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ABSTRACT

The new observations of GOCE present a challenge to
develop new calculation methods that take into account
the sphericity of the Earth. We address this problem by
using a discretization with a series of tesseroids. There
is no closed formula giving the gravitational fields of
the tesseroid and numerical integration methods must be
used, such as the Gauss Legendre Cubature (GLC). A
problem that arises is that the computation times with the
tesseroids are high. Therefore, it is important to optimize
the computations while maintaining the desired accuracy.
This optimization was done using an adaptive computa-
tion scheme that consists of using a fixed GLC order and
recursively subdividing the tesseroids. We have obtained
an optimum ratio between the size of the tesseroid and
its distance from the computation point. Furthermore, we
show that this size-to-distance ratio is different for the
gravitational attraction than for the gravity gradient ten-
sor.
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1. INTRODUCTION

The new gravity field observations of GOCE challenge
the geophysical modeler to develop new calculation
methods that take into account the sphericity of the Earth.
The presently available forward modeling tools all use
a Cartesian reference system, which is sufficient for re-
gional studies and for calculating the fields near the
Earth’s surface. On the other hand, this reference system
is not ideal for calculating the fields at the height of the
satellite or for modeling global or continental areas [5].
We address this problem by discretizing the lithosphere
with a series of tesseroids, or spherical prisms. Presently,
there is no closed formula giving the gravitational fields
of the tesseroid and therefore numerical integration meth-
ods must be used. We adopt the Gauss Legendre Cuba-
ture (GLC) integration method as in Asgharzadeh et al.
[1]. The GLC approximates the integration by a weighted
sum over the integration limits and its accuracy depends

mainly on two factors. First, the number of points used
to discretize the integrand function, i.e. the GLC nodes.
Second, the distance from the computation point to the
tesseroid relative to its size.

A problem that arises from numerical integration is that
it makes the computation times with the tesseroids quite
high. Therefore, it is important to optimize the calcu-
lation scheme while maintaining a desired accuracy of
the results. This optimization can be done by either us-
ing an optimal number of GLC nodes or an optimal size
of the tesseroids. Ku [2] obtained a criteria that relates
both options for the right rectangular prism and verti-
cal component of the gravitational attraction. According
to Ku [2], the distance from the prism to the computa-
tion point should be greater than the distance between the
GLC nodes. Based on these results, Li et al. [3] devel-
oped an adaptive computation approach that consists of
using a fixed GLC order and subdividing the tesseroids
when the criteria of Ku [2] is breached. A shortcoming
of this approach is that it is not clear whether the results
of Ku [2] are valid for the tesseroid and gravity gradient
tensor.

To overcome this obstacle, we have obtained a similar
criteria for the tesseroid and the gravity gradient tensor.
In similar fashion to Li et al. [3], we have chosen to fix
the number of GLC nodes and investigate the optimum
size of the tesseroid required to obtain a desired accuracy.
Furthermore, we have investigated whether this criteria is
the same for the vertical component of the gravitational
attraction and for the components of the gravity gradient
tensor.

2. METHODOLOGY

Assuming a fixed the number of GLC nodes, the accu-
racy of the integration depends only on the ratio between
the largest dimension of the tesseroid (L) and the distance
from its top surface to the computation point (d). In this
scenario, an accurate result can be obtained by splitting
the tesseroid into smaller ones and calculating their com-
bined effect. The splitting can be done recursively until
the resulting tesseroids are small enough to achieve the 
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desired accuracy. Fig. 1 shows a two-dimensional sketch
of this computation scheme.

Figure 1. Sketch of the adaptive optimization algorithm.
Recursively subdividing of tesseroids when the size-to-
distance ratio is bellow a certain threshold.

To determine the smallest size-to-distance ratio that
yields results in the accuracy expected from the GOCE
observations and derived products, we must first estab-
lish a reference to which we can compare the results of
the GLC integration. We chose a right rectangular prism
with the same mass as the tesseroid as our reference. The
dimensions of the prism are related to the dimensions
tesseroid by [7]:
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Eq. 1 results in a prism with approximately the same
volume as the tesseroid. Therefore, the density of the
prism needs to be calculated to ensure that the prism and
tesseroid have the same mass:

ρp =
Vt
Vp
ρt (2)

where Vt is the volume of the tesseroid and Vp is the vol-
ume of the prism.

The right rectangular prism has closed formulas for the
gravitational potential and its first and second derivatives
[4]. Since the gravitational effects of the tesseroid are
calculated with respect to the local reference frame of the
computation point (Fig. 2), the gravitational attraction
and gravity gradient tensor of the prism need to be ro-
tated to this reference frame before the comparisons can

be made (Fig. 3). The rotation matrix used in this con-
version is given in Wild-Pfeiffer [7].

Figure 2. View of a tesseroid in the geocentric coordinate
system. Point Q is an integration point. The computa-
tion point P is shown with its associated local coordinate
system.

3. RESULTS

We have used a small tesseroid of size 0.001◦×0.001◦×
100 m in order to minimize the effect of the Earths cur-
vature. The number of GLC nodes was kept fixed at two
nodes in each direction, resulting in a total of eight nodes.
The vertical component of the gravitational attraction and
six components of the gravity gradient tensor were cal-
culated on regular grids at heights ranging from 10 m to
2000 m. Fig. 4 shows the absolute difference between the
results of the tesseroid and an equivalent prism against
the size-to-distance ratio. Fig. 5 shows the same differ-
ences along a longitudinal profile crossing the center of
the tesseroid. We assumed a desired accuracy of 10−2

mGal for gz and 10−3 Eötvös for the tensor components.
We found an optimum size-to-distance ratio for gz equal
to one, which is accordance with the results of Ku [2].
However, for the tensor components the optimum size-
to-distance ratio found is four.

In order to check if the results obtained depend on the size
of the tesseroid, the same computations were repeated
for a tesseroid of size 0.0001◦ × 0.0001◦ × 10 m. Fig.
6 shows the differences against the size-to-distance ratio
for this tesseroid. The ratio obtained for gz was slightly
different (0.6) and the ratio for the tensor components re-
mained equal to four.

The optimum ratio obtained was used to implement the
adaptive computation scheme of Li et al. [3] in the com-
puter program Tesseroids [6].



Figure 3. A right rectangular prism shown in a geocen-
tric reference frame. The computations are made with
respect the local coordinate system associated with point
Q. For the comparison with the effects of a tesseroid the
computations must be rotated to local coordinate system
associated with the computation point P.

4. CONCLUSIONS

We have obtained an optimum size-to-distance ratio for
the tesseroid. The ratio found for the vertical compo-
nent of the gravitational attraction agrees with previous
results. However, the optimum ratio found for the ten-
sor components is four times greater than the one for the
vertical component of the gravitational attraction. This
contradicts previous assumptions that the same ratio is
valid for both derivatives of the gravitational potential.
Furthermore, our results suggest that the optimum size-
to-distance ratio does not depend on the absolute size of
the tesseroid.
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Figure 4. Difference between gravitational effects of a tesseroid of size 0.001◦×0.001◦×100m and an equivalent prism.
Red lines represent the desired accuracy.



Figure 6. Difference between gravitational effects of a tesseroid of size 0.0001◦ × 0.0001◦ × 10 m and an equivalent
prism. Red lines represent the desired accuracy.


