution is unique
¢ the solution is stable, i.e. it continuously depends on the

given data (here: V)



Inverse gravimetric problem is ill-posed

The IGP is an ill-posed inverse problem since violates all three of
Hadamard’s criteria.

e Existence: V has to be harmonic outside the Earth which may be
violated by measurement erros

e Uniqueness: Only the harmonic part of the density function can
uniquely be reconstructed, whereas the (in the sense of the L2-space)
orthogonal, so-called anharmonic, part has the external potential 0 and,
therefore, does not leave any trace in gravitational measurements.

This is the most serious problem of IGP.

e Stability: The density does not continuously depend on the
gravitational potential.



Non-uniqueness

Let o1 be a solution of the IGP and let 9B have a continuous normal n.
Then a class of all solutions of the IGP in L?(B) can be represented as

0= 01+ V?h
where oh
hl,p = — =0
oB on 0B

In other words, V2h generates a null external gravitational field.
The Green'’s third identity proves this: for P in E3\B it holds

V2h(Q) Pmm1 6(1)}
dVo=G — —h(Q)—= ()| dSe=0
B dPQ Q EY:] on dPQ ( )an dPQ Q

i.e., V=0in E3\B and hence on 9B.

V(P)=G




Minimum-norm solution

The minimum-norm solution:
/ [6o(r,Q)]* dV = min
B e
under the integral constraints for potential coefficients
Vim = / So(r, Q) Yim(Q)aV
B

The variational form using the Lagrange-multiplier method

j 'max J

5 {;/B[5g(r, QP aV+> > ajm {Vlm - /Bdg(r, Q)er/m(Q)dV} } =0

j=0 m=—j
where § is the variation with respect to do.
= harmonic density anomaly

/max /

6o(r, Q) =" > ajmYim(Q)

j=0 m=—j



The decomposition of L, space

Lo=HeH*
H = {er,-m(Q),j:O,L...,m:fj,...,j}

oh|  _ 0}
o8

2
HY = {v h hlos= 3.

HL

the set of gravitationally
equivalent bodies

a solution

. H

the harmonic solution
= the minimum Ly-norm solution




Instability

Let c = 0on 9B and let o := 0 in E3\B. The Laplace-Poisson equation for
potential V:
V2V = —47Go in Es

Using the 3-D Fourier transform of the form

f(k)=(2n) 2 [ f(r)e ™ dr
Es
The Laplace-Poisson equation in the Fourier domain:
K2V(k) = 47 Ga(k) k = |K|
Two possible views:

Forward GP Inverse GP

V(k) = A(k)o(k) a(k) = V(k)/A(k)

The transfer function mapping the density ¢ onto the potential V:

arG

AR =T

For k — oo, 1/A(k) — oo, and a solution of the IGP is unstable.



Do gradiometric data bring new information on mass
density?
Answer: NO if the gradiometric data are considered as the Stokes potential
coefficients

Spherical harmonic representation of V

virey = My ()’”Zv,myfm(ﬂ
j=0 m=—j

Stokes potential coefficients
o 4i 1 oo ANYVE (O ’
Vin = g e | e )Yl @)av
B
Gradiometric model (e.g. GOCO02)

grad grad V(r, Q) = GMZ a Z V%OCE grad grad [r7j71 Y/m(Q)]

m=—j



Green’s function of geoid for a static mantle

Newton’s integral:

? do(r', ')
r=bJa, L(r, ¥, 1)
Using the addition theorem for r > r’/,

;_ﬁiiL ’: jy,*(Q’)y. (Q)
L(r,p,r) 1 & & j2j+1 r m SRS

j=0 m=—

SV(r,Q) =G rar'dQ’

and writing the spherical harmonic expansions:

SV(r,Q) = Zav,m Yin 50(r, ) = 3 60m(r) Vim(Q)
jm

Then for r = a:

5Vin(a / G (a, ' )ogim(r') O

where Green’s function of a static geoid is

n _ 4rGa 2




Green’s functions of static geoid (j = 2,4,10)
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The smaller spatial scales in gravitational potential, the higher sensitivity to

shallower small-scale density variations, or in other words, the lower
sensitivity to deeper small-scale density variations.
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The Earth’s interior is closed to hydrostatic equilibrium

Flattening of the Earth:
e hydrostatic: f = 1/299.0
e ‘observed’: f = 1/298.257

=- The Earth’s 'gravity’ interior is slighlty perturbed from the hydrostatic
equilibrium:

0= 00 + oo
~~ ~
hydrostatic =~ non-hydrostatic

Additionally:

e Seismic tomographic model of the compressional (P) and transverse
(S) seismic elastic waves

e Conversion of seismic anomalies to density anomalies:

bo _ o

0 —va

pr ... proportionality factor



The geoid response to a static mantle

N

geoid

surface

op>0 @

cmb

Induced geoid undulations ~ hundreds of meters
= Earth’s mantle is not static but dynamic



Dynamic mantle

The Earth’s mantle is slighlty perturbed from the hydrostatic equilibrium:

¢ = ootdo
g, +0g

Q
I

where
do< 0o and §g < g,

The gravitational force acting on a material partical:

og = 2 9o + 609, + 0069
hydrostatic force  buoyancy force  self-gravitating force

Driving forces from equilibrium = buoyancy + self-gravitation



Fluid dynamic model of the geoid

V?¢: potential induced by mantle density anomalies 8o
V! : potential induced by deformations of boundary topographies ¢

Courtesy of N.Tosi



Stokes problem for present-day mantle convection

Mass conservation for an incompressible mantle:
divv =0
Momentum conservation with Pr— oo:
divr +f=0
Constitutive relation for a Newtonian viscous medium:

T = —pl+2ne
e = (Vv+V'v)/2

Boundary conditions at 98 = 9B U 9B°™

v.-n = 0

|
o

T-n—(n-T-nn



Weak formulation

Consider a suitable functional space and create the functional
F(v,p,t1,0) = /n(s : e)dV+/f~ VdV+/pdiVVdV
B B B

+/ 51(n~v)d8+/ to(n- v)dS
aBtop oBemb
Compute the variation of F and use of Green'’s identity

5F:—/(divr+f)-6VdV+ [r-n—(n-7-n)n]-évas
JB oB

+/ (n.v)az1ds+/ (n-v)6ts dS
oBtop oBemb

At a stationary point of F, §F = 0, the differential and the variational problem
are equivalent.



Spherical-harmonic, finite-element parameterization

Expansion in scalar and vector spherical harmonics with respect to angular

coordinates:
N
P:Z Z Pim(r) Yim(£2)
10 m—j

v= Z Z [Uin(r)S5, " (Q) + Vim(r) S () + Wim(r)S2(Q)]

J=0 m=—j
Expansion into piecewise linear-finite elements with respect to radial

coordinate:
K+1

r)= Z Utk (r)

where: r , o

k+1 — — Tk+1
——— and ()= ———
— Ik Fe41 — Ik

Yi(r) =



Green’s function of geoid for a dynamic mantle

Assumption: 1-D viscosity model n = n(r).
The gravitational effect of dynamic mantle + dynamic topographies:

5o(r', Q) 2 ai(2')
V(r,Q) G/ / rdrdQ+G IR o
r'=bJ Qg L r, w7 Z Qo L(I’ 1/1,[',)

where
O'/(Q):A,Q,’f/(Q) i= 1,...,n
and t(Q) is the i-th dynamic topography. Easy manipulations results in
a 47 Ga

6Vim(a) = Gs’a (a,r')oom(r)dr + Z e
,-/

( ) Ag;(t)jm

where {, are the coefficients of topography t(€2). Formally,

a
SVinla) = [ G (a7 )il )

/—p

Green'’s function of a dynamic geoid Gj"y’"(a, r') can only be modelled
numerically.



Input data for forward dynamic-mantle modelling

e S-wave seismic tomographic model of Becker & Boschi (2002).
e Conversion of seismic to density anomalies:

bo _ 0
o v
proportionality factor pr = 0.2
e 3-layer viscosity model:

nr = 12.5 x 102! Pas r e (6271 — 6371
VM1 : nuw=1x10%Pas r e (5701 — 6271
VM2 : num =5 x 10 Pas r e (5701 — 6271
nmm = 40 x num re (3471 — 5701

— — — —



Green’s functions of dynamic geoid (j = 2,8, 1630)
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Green’s functions of surface dynamic topography
(j=2,8,16,30)

TBD



Geoid

GOCO02 (j=2-12)
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Surface dynamic topography
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CMB dynamic topography
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Free-air gravity anomalies

SMEAN dynamic-mantle prediction

SMEAN (j=2-30)
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GOCO02 (j=2-30)
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SMEAN dynamic-mantle prediction: VM1 vs. VM2

Viscosity model VM1
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Tomography of crust & shallow UM (Lebedev & Hilst, 2008)
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Tomography of deep UM (Lebedev & Hilst, 2008)
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Free-air gravity anomalies

GOCOO02 (Free—Air Gravity Anomalies)
Degree: 2-30 2-60 31-60

=4 T 40-5 3 40 x< h _w

[N

r . il |
- 20 5 e = 2015 =
Yy - o N

0 -ﬁ - o

[
")
A el

-20°

(SN

\)"*‘”w-ﬂ

b

8 el if; 2

B P SN O ol

3L ) 4
» 0 ERP N
7 { [ [ {Fra
1 gf . L | " /
Lt a0 Lt a0 =
K"k ‘ ) e
20 40 60 -20 0 20 40 60 -2 0 20° 40° 60°
[ — ]
-50 -25 25 50



Butterworth filter
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Masked GOCQOO02 free-air gravity anomalies
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Possible contributors to the (static) gravity field

Surface topography (Is o = 2670 kg/m® correct for sedimentary basin?)
Lower-density sediments

3-D density variations within the crust (various geological units)
Compensation at the Moho discontinuity

1-D (3-D) density variations in the lithosphere

Compensation at the lithosphere boundary

Pull-down or push-up by mantle flow at the lithosphere boundary

3-D density variations due to mantle convection



ETOPO1 topography
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Total sediment thickness of Congo basin
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Degree amplitude spectrum (mgal)
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A density contrast

The external gravitation of a body can be approximated by a material surface
with either surface mass density

Apt(Q) Airy's type
a(Q) =
ho(Q)  Pratt’s type
The coefficients of the gravity induced by Airy’s type mass surface:
3 bim
a0mean 2j + 1

gnt = (j+1)20Tim Tim =

Let Ry, be the residual gravity coefficients:

obs

Rim = gm + g,-f,,"

The density contrast Ao will be searched by minimization of Rjn:
Z Rjn i = min
jm

It results in (Martinec, 1994):

Sl 1) Tim g
Sl 12T T

Ap =




Degree correlation and density contrast
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Conclusions:

e Free-air gravity and gravity induced by sediments are correlated (in
sense of statistical significance) up to degree j = 130

e The density of sediments is in average of 210 kg/m® smaller than the
density of surrounding crustal material



Gravity signals, jmax = 130
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Residual free-air gravity, jmax = 130
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Kadima et al. (2011) hypothesis: Uplift of the Moho surface =
= crustal thickening = fill in by heavier mantle material



The effect of topography, jmax = 130

Bouguer gravity corrections Geological units
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The crustal thickness over Africa
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The Moho-induced gravity, jmax = 180
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A possible scenario

e The negative free-air gravity could be explained by lower-density
sediments (it agrees with Kadima et al., 2011), except the narrow,
NW-SE oriented, positive gravity anomaly.

e The positive Bouguer gravity correction could be balanced by the
negative Moho-induced gravity. However, the narrow, NW-SE oriented,
positive gravity anomaly is amplified, not compensated (it contradicts to
Kadima et al., 2011 hypothesis).

e The Congo high-seismic velocity lithospheric craton may have a large
density (due to thermal reason) and induced a higher gravity could be
compensated by the negative gravity induced by mantle flow (not shown
here, but also within the frame of Buiter at al., 2011)

Open question: How to interpret the narrow, NW-SE oriented, positive gravity
anomaly?
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Gravitational potential and its gradients

V() = K/Q(Ff)e(?,ﬁ)dv

o(r') G(F,r') dV

K

grad V(7)

-
!

B
grad grad V(F) = n/g(f;) G(F,r'ydVv
B

Green'’s functions:

G(r,r') = o)
G(r, f;) = grad1Z __r Z3r
G(r,r) = gradgrad} = %[[ 3(r—r )LQS (r—r)



An example in 2-D Cartesian geometry

Observer

-

- (o)),

G = (grad grad —

Green’s functions
at(x=0,z=0):

D
Gyz = (grad grad )Xz
)

zz

~l= == ==

Gz = (grad grad




Scalar, vector and tensor Green'’s functions for mass density

2
G, zZ’'=const.
é S Gy,
é‘ G
< o Gy
X
GXX
-1

Conclusion: The higher the order of the derivative of the gravitational
potential as a boundary datum, the smaller the contribution from far-zone

mass-density anomalies.



Mass-density Green’s functions for gradiometric data
in spherical geometry

After lengthy derivation:

grad grad% = :—3 {Kn(t, x)er + Ka(t, x)(cosaery —sinaer,)

. 1
+Koal(t, x)(cos 20 (€99 — €44) — 28iN 2 ew) - EK”(t’ X) (ess + €yy)

9 ... spherical distance, x = cos ¢
« ... azimuth
t=r'/r

Three isotropic kernels:

Ki(t,x) = Z(]+1)(]+2)t’P( )
KrQ(t,X) = —2MZU+2)IJ ( )

Z tl dx2

Kaoa(t, )



Closed spatial forms

1 3(1—tx)?
Krr(t,x) = *E + T
Ka(t,x) = -1 _sz
1 2,31
KQQ(t,X) = 5(1 — X )?

where



Isotropic gradiometric Green’s functions
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Integral equations for a surface-mass density
For a fixed source position (r' = const):
/Q/ (VKo (Q,2)dQ = du() a=1,.., GOCE
The Nystrém method discretizes the integral equation by a quadrature rule:

ZW,Q VKo (R, ) = da(%) k=1,..,n

The Galerkin method: .
Q) => 0ei(Q)
j=1
¢;(Q) - -- a set of nlinearly indep. functions (e.g. tapers on a spherical cap)

: Q (VK (Q, ) i(V) = | du(Dde(dQ k=1, ...,
;g,/QAdQ [, 99 (@)K @.2)6(2) /n,.d( Jox(Q)d n

Overdetermined s. of linear algebraic equations for a surface-mass density

—

Ao =d, a=1,..,GOCE
| |
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