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Introduction Satellite altimetry

Roughly on satellite altimetry

• SA gives the geoid undulation since it holds MSS = DOT +N
(MSS-mean sea surface, DOT-dynamic ocean topography).

• Having DOT at hand we can determine disturbing/anomalous potential

from the Bruns formula T = Nγ.

SA - principle (from AVISO-CNES) Some assumptions

• DOT is also unknown
⇒ not solved here

• SA coverage isn’t
global ⇒ not
considered

• ⇒ T globally is our

input for the base

functions experiments
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Upward experiment

Let’s compare the differences when going upward

Numerical test of the approximation

1 Start with a signal on the geoid - T

2 Use both kinds of approximation ⇒ {Cenm, Senm} and {Csnm, Ssnm}
3 Map both sets by upward operators onto the potential functionals at

satellite altitude and compare EHS and SHS

Grid settings

• Regular grid on sphere
(geocentric co-latitude θ) is not
regular on the ellipsoid
(reduced co-latitude ϑ)

• Trade-off ⇒ mixture of both

• For SHA P ∈ {r, θ + θ(ϑ), λ}
• For EHA P ∈ {u, ϑ(θ) + ϑ, λ}

Harmonic analysis

• ⇒ ”Semi-regular” grid
f = (2Nmax − 1, 2Nmax)

• ⇒ WLS solution for blocks
used

• ⇒ Latitudinal weights
Wi(θ) = 2 sin θiP2N−1

i=1 sin θi
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Upward experiment Global approximation

Spherical harmonics

very well represent a functional f = f(r, θ, λ) on Earth v spherical approximation

T s =
GM

a

X
n,m

“a
r

”n+1

(Cs
nm cosmλ+ Ss

nm sinmλ)Pnm(cos θ) (1)

Ellipsoidal harmonics

are much closer to Earth’s geometry, functional f = f(u, ϑ, λ)

T e =
GM

a

X
n,m

Qnm( u
E

)

Qnm( b
E

)
(Ce
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or with Jekeli’s renormalization Snm( u
E

)/Snm( b
E

) = Qnm( u
E

)/Qnm( b
E

)

”Normal” derivatives (z axis in LNOF)

T s
r =

∂V s

∂r
≈ ∂V e

∂z̄
= T e
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T s
rr =

∂2V s

∂r2
≈ ∂2V e

∂z̄2
= T e

z̄z̄
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Upward experiment Input signal

Spherical and ellipsoidal harmonic analysis of T on the geoid

• Disturbing potential on the geoid, ITG03 model, Nmax = 180
• Ellipsoidal and spherical analysis Nmax = 180

T s from SHS, [m2 · s−2]
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Upward experiment Input signal

Spherical and ellipsoidal harmonic analysis of T on the geoid

• Disturbing potential on the geoid, ITG03 model, Nmax = 180
• Ellipsoidal and spherical analysis Nmax = 180

Degree variances of the derived coefficients
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Numerical comparisons Upwarded 0th derivative: T

Synthesis of T s, T e, T s
conv, u = b + 255 km, Nmax = 180

T s from SHS, [m2 · s−2]
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Numerical comparisons Upwarded 0th derivative: T

Synthesis of T s, T e, T s
conv, u = b + 255 km, Nmax = 180

T e from EHS, [m2 · s−2]
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Numerical comparisons Upwarded 0th derivative: T

Synthesis of T s, T e, T s
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Numerical comparisons Upwarded 0th derivative: T

Synthesis of T s, T e, T s
conv, u = b + 255 km, Nmax = 180

T sconv − T e,RMS = 0.41 m2 · s−2
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Numerical comparisons Upwarded 1st derivative: Tr, Tz̄

Synthesis of Tr, Tz̄ , u = b + 255 km,Nmax = 180

T sr from SHS, [m · s−2]
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Numerical comparisons Upwarded 1st derivative: Tr, Tz̄

Synthesis of Tr, Tz̄ , u = b + 255 km,Nmax = 180

T sr − T sr,conv, RMS = 0.255 mGal
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Numerical comparisons Upwarded 1st derivative: Tr, Tz̄

Synthesis of Tr, Tz̄ , u = b + 255 km,Nmax = 180

T sr,conv − T ez̄ , RMS = 0.014 mGal
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Numerical comparisons Upwarded 2nd derivative: Trr, Tz̄z̄

Synthesis of Trr, Tz̄z̄ at u = b + 255 km

T srr from SHS, [s−2]
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Numerical comparisons Upwarded 2nd derivative: Trr, Tz̄z̄

Synthesis of Trr, Tz̄z̄ at u = b + 255 km

T srr − T ez̄z̄,RMS = 15.47 mE
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Numerical comparisons Upwarded 2nd derivative: Trr, Tz̄z̄

Synthesis of Trr, Tz̄z̄ at u = b + 255 km
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Numerical comparisons Upwarded 2nd derivative: Trr, Tz̄z̄

Synthesis of Trr, Tz̄z̄ at u = b + 255 km

T srr,conv − T ez̄z̄, RMS = 0.69 mE
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Concluding remarks

Concluding remarks

RMS of diffs. T [m2 · s−2] Tr, Tz̄ [mGal] Trr, Tz̄z̄ [mE]
Sph - Ell 1.74 0.253 15.5
Sph - Sph(conv.) 1.37 0.255 15.4
Ell - Sph(conv.) 0.41 0.014 0.7

• We have compared three sets of coefficients coming from one input
(2x spherical and 1x ellipsoidal) via harmonic synthesis on the
u = b+ 255 km for three orders of derivative of T .

• Good agreement achieved when SHS with converted coefficients and
EHS were used

• =⇒ when validation uses the global approximation of the ground
data, EH and SH(converted) ”suit” more to this task

• =⇒ global gravity field models based on the ellipsoidal analysis
might have principal advantages (e.g. EGM08)
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Concluding remarks

Thank you!
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Synthesis of |∇T s|, |∇T e|, u = b + 255 km,Nmax = 180
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Synthesis of |∇T s|, |∇T e|, u = b + 255 km,Nmax = 180

|∇T s| from SHS, [m · s−2]
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Synthesis of |∇T s|, |∇T e|, u = b + 255 km,Nmax = 180

|∇T s| − |∇T e|, RMS = 0.307 mGal

() 28 June - 2 July, 2010 1 / 2



Synthesis of |∇T s|, |∇T e|, u = b + 255 km,Nmax = 180

|∇T s| − |∇T s
conv|, RMS = 0.307 mGal
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Synthesis of |∇T s|, |∇T e|, u = b + 255 km,Nmax = 180

|∇T s
conv| − |∇T e|, RMS = 0.001 mGal
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