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ABSTRACT

GOCE satellite gravity gradiometry (SGG) data are
strongly autocorrelated within the various tensor compo-
nents (of which we use Vxx, Vyy and Vzz). In order
to determine and refine the stochastic model necessary
for the determination of the gravity field parameters from
these data, we use the Tuning Machine, developed within
the GOCE High-level Processing Facility (GOCE-HPF).
This tool is based on the method of preconditioned con-
jugate gradient multiple adjustment (PCGMA), by which
the data is processed sequentially on a parallel computer
system and in situ via development of the functionals
at the actual location and orientation of the gradiometer.
The Tuning Machine then allows for an iterative adjust-
ment of the unknown stochastic model in terms of decor-
relation filters, which constitute a cascade of autoregres-
sive moving average (ARMA) models.

In this contribution we will present the estimated stochas-
tic model used in the so called time-wise (TIM) GOCE-
only gravity field solution. Temporal changes in the
stochastic behavior of GOCE measurements are inves-
tigated. This data-adaptive stochastic modeling results
in a meaningful variance/covariance matrix of the TIM
model, as demonstrated e.g. by its application in the com-
bined gravity field GOCO01S and a maximal exploitation
of the GOCE signal outside the measurement bandwidth.

Key words: GOCE · Gravity Field Model · Data Decor-
relation · ARMA Filter · Temporal Changes.

1. INTRODUCTION

The Tuning Machine, as part of ESA’s High-Level Pro-
cessing Facility (HPF), was designed with the purpose
of adjusting and fine-tuning the stochastic model of
the gravity gradients observed by GOCE’s gradiometer
and to obtain an independent gravity field solution [cf.
6, 3, 10]. This solution is determined by applying an iter-
ative solver based on the method of preconditioned con-
jugate gradients [cf. 8, 2] and the corresponding covari-

ance matrix by means of Monte-Carlo methods [cf. 1].
With this model, the final solution based on the time-wise
(TIM) approach [cf. 6, 7] is computed by our project part-
ners at the Institute of Theoretical Geodesy and Satellite
Geodesy (Graz University of Technology). In the current
paper, we will focus on the Tuning Machine and some
new results obtained through it.

Section 2 of this paper begins with an analysis of the gen-
eral stochastic characteristics of the real-data noise in the
time and spectral domain, based on six months of GOCE
satellite gravity gradiometry (SGG) data. Then, we will
show in Sect. 3 how these characteristics are effectively
taken into account by setting up a corresponding stochas-
tic model within the Tuning Machine. The main idea be-
hind this approach will be the application of cascades of
autoregressive moving average (ARMA) filters to indi-
vidual data segments. We will also show, how temporal
changes of the stochastic characteristics are taken into ac-
count by such filters.

2. CHARACTERISTICS OF THE GRADIOME-
TER NOISE

We analyzed approximately six months of available real
GOCE SGG data (November 2009 until July 2010) both
in the time and the frequency domain. It is seen in the
upper half of Fig. 1 that these data contain gaps. We di-
vided the data into nine uninterrupted segments, each of
these indicated by a distinct color in Fig. 1. As we will
see in the following, the stochastic model must be eval-
uated independently for each of these data segments, as
their stochastic characteristics change significantly.

More generally, the gradiometer noise is strongly auto-
correlated, which can be seen in the power spectral den-
sity (PSD) of the gradiometer noise (see the blue curve in
Fig. 2 for a display of one of the data segments); although
the noise PSD is relatively flat (i.e. nearly white) inside
the measurement bandwidth (between 0.005 and 0.1Hz),
it displays a strong, inverse proportional frequency de-
pendence and a large number of sharp peaks between 0
and 0.005Hz. It should be mentioned that this general au- 
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tocorrelation pattern was to be expected in light of case
studies carried out prior to GOCE’s launch [see e.g. 9].
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Figure 1. Top: Available GOCE data. The different col-
ors represent uninterrupted data segments. Bottom: Sub-
segments resulting from the original segments after out-
lier deletion and used for filter estimation (Vzz component
shown).
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Figure 2. Power spectral density (PSD) of the gradiome-
ter noise for the Vzz component, the gradient signal and
the measured gravity gradients.

3. MODELING THE GRADIOMETER NOISE

As seen in the previous section the gradiometer noise is
strongly autocorrelated. These autocorrelations must be
taken into account in the course of the least-squares es-
timation of the gravity field parameters. A fundamen-
tal problem is here that this cannot be accomplished by
incorporating these autocorrelations via the data covari-
ance matrix as such a matrix cannot be stored in light
of the millions of observations and the resulting mem-
ory requirements of more than 20 PetaByte. An effective
solution to this problem consists in a full decorrelation
(“whitening”) of the gradiometer data by applying a cas-
cade of ARMA filters to the observation equations [cf.
8, 12, 4]. Such a cascade usually consists of different
types of ARMA filters by which different aspects of the
autocorrelation pattern are modeled and removed from
the data. The more accurate a filter describes a certain
pattern, the higher is the complexity and number of co-
efficients of the filter. The effect of filter complexity on
the accuracy of the gravity field solution was previously
investigated by analyzing two months of GOCE data [cf.
5]. In this section, we will investigate stochastic model-
ing via decorrelation filtering by analyzing approximately
six months of GOCE data.
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Figure 4. Noise PSD of the instable segment #9 and in-
verse PSD of the standard decorrelation filter (# 9024)
w.r.t. the Vzz component (the other components show a
similar behavior).

3.1. Used filter model

An ARMA(p,q) filter is defined by

yt =
q∑

k=0

βkut−k +
p∑

k=1

αkyt−k, (1)

where ut, yt denote the filter input and output, respec-
tively, q, p the orders of the non-recursive and the recur-
sive part of the filter equation, and βk, αk the filter coeffi-
cients with respect to the non-recursive and the recursive
part.

We found it necessary to determine one individual filter
cascade per data segment due to the changing stochas-
tic characteristics between segments (see Subsection 3.3).
As some of these data segments are very short (see top
of Fig. 1 above), the corresponding decorrelation filters
may have only a relatively small number of parameters
and are not complex in order to minimize further data
loss due to filter warm-up. To accomplish this, we used
a cascade of one high-pass filter (i.e., a differencing filter
with q = 1, p = 0 and coefficients β0 = 1, β1 = −1)
and one ARMA(50,50) filter. We estimated the coeffi-
cients of the ARMA(50,50) filter from the high-pass fil-
tered gradiometer noise in a two stage least squares ad-
justment [see 12, pp 99-100]. It should be mentioned
that, due to the restricted filter complexities, we did not
add notch filters to the cascade, hence did not model the
sharp peaks in the low-frequency part of the noise PSD.
It should be mentioned that neglecting the modeling of
these peaks does not affect the gravity field solution sig-
nificantly, however, the corresponding covariance matrix
was shown to be less consistent than with notch-filtering
of the peaks [5, 11].

3.2. Analysis of stable and instable data segments

We adjusted the simple decorrelation filter cascade, as ex-
plained in the previous subsection, to each of the nine
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(a) Noise power spectrum of segment #1 and inverse power spec-
trum of decorrelation filter of segment #1
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PSD zz: Segment 1, filter of segment 2
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(b) Noise power spectrum of segment #1 and inverse power spec-
trum of decorrelation filter of segment #2
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(c) Noise power spectrum after decorrelation with the filter for seg-
ment #1
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(d) Noise power spectrum after decorrelation with the filter for seg-
ment #2
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(e) White noise test applied to the measurement bandwidth w.r.t.
decorrelated noise as shown in (c)
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(f) White noise test applied to the measurement bandwidth of the
decorrelated noise as shown in (d)

Figure 3. Left: Decorrelation of data segment #1 with the corresponding filter of this segment. Right: Decorrelation of
data segment #1 with the filter of segment #2.



given data segments. Here we encountered, besides the
already mentioned data gap problem, the additional diffi-
culty of large numbers of outliers, caused for instance by
beam-outs. Due to the strong deteriorating effect of such
outliers, we had to restrict the filter estimation to unin-
terrupted, outlier-free sub-segments of the original nine
data segments (see bottom of Fig. 1 above), which we
determined through a visual inspection of the data.

We found the filter estimation from segments #3 and #9
to be instable due to the very large percentage of outliers
(100% for segment #3 and 38% for segment #9), i.e., no
reasonable filter estimation was possible. The best ap-
proach to circumvent this problem was to use a fixed filter
(# 9024), as it approximates the stochastic noise charac-
teristics reasonably well (see Fig. 4). This filter was used
in the first official GOCE gravity field model of the time-
wise approach [11].

The other segments (#1, #2, #4, #5, #6, #7 and #8) were
found to be stable, and thus estimation of individual fil-
ters was possible. In Fig. 5 the result for segment #1 is
shown: the overall fit to the noise characteristics is ad-
equate, but the sharp peaks in the low-frequency part of
the spectrum are ignored.
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Figure 5. Noise PSD of the stable segment #1 and inverse
PSD of the estimated decorrelation filter cascade w.r.t.
the Vzz component (the other components show a similar
behavior).

3.3. Analysis of temporal changes

As mentioned above, we suspected temporal changes of
the stochastic properties of the gradiometer noise, requir-
ing the estimation of an individual decorrelation filter
cascade for each of the given data segments. In Fig. 6 the
spectral behavior of the filter cascade for each of the data
segment is shown. Differences between the individual
segments are clearly visible, especially around the lower
limit of the measurement bandwidth the decorrelation fil-
ters have different characteristics.

Another possibility to show that changes between seg-
ments necessitate estimation of individual filters for all

segments, is to decorrelate a data segment with the fil-
ter of another segment. For reference, Fig. 3(c) shows
the result for decorrelation of the first segment with the
decorrelation filter of this segment. By contrast, Fig. 3(d)
shows the result of the decorrelation of segment #1 with
the filter adjusted to segment #2. We see that in partic-
ular the decorrelation result is not optimal at the lower
limit at the measurement bandwidth when using the fil-
ter of another segment. A white noise test (applied to
the measurement bandwidth), where the cumulated pe-
riodogram of white noise is compared with the cumu-
lated periodogram of the decorrelated gradiometer noise,
strongly supports this result. Fig. 3(f) shows a significant
difference (blue curve) between white noise and the noise
decorrelated by the filter of segment #2. In contrast the
difference of the periodograms are marginal and not sig-
nificant by using the filter of segment #1 (see Fig. 3(e)).
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Figure 6. Inverse power spectrum of all decorrelation
filters w.r.t. the Vzz component.

4. SUMMARY AND CONCLUSIONS

In this paper the available six months of real GOCE SGG
data were divided into nine uninterrupted segments. For
each segment one individual simple decorrelation filter
(which ignores the peaks in the low-frequency part of the
noise PSD) was estimated so that the temporal changes of
the characteristics of the of the GOCE data are properly
taken into account by these filters. For two of the seg-
ments the percentage of outliers is very large. Although
a filter estimation was not possible in these cases, a prior
fixed filter (#9024) could be used as decorrelation filter.

The close fitting of digital decorrelation filter to the
stochastic behavior of the GOCE SGG data is not only
crucial for the computation of realistic gravity parame-
ters, but also for the derivation of a corresponding realis-
tic full covariance matrix. This covariance matrix is e.g.
applied in the combined gravity fields of the GOCO se-
ries.
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(2010) Global gravity field model derived from orbit
and gradiometry data applying the time-wise method.
In: ESA Living Planet Symposium. SP-686, Bergen.

[8] Schuh, W.-D. (1996) Tailored numerical solution
strategies for the global determination of the Earth’s
gravity field, Vol. 81 Mitteilungen der geodätischen
Institute der Technischen Universität Graz. TU Graz.

[9] Schuh, W.-D., C. Boxhammer and C. Siemes (2006)
Correlations, variances, covariances - from GOCE sig-
nals to GOCE products. In: 3. GOCE user workshop.
ESA, Frascati.

[10] Schuh, W.-D., J.M. Brockmann, B. Kargoll and I.
Krasbutter (2010a) Adaptive optimization of GOCE
gravity field modeling. In: Münster, G., D. Wolf and
M. Kremer (eds.), NIC Symposium 2010, Vol. 3 IAS
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