

European Space Agency

The Sentinel-3(A) Mission:

Mission status

Susanne Mecklenburg, ESA Sentinel-3 Mission Manager ESA and EUMETSAT Sentinel-3 development and operations teams

SENTINEL-3 MISSION OVERVIEW

- Operational mission in high-inclination, low Earth orbit
- Full performance achieved with 2 satellites in orbit (S-3A,-3B)

Optical Mission Payload providing

- Sea and land color data, through OLCI (Ocean and Land Color Instrument)
- Sea and land surface temperature, through the SLSTR (Sea and Land Surface Temperature Radiometer)

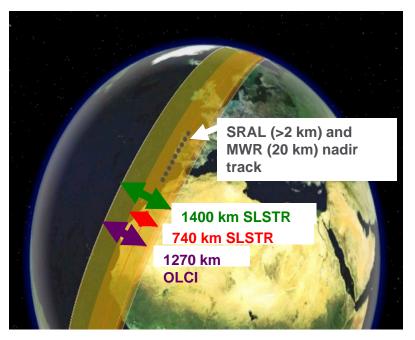
Topography Mission Payload providing

- Sea surface topography data, through a Topo P/L including a Ku-/Cband Synthetic Aperture Radar Altimeter (SRAL), a bi-frequency MicroWave Radiometer (MWR), and a Precise Orbit Determination (POD) including
 - GNSS Receiver
 - DORIS
 - Laser Retro-Reflector

In addition, the payload design will allow

- Data continuity of the Vegetation instrument (on SPOT4/5),
- Enhanced fire monitoring capabilities, river and lake height, atmospheric products

_ II ⊾ :: ■ + II ■ ½ _ II II _ _ :: 1 !! ... II II ... II ...


NEW FEATURES - optical payload

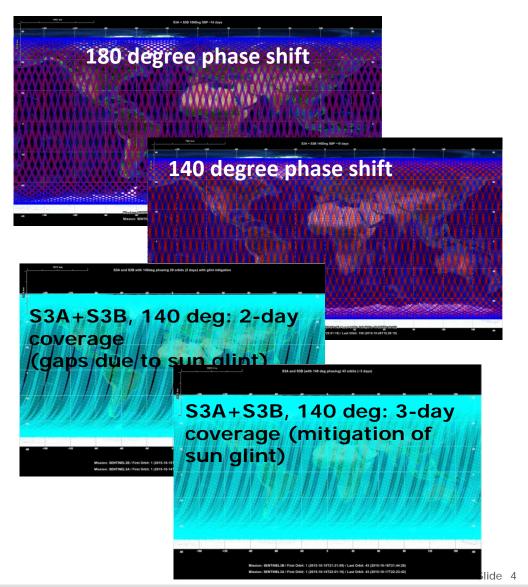
- 100% overlap between SLSTR and OLCI
- Increased number of bands compared to both AATSR and MERIS allowing
 - Synergy between OLCI and SLSTR measurements
 - Enhanced fire monitoring capabilities

Broader swath

- OLCI: from 1150 km to 1270 km
- SLSTR: Nadir view 500km → 1400km, Oblique view: 500km → 740km
- Optical payload < 2 days global coverage (with 2 Satellites) in view of the substantially increased swath
- □ Increased spatial resolution:
 - OLCI: 300m for land and ocean
 - SLSTR: 500m for VIS-SWIR, 1km for IR-Fire
- Mitigation of sun glint by tilting cameras 12.5 deg in westerly direction
- Near-Real Time (< 3 hr) availability of L2 core products</p>

Instrument Swath Patterns

Orbit type	Repeating frozen SSO
Repeat cycle	27 days (14 + 7/27 orbits/day)
LTDN	10:00
Average altitude	815 km
Inclination	98.65 deg


OPTIMISED ORBIT PHASING OF S3A/B AND C/D

- Copernicus Marine Environment Monitoring Service (CMEMS) asked for optimising orbit phase shift to improve interleave between S3A and S3B for improved SRAL mesoscale sampling at 4-7 days
- Solution of 140° separation recommended by ESA, and confirmed by EUMETSAT assessment.
- EC has confirmed implementation for S3B

Image: Minimal impact on optical mission

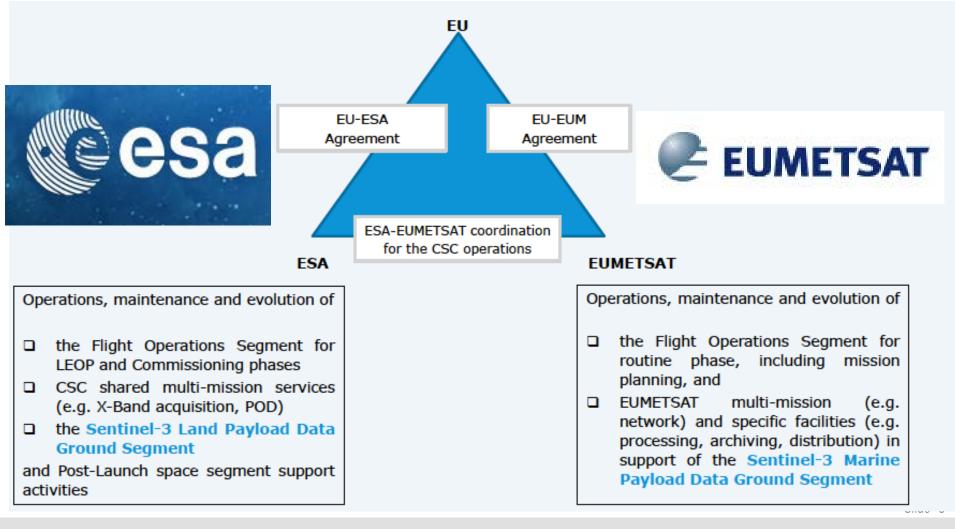
Over ocean

- OLCI: global coverage <2 days but parts of the swath will be impacted by sun-glint. Sun-glint free coverage by OLCI will be attained in ~3 days over the ocean.
- SLSTR: coverage and revisit of the SLSTR remains compliant with requirements.
- Over land (sun glint unproblematic, unless inland water) OLCI and SLSTR coverage is expected to remain compliant with requirements.

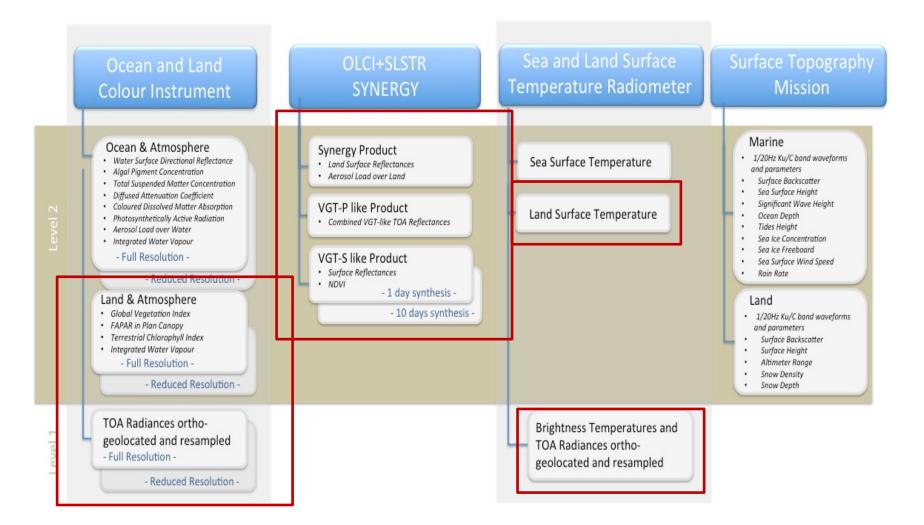
What happened since launch ... @ EUMETSAT

Sentinel-3A successfully launched from Plesetsk Cosmodrome (Russia) on 16 February 2016

Spacecraft and all instruments in nominal operational mode and functioning well.


16 Feb	Successful Launch
18 Feb	 LEOP phase concluded successfully Perfect orbit injection from the launcher Rapid and smooth Solar Array deployment Only one minor anomaly encountered (Star Tracker depointing due to incorrect quaternion data), rapidly identified and corrected
26 Feb	Platform In-Orbit Verification completed
4 March	 Payload In-Orbit Verification completed ✓ All instrument ON and operating (except SLSTR in decontamination mode, as planned) ✓ Level-0 products being generated
7 March	Cal/Val Phase of S3 commences
April/May	Mid-Term-Reviews for OLCI, SLSTR and SRAL
mid- May	Release of sample products to all users for familiarisation
28-30 June	Expert users meeting – first feedback from S3 validation teams
11/12-July	In-Orbit Commissioning Review (IOCR)– successful completion of commissioning phase, start of ramp-up phase (initial operations)
13 July	ESA internal handover from development to operations team; Handover of flight operations from ESA to EUMETSAT
10 October	Handover of Marine PDGS from ESA to EUMETSAT
Q3 2016	Progressive release of Level 1 data
TIII RORR	Progressive release of Level 2 data
Dec 2016	Mid-term review check point for ramp-up phase
June/July 2017	Start of routine operations phase – Routine Operations Readiness Review (RORR) Slide 5

asa


ESA & EUMETSAT SHARE OPERATIONS

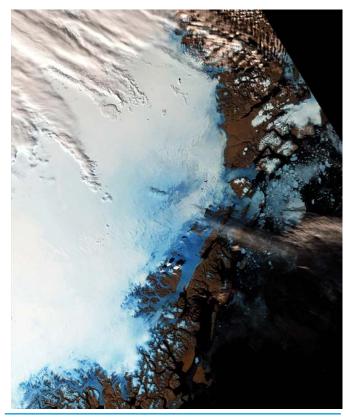
EU Copernicus Regulation: full, open and free data policy, defining responsibilities for ESA and EUMETSAT and overall financial envelope
 Dedicated EU-ESA and EU-EUMETSAT Copernicus agreements

■ II ≥ II = + II = ⊆ I II II = Ξ II = 0 II = II = II ※ II

Sentinel-3: core data products

· = ■ ► = = + ■ ■ = = = 1 ■ ■ = = = ■ ■ ■ ■ ■ = = ■ ■ ₩

European Space Agency



STATUS OF CORE OPTICAL DATA PRODUCTS

Slide 8

European Space Agency

OLCI: Status Level 1 (TOA radiances)

Switch on 29 Feb 2016

Sample L1/L2 data available	May/June 2016
L1 data release	20 Oct 2016
L2 data release	Spring 2017

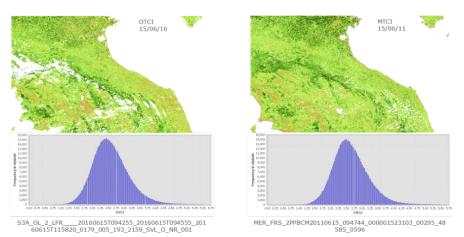
Ocean and Land Colour Instrument (OLCI) designed for observation with high absolute (relative) accuracy of 2 (1) % in reflectance, providing continuity for MERIS (Envisat)

Level 1 performance

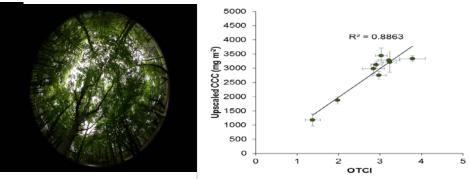
- Radiometry: on-board radiometric calibration based; SNR is compliant with specification; calibration gains show some time variability but stability seems to improve with time; vicarious calibration shows spectrally/spatially/dynamically/Xtrack consistent results, however a ~+3% bias (yaw steering maneuvers for diffuser BRDF characterization)
- Spectrally: fully compliant; pre-flight characterisation confirmed for all cameras in-flight (<0.15nm); small temporal trends since beginning of the mission (comparable to MERIS)
- Geometry: fully compliant (60m @ Nadir); bi-monthly check that thermo-elastic model is accounting for seasonal variations.

OLCI: Status Level 2 LAND (FAPAR/OGVI, OTCI)

Level 2 product status


- □ Cloud flag needs improvement
- □ L2 products unavailable for inland waters
- □ Improving standard product flags

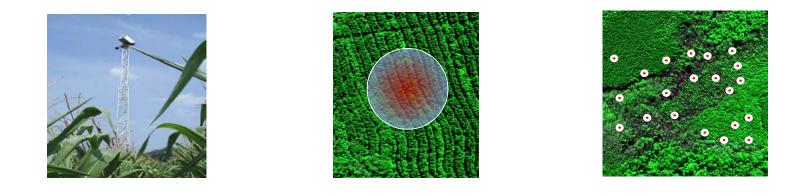
Level 2 product validation on-going, comparisons between


- OLCI and MERIS Terrestrial Chlorophyll Index shows good consistency
- OLCI and MODIS FAPAR (at 250m) over selected sites show good agreement
- OLCI and in-situ Terrestrial Chlorophyll Index shows good agreement

ESA VAL4VEG project planned for vegetation relevant data products from S2 and S3 (2017)

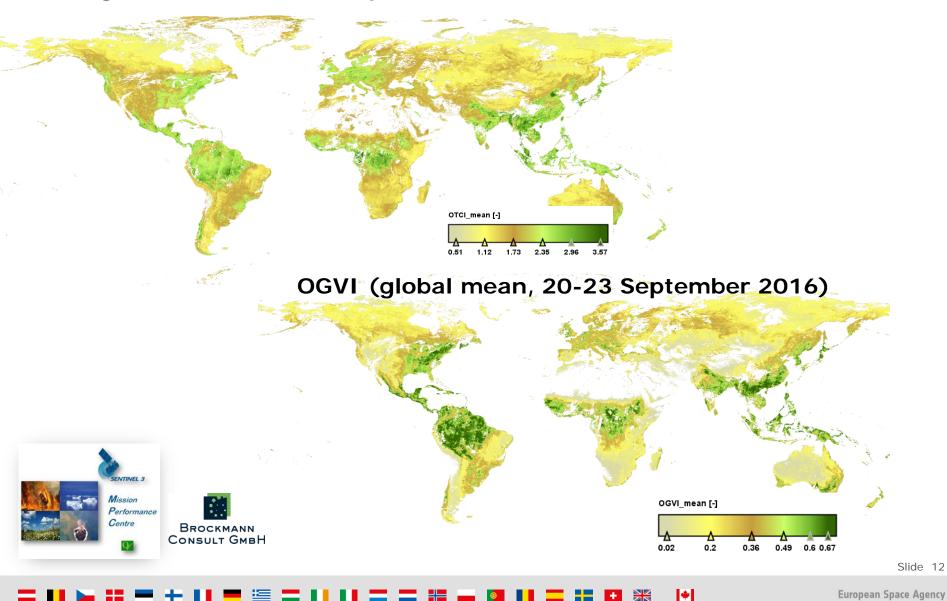
OLCI and MERIS Terrestrial Chlorophyll Index

OLCI and in-situ Terrestrial Chlorophyll Index

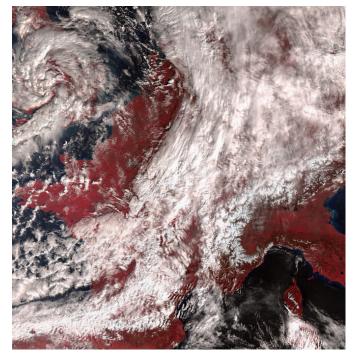


Credit: J.Dash, University of Southampton

Fiducial Reference Measurements for Vegetation Products(VAL4VEG)


- Aim To establish and maintain SI traceability of Fiducial Reference Measurements (FRM) for land vegetation products (Cab, FAPAR and Surface Reflectance).
 - Laboratory and field individual measurement characterization experiments
 - Round-robin performance assessment of Cab, FAPAR and Surface Reflectance measurement methods at OLCI pixel scale
 - Kick-OffQ2 2017

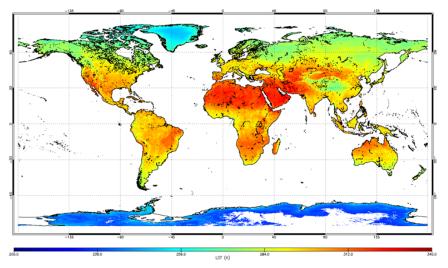
Global Land Products


OTCI (global mean, 20-23 September 2016)

Slide 12

SLSTR: Status Level 1 (TOA radiances)

Switch on	2 March 2016
Sample L1/L2 data available	May/June 2016
L1 data release	17 Nov 2016
L2 data release	Spring 2017


- Sea and Land Surface Temperature Radiometer (SLSTR) designed for observations with high radiometric accuracy <2% (BOL)/<5% (EOL); < 0.2K (0.1K goal), providing continuity for(A)ATSR (Envisat); 100% overlap with OLCI
- Nighttime acquisitions for S1-S4 ("day channels") over Siberia and Gulf of Guinea in Jan 2017 to be characterize gas flares (9 collocation with VIIRS)

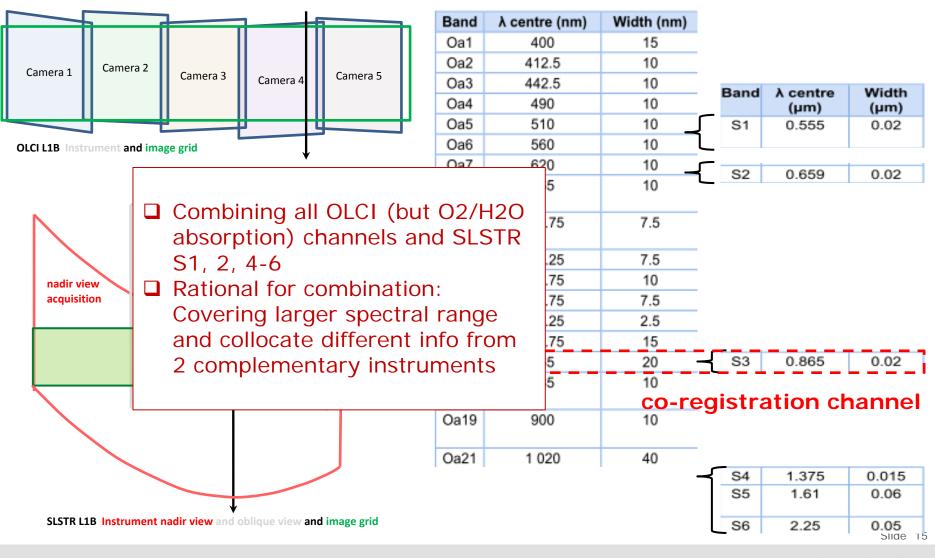
Level 1 performance

- □ Corrections to Basic Cloud Screening improved
- □ SWIR calibration improved, residual of 10%
- Geometric calibration corrections in Nadir and Oblique – May 2017
- □ Saturation thresholds improved
- Co-registration of fire channels and their nominal channels (F1/S7 and F2/S8) – end 2017
- □ Co-registration of VIS and SWIR March 2017

SLSTR: Status Level 2 (Land Surface Temperature)

Land Surface Temperature monthly composite for September 2016 (D. Ghent, University of Leicester)

Level 2 product status

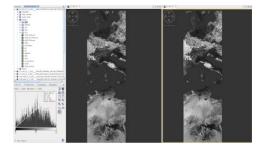

- □ Improvements for Level 1
- □ LST coefficients continuously fine-tuned
- Uncertainty estimates to be improved (future work: use GlobTemperature approach)
- Optimisation of visible cloud test for daytime images – May 2017
- Improvements to LST retrieval algorithm: correct assignment of biome and fractional vegetation cover – May 2017

Level 2 validation on-going

- Initial validation using SURFRAD sites shows LST product is near to the mission requirement. The retrieval accuracy varies from 0.6 to 1.6 (MRD requirement < 1K)</p>
 - Intercomparison with respect to GlobTemperature MODIS indicates product has very small overall differences
 - Differences correlated with orography and biome
 - Larger differences in bare soil regions where solar insolation is high
- Next validation steps in S3 MPC/ESL will be further comparisons with MODIS and SEVIRI Slide 14

Combining OLCI and SLSTR radiances = SYNERGY/VGT products

S3 SYN-VGT algorithm overview



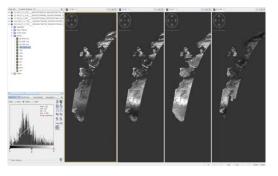
SYNERGY

Atmospherically corrected land surface reflectance at all OLCI and SLSTR wavebands (both nadir and oblique views), other than within gaseous absorption bands (O2, H2O)

Resolution 300 m, contains:

- Surface Reflectance (per channel on OLCI grid)
- Aerosol Optical Thickness + associated error
- Aerosol Angstrom Exponent
- Aerosol Model File
- Contextual parameters = Lat, long, time, quality flags
- Sub-sampled Contextual parameters = Lat, long, solar and viewing angles, meteo

Sample SYN L2 product; Surface reflectance at 865 nm derived from OLCI channel and SLSTR nadir channel Credit: C.Henocq/ACRI/MPC

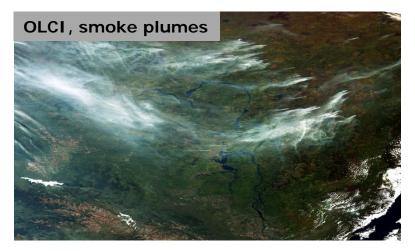

USER PRODUCTS: SYNERGY and VEGETATION Sample products expected May 2017, official release summer 2017

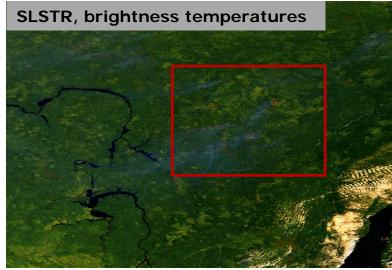
VEGETATION (VGT SY_2_VGP (P/S1/S10): Top of Atmosphere Reflectance product provided for the continuity of the SPOT VGT-P product. Generated from OLCI and SLSTR channels interpolated to VGT bands.

Resolution 1 km Plate Carrée grid (for continuity with Spot-5/ Proba-V continuity, but 300m option

Based on OLCI/SLSTR data interpolated on to 4 channels from Spot-5/Proba-V (= Real heritage product) Both OLCI and SLSTR, contains:

- VGT <u>TOA</u> Reflectance
- NDVI
- Ikm Sub-sampled Contextual parameters : VZA; VAA, SAA, SZA, AOT, O₃, TCWV


Credit: C.Henocq/ACRI/MPC


Slide 16

NEW PRODUCTS

Fires in Siberia, September 2016

Aerosol Optical Depth (AOD)

- □ AOD <u>NRT</u>: Based on P.North (2002): " Estimation of aerosol opacity and land surface bi-directional reflectance from ATSR-2 dual-angle imagery: operational method and validation'; Validated with AATSR data within ESA's CCI: provides best results when compared with AERONET and over bright surface.
- □ AOD <u>NTC</u>: Based on above algorithm adapted for SYNERGY products including spectral capacities of OLCI (North et al., 2010); Validated using MERIS and AATSR.
- □ The above algorithms will need to be extended to cover the retrieval of aerosol properties over ocean.
- Implementation on-going, available in <u>mid-2017</u> in NRT from EUMETSAT and NTC from ESA

Fire Radiative Power (FRP)

- Current algorithm based on Wooster et al. (2005) JGR D21111:doi: 10.1029/2005JD006318 ; SLSTR algorithm : Wooster et al. (2012) Remote Sens. Environ, 120, 236-254.
- Needs to be extended to include detection of fire over sea surface in coastal areas and in known oil-gas producing areas.
- Database of land and ocean gas flare and volcano masks will be included in the data product to provide a hotspot classification/type to users.
- □ Implementation on-going, available in <u>end-2017</u> in NRT from EUMETSAT and NTC from ESA

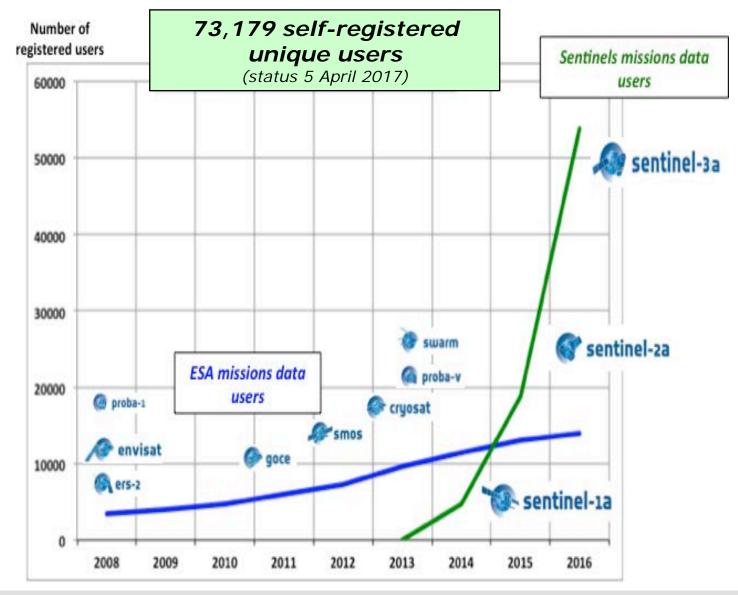
DATA ACCESS & DISSEMINATION

Slide 18

· = ■ ► = = + II = ≔ = II II = = = = M ■ ■ ■ ■ = = M ₩ IV

European Space Agency

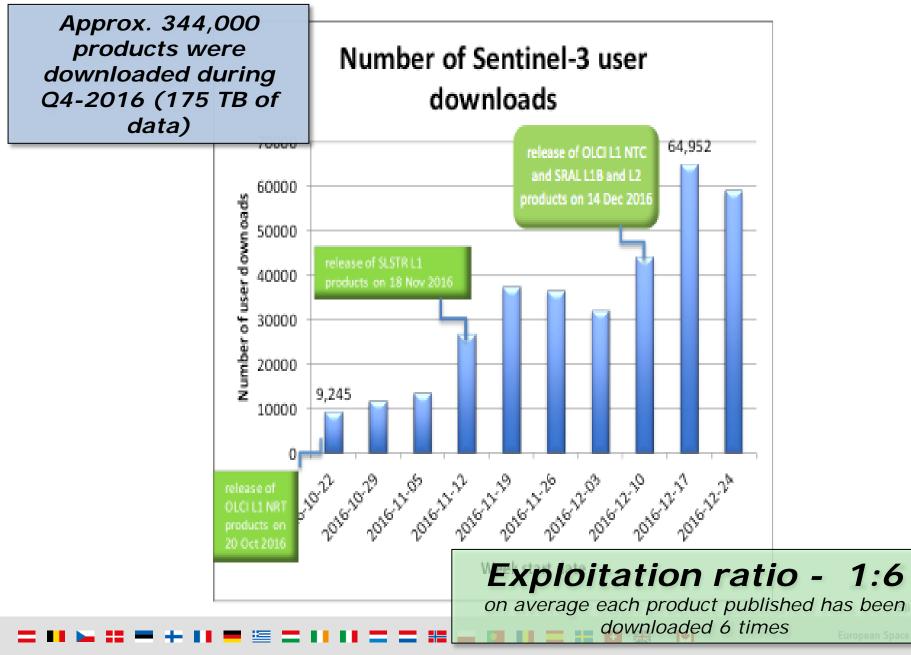
Sentinel Data Distribution - Configuration


ESA Open Access Data Hub Collaborative Data Hub Collaborative Data Hub

Statistics: 5 April 2017

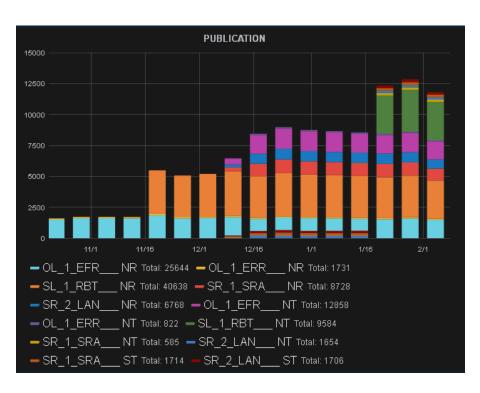
Slide 19

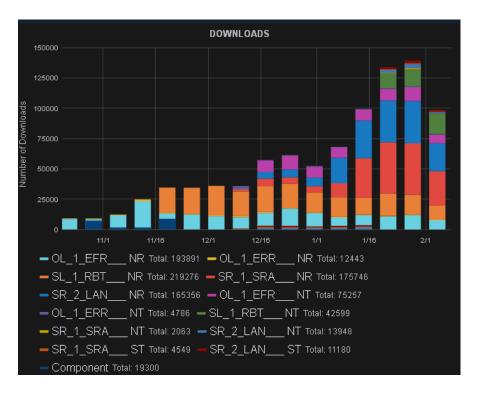
Sentinel Data Distribution – User Registration



Slide 20

Sentinel-3: Data Distribution Statistics

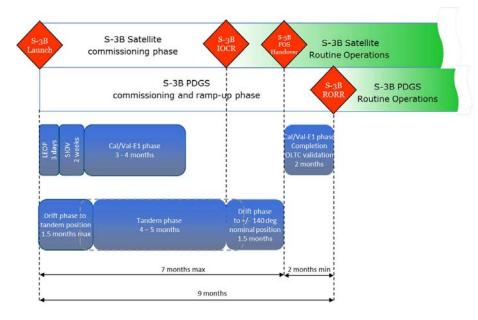



ESA Sentinel-3 pre-ops Hub

Publication of products (#) 20 Oct 2016 – 8 Feb 2017

Download of products (#) 20 Oct 2016 – 8 Feb 2017

· _ ■ ■ == + 11 **=** ≝ _ 11 ■ = = = = ■ **0 11** = = **1** ₩ ...



Update on Sentinel-3B

- Sentinel-3B activities restarted in Q2 2016 after Sentinel-3A launch in Feb 2016
- □ Implementation of Return of Experience (REX) from S3A on-going
- Instrument status
 - **Topography** payload fully available and integrated, no open issues
 - SLSTR Proto-Flight Model assembly and testing progressing according to plan: Instrument calibration tests successfully completed in Feb in RAL and instrument currently at TAS-F for integration. before delivery to Prime planned mid-Feb 2017
 - OLCI-B model experienced major anomaly (same as for A instrument) during instrument TVAC in July 2016; decision to refurbish all 5 cameras, which are now available and tested with good performance results; delivery of OLCI-B for S/L integration by mid June 2017 confirmed
- In view of late delivery of OLCI, Sentinel-3B S/L Integration and test activities reorganised to fit launch schedule
- Sentinel-3B Flight Acceptance Review planned for October 2017, launch date foreseen for end of 2017 (TBC)

Sentinel-3A and -3B Tandem Phase

TECHNICAL PLANNING

- Operate S3A and S3B in Tandem for ~4-5 months at start of mission
- One satellite follows the other with 30 sec separation: minimum oceanographic and atmospheric variability reducing uncertainty in comparing measurements from both satellites
- Tandem and drift phase into final orbit separation of 140 degree between S3A/B separation completed by launch + 7 months
- Full operational capacity reached by launch + 9 months

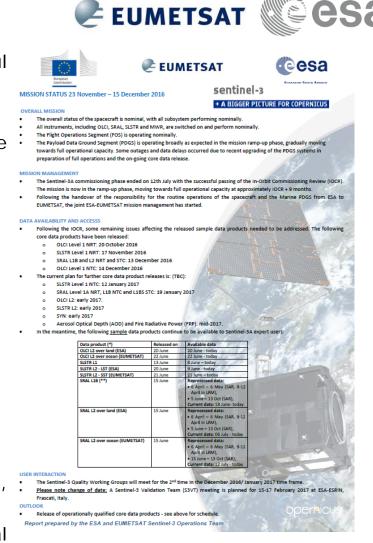
MOTIVATION

GCOS Climate Monitoring Principles (GCMP): need to fully understand biases between satellite missions

- "Take steps to make radiance calibration, calibration-monitoring and satellite-tosatellite cross-calibration of the full operational constellation a part of the operational satellite system"
- "A suitable period of overlap for new and old satellite systems should be ensured for a period adequate to determine intersatellite biases and maintain the homogeneity and consistency of time series observations"

Improved data quality for climate (CDR) and operational applications alike

= •• 🛏 == +• •• • • • = 🔚 == 1• •• = = = = 🖬 == 00 •• = = = •• ** ••


MAIN MESSAGES

- S-3A now in ramp-up phase, following successful launch and commissioning phase
- All instruments are switched on and working well.
- Sample data products for expert users available since May/June.
- Official data release
 - OLCI Level 1 NRT: 20 October 2016
 - SLSTR Level 1 NRT: 17 November 2016
 - SRAL L1B and L2 NRT and STC: 13 December 2016
 - OLCI Level 1 NTC: 14 December 2016
 - SLSTR Level 1 NTC: 19 January 2017
 - SRAL L1B NTC: Jan 2017
 - SRAL L1A and L1BS STC: April 2017
 - OLCI L2 and SLSTR L2: May/June 2017.
 - SYN/VGP: Q2/ 2017
 - AOD and FRP: Q3/4 2017.

Data access in operations

- ESA through the Sentinel Data Hub, Copernicus Services Hub, Collab Hub etc
- EUMETSAT's Earth Observation Portal (EUMETSAT's ODA, Data Centre, EUMETCast)

Sentinel-3B launch planned for end 2017

Weekly mission status on https://sentinel.esa.int/web/sen tinel/missions/sentinel-3/mission-status

European Space Agency

New tool for Sentinel-2, Sentinel-3, Landsat, data visualisation: http://apps.sentinel-hub.com/eo-browser/ (Sinergise, Slovenia)

Slide 26

= II 🕨 :: 🖛 + II 💻 🔚 = II II = = = :: 🖬 🛶 🔯 II = :: II 💥 IV

THANK YOU

Susanne Mecklenburg

Susanne.mecklenburg@esa.int

Slide 27

_ 11 b_ :: = + 11 = [_ 11 11 _ 2 : : :: 01 11 _ 2 : : [11 _ 2 : : : : : : [!]

European Space Agency