



# MERIS Level 3 Land Surface Aggregated Products Description



October 2006 © ESA Processed by ESRIN G-POD

## Ophélie Aussedat, Malcolm Taberner, Nadine Gobron and Bernard Pinty

Version 1.1 2007



EUR 22643 EN

The mission of the Institute for Environment and Sustainability is to provide scientific and technical support to the European Union's policies for protecting the environment and the EU Strategy for Sustainable Development.

European Commission Directorate-General Joint Research Centre Institute for Environment and Sustainability

Contact information Address: Global Environment Monitoring Unit European Commission – DG Joint Research Centre TP 440 via E. Fermi, 1 I-21020 Ispra (VA) Italy

E-mail: nadine.gobron@jrc.it

http://ies.jrc.cec.eu.int http://www.jrc.cec.eu.int

Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu.int

#### EUR 22643 EN

ISSN 1018-5593

Luxembourg: Office for Official Publications of the European Communities

© European Communities, 2007

Reproduction is authorised provided the source is acknowledged

Printed in Italy

### **Table of contents**

| Outline and summary                     |                                                                                                                                                                                                                                                                                       |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aggregated Products                     |                                                                                                                                                                                                                                                                                       |
| Hierarchical Data Format (HDF)          |                                                                                                                                                                                                                                                                                       |
| 3.1 Metadata describing the entire file | 6                                                                                                                                                                                                                                                                                     |
| 3.2 Dimensions                          | 7                                                                                                                                                                                                                                                                                     |
| Data products contained in the file     | 7                                                                                                                                                                                                                                                                                     |
| 4.1 Metadata describing the datasets    | 9                                                                                                                                                                                                                                                                                     |
| 4.1.1 Metadata definition               | 9                                                                                                                                                                                                                                                                                     |
| 4.1.2 Metadata valid values             | 10                                                                                                                                                                                                                                                                                    |
| Example of MLAP file content            |                                                                                                                                                                                                                                                                                       |
| References                              |                                                                                                                                                                                                                                                                                       |
|                                         | Outline and summaryAggregated ProductsHierarchical Data Format (HDF)3.1Metadata describing the entire file3.2DimensionsData products contained in the file4.1Metadata describing the datasets4.1.1Metadata definition4.1.2Metadata valid valuesExample of MLAP file contentReferences |

### List of Tables

| Table 1 Mandatory metadata for describing the entire file | 6  |
|-----------------------------------------------------------|----|
| Table 2 Datasets contained in MERIS aggregated products   | 8  |
| Table 3 Metadata describing the dataset: definition       | 10 |
| Table 4 Metadata describing the dataset: values           | 10 |

## List of Figures

| Figure 1 Sample HDF file structure                                             | 6   |
|--------------------------------------------------------------------------------|-----|
| Figure 2 Example of MERIS Level 3 Aggregated HDF datasets                      | .12 |
| Figure 3 Example of MERIS Level 3 Aggregated HDF metadata for the whole file . | .13 |
| Figure 4 Example of MERIS level 3 HDF metadata describing the dataset fapar    | .13 |

This document describes the format of the products of the Medium Resolution Imaging Spectrometer (MERIS) Level 3 aggregated products. These data are operationally processed and produced at the Grid Processing-on Demand (G-POD) of European Space Research Institute (ESRIN) using the European Commission – DG Joint Research Centre (JRC) algorithm and software.

### **1** Outline and summary

The Medium Resolution Imaging Spectrometer (MERIS) has been launched on board the European platform Envisat and acquires operational data since mid 2002. MERIS scans the Earth's surface by the so called 'push-broom' method and the design is such that it acquires data over the Earth whenever illumination conditions are suitable. Envisat has a repeat cycle of the reference orbit of 3.5 days and a specific geographical location can be seen by MERIS from one to three days.

The MERIS land Level 2 product (named MERIS Global Vegetation Index, MGVI) corresponds to the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) and is operationally provided in the Space Oblique Mercator (SOM) projection at the reduced resolution, i.e. at 1.2 km spatial resolution. The FAPAR value is estimated from daily MERIS spectral measurements in the blue, red and near-infrared bands acquired at the top of the atmosphere using a physically based approach [1][2][3][4].

Establishing long term time series of remote sensing geophysical products, that are relevant for environmental applications at regional or global scale, calls for the production of high level products, i.e. at a lower spatial resolution relevant for modelling communities such as the carbon or climate domain. The spatially aggregated land products are therefore produced to be directly used for regional or global scale land analysis.

Section 2 summarizes the spatial aggregation algorithm associated with the MERIS land products, themselves generated by the MERIS time-composite processing chain [5] [6]. The following sections describe the format and content of the file corresponding to the aggregated product.

## 2 Aggregated Products

MERIS Level-3 Aggregated Products (MLAP) are produced from MERIS Level-3 Time Composite Products (MTCP) at either reduced resolution (1.2 km) or full resolution (300 m). The time composite algorithm is described in [5]. It is based on the selection of the day over the time compositing period (10 consecutive days or 1 month) that corresponds to the most representative value of FAPAR.

The MLAP are produced by spatially aggregating MTCP over a low spatial resolution window (the same or a different geographical window). All information concerning the spatial resolution of the aggregated products as well as the type of projection are given in the header of the file.

The algorithm searches for all pixels (e.g. the inputs pixel at 1.2 km) that are located in each grid cell of the new geographical region (output window). These pixels are then combined together by applying an operator to their values. The algorithm of aggregation implements two operators 1) computation of the mean, the standard deviation, the number of samples and 2) computation the median. The averaged values refer mostly to the geophysical measurements, like the FAPAR and associated values (see [6] for the list) and the median values are used when the geometry of measurements (such as the sun and observation zenith and azimuth angles) are reported.

The MLAP including datasets and metadata are stored in Hierarchical Data Format (HDF4.2) files. The datasets are multidimensional arrays containing scientific data values. The metadata contain information about either the file in general or a specific dataset. In this document the metadata referring to the entire file are described first, followed by an explanation of the scientific datasets and their associated metadata for aggregated products.

## 3 Hierarchical Data Format (HDF)

The Level 3 product is saved in a Hierarchical Data Format (HDF, version 4.2)<sup>1</sup> file. HDF is a physical file format for storing scientific data. HDF enables storing several datasets in a file by providing convenient data structures. HDF files are also self-describing: for each data structure there is comprehensive information about the data itself and its location in the file. This information is referred to as *metadata*.

The various maps contained in the aggregated product are multidimensional arrays stored in the file using the HDF structures called *Scientific Data Set* (SDS). The concept of metadata is used to add information to the entire file and to each dataset. Metadata are stored as HDF *Attributes*. The Level 3 products are consisting of several datasets of scientific data as well as metadata.

Figure 1 illustrates the structure of an HDF file containing two SDS and their associated metadata plus global metadata about the entire file. A typical MERIS Level 3 HDF file follows the same architecture but contains more datasets.

<sup>&</sup>lt;sup>1</sup> <u>http://hdf.ncsa.uiuc.edu/hdf4.html</u>



The next sections describe 1) the metadata referring to the entire file and, 2) the scientific datasets and associated metadata.

### 3.1 Metadata describing the entire file

Information common to all the datasets or about the entire file (platform/sensor name, product description, software name, etc ...) are stored as metadata. These also include the geographical projection definition and the time compositing period.

Table 1 summarized the various fields, their meaning, and their format. The last column gives a list of possible values when this list is exhaustive.

| Metadata Name     | Definition                              | Data Type<br>(HDF4 standard) | Format                           |
|-------------------|-----------------------------------------|------------------------------|----------------------------------|
| Mission           | Platform/Sensor<br>name                 | CHAR8                        | Envisat MERIS                    |
| Processing Center | Institute where the data were processed | CHAR8                        | ESA ESRIN                        |
| Software Name     | Time Composite<br>software name         | CHAR8                        | ReMap - JRC - GEM /<br>IES       |
| Software Version  | Time Composite<br>Software version      | CHAR8                        | ReMap Aggregate -<br>Version 3.2 |

Table 1 Mandatory metadata for describing the entire file

| Start Year         | Year of the first file                                        | INT16 |                                               |
|--------------------|---------------------------------------------------------------|-------|-----------------------------------------------|
|                    | used in Time                                                  |       | <i>Format=YYYY</i>                            |
|                    | Composite                                                     |       |                                               |
| End Year           | Year of the last file                                         | INT16 |                                               |
|                    | used in Time                                                  |       | Format=YYYY                                   |
|                    | Composite                                                     |       |                                               |
| Title              | Description of the product                                    | CHAR8 | MERIS Level-3 Data                            |
| Start Day          | Day of the year; first<br>day of the time<br>composite period | INT16 | From <b>1</b> to <b>366</b>                   |
| End Day            | Day of the year; last<br>day of the time<br>composite period  | INT16 | From <b>1</b> to <b>366</b>                   |
| File Name          | Name of the file                                              | CHAR8 | Format=string                                 |
| Product Name       | Short name                                                    | CHAR8 | MER_XX3<br>aggregated Products<br>XX=RR or FR |
| ProjectionMetaData | Information about<br>the projection:<br>the projection        | CHAR8 |                                               |
|                    | parameter and the<br>coordinate<br>boundaries of the<br>map.  |       | Format=string                                 |

#### 3.2 Dimensions

Dimensions are stored in HDF files so that several datasets can share common ones. All the datasets have the same *first* and *second* dimensions. Dimension one is **Number of Lines** and Dimension two is **Number of Columns**.

### 4 Data products contained in the file

The aggregated products contain information about the MGVI/FAPAR values *inside each grid cell* and correspond to the *spatial average values*, the *standard deviation* and the *number of samples* used to make the statistic. Additional products concern several statistics on the number of pixels detected by several flags, the spatial averaged value of the normalized reflectance in the blue, green, red and near-infrared domain and the two rectified bands, and four median values with standard deviation of both illumination and viewing angles.

Table 2 provides the list of the generated datasets, their type and their meaning.

| Original name & | & method              | Field Name            | Definition                                                                                      | Data<br>Type |
|-----------------|-----------------------|-----------------------|-------------------------------------------------------------------------------------------------|--------------|
|                 | mean                  | fapar                 | Fraction of Absorbed<br>Photosynthetically<br>Active Radiation<br>(MGVI) (grid cell<br>average) | UINT8        |
| MGVI            | standard<br>deviation | sd_spatial_fapar      | Standard deviation of<br>FAPAR inside the grid<br>cell                                          | UINT8        |
|                 | number of samples     | nb_spatial_fapar      | Number of pixels used<br>to generate FAPAR<br>statistics inside the grid<br>cell                | UINT8        |
| ed MGVI         | mean                  | dev_temporal_fapar    | Standard deviation for<br>the FAPAR during the<br>Time Composite (grid<br>cell average).        | UINT8        |
| su_iviO v I     | standard<br>deviation | sd_dev_temporal_fapar | Standard deviation of<br>temporal deviation of<br>FAPAR during the<br>time composite period     | UINT8        |
| nb_MGVI         | mean                  | nb_temporal_fapar     | Number of valid<br>FAPAR values used<br>during time<br>composite(grid cell<br>average).         | UINT8        |
|                 | standard<br>deviation | sd_nb_temporal_fapar  | Standard deviation of<br>number of daily<br>FAPAR estimates used<br>in time composite           | UINT8        |
|                 | number of samples     | nb_flag_bright        | Number of bright soil<br>surface pixels inside<br>the grid cell                                 | UINT16       |
|                 | number of samples     | nb_flag_clouds_ice    | Number of cloud or ice<br>pixels inside the grid<br>cell                                        | UINT16       |
| flag            | number of samples     | nb_flag_vegetation    | Number of land surface<br>pixels inside the grid<br>cell                                        | UINT16       |
|                 | number of samples     | nb_flag_water         | Number of water<br>bodies or cloud shadow<br>pixels inside the grid<br>cell                     | UINT16       |

Table 2 Datasets contained in MERIS aggregated products

|                                                | mean      | norm surf reflec X | Normalized surface       | UINT16 |
|------------------------------------------------|-----------|--------------------|--------------------------|--------|
|                                                |           | (X=2.5,8,13)       | reflectance (grid cell   |        |
| norm_surt_reflec_X $(\mathbf{V}, 2, 5, 9, 12)$ |           |                    | average).                |        |
| (X=2,5,8,13)                                   |           |                    | X represents the         |        |
|                                                |           |                    | MERIS band number        |        |
|                                                | mean      | REC_RED            | Red Rectified            | UINT8  |
| BRF_Rec_Red                                    |           |                    | Reflectance (grid cell   |        |
|                                                |           |                    | average)                 |        |
|                                                | mean      | REC_NIR            | Near Infrared Rectified  | UINT8  |
| BRF_Rec_Nir                                    |           |                    | Reflectance (grid cell   |        |
|                                                |           |                    | average)                 |        |
|                                                | median    | sun_zenith         | Solar zenith angle (grid | UINT32 |
| 1 .1                                           |           |                    | cell median)             |        |
| solar_zenith                                   | standard  | sd_sun_zenith      | Standard deviation of    | UINT32 |
|                                                | deviation |                    | solar zenith angle       |        |
|                                                | 1'        |                    | inside the grid cell     |        |
|                                                | median    | sat_zenith         | Observation zenith       | UIN132 |
| view zenith                                    |           |                    | angle (grid cell         |        |
| view_zeniun                                    | standard  | ad act zonith      | Standard deviation of    | LUNT22 |
|                                                | deviation | su_sat_zennun      | stanuaru deviation or    | UIN152 |
|                                                | deviation |                    | inside the grid cell     |        |
|                                                | median    | sun azimuth        | Sun azimuth angle        | LUNT32 |
|                                                | meenun    | Sun_uzinuun        | (grid cell median)       | 011132 |
| solar_azimuth                                  | standard  | sd sun azimuth     | Standard deviation of    | UINT32 |
|                                                | deviation |                    | solar azimuth angle      | 011102 |
|                                                |           |                    | inside the grid cell     |        |
|                                                | median    | sat_azimuth        | Observation azimuth      | UINT32 |
|                                                |           |                    | angle (grid cell         |        |
| viow ozimuth                                   |           |                    | median)                  |        |
|                                                | standard  | sd_sat_azimuth     | Standard deviation of    | UINT32 |
|                                                | deviation |                    | sensor azimuth angle     |        |
|                                                |           |                    | inside the grid cell     |        |

### 4.1 Metadata describing the datasets

#### 4.1.1 Metadata definition

Metadata exist in the HDF file to provide comprehensive information about the data and can be associated with each field. They are stored as HDF *Attributes*.

All the fields are stored as HDF *Scientific Data Set* (SDS) and all have the same metadata (slope, intercept, \_Fillvalue, and long\_name). The metadata are described in Table 3 and the valid values are given in Table 4 for each data field.

Table 3 Metadata describing the dataset: definition

| Metadata Name | Definition                 | Data Type       |
|---------------|----------------------------|-----------------|
| slope         | Scaling factor             | FLOAT64         |
| intercept     | Offset value               | FLOAT64         |
| _FillValue    | Bad value for the variable | "Variable type" |
| Long_name     | Label describing the       | CHAR8           |
|               | variable                   |                 |

In order to reduce the HDF file size, a scientific dataset can be scaled to fit a small data type. Data scaled into "*byte*" format can be converted to its "*real*" value by the relation:

real\_value=file\_data\_value\*slope+intercept

With *file\_data\_value* being the '*byte*' value written in the file.

#### 4.1.2 Metadata valid values

Table 4 gives the actual metadata values for each dataset.

| Field Name                           | _Fillval | slope    | intercept | long_name                                                                                       |
|--------------------------------------|----------|----------|-----------|-------------------------------------------------------------------------------------------------|
| & HDF type                           | ue       |          |           |                                                                                                 |
| <b>fapar</b><br>(UINT8)              | 0        | 0.003937 | -0.003937 | Fraction of Absorbed<br>Photosynthetically<br>Active Radiation<br>(MGVI) (grid cell<br>average) |
| <b>sd_spatial_fapar</b><br>(UINT8)   | 255      | 0.003937 | 0.0       | Standard deviation of FAPAR inside the grid cell                                                |
| <b>nb_spatial_fapar</b><br>(UINT16)  | 0        | 1.0      | 0.0       | Number of pixels used<br>to generate FAPAR<br>statistics inside the grid<br>cell                |
| <b>dev_temporal_fapar</b><br>(UINT8) | 255      | 0.003937 | 0.0       | Standard deviation for<br>the FAPAR during the<br>Time Composite (grid<br>cell average).        |
| sd_dev_temporal_fapar<br>(UINT8)     | 255      | 0.003937 | 0.0       | Standard deviation of<br>temporal deviation of<br>FAPAR during the<br>time composite period     |
| <b>nb_temporal_fapar</b><br>(UINT8)  | 0        | 1.0      | 0.0       | Number of valid<br>FAPAR values used<br>during time composite<br>(grid cell average).           |

 Table 4 Metadata describing the dataset: values

| sd_nb_temporal_fapar                                 | 255            | 1.0         | 0.0        | Standard deviation of    |
|------------------------------------------------------|----------------|-------------|------------|--------------------------|
| (UINT8)                                              |                |             |            | number of daily          |
|                                                      |                |             |            | FAPAR estimates used     |
|                                                      | 65505          | 1.0         |            | in time composite        |
| nb_flag_bright                                       | 65535          | 1.0         | 0.0        | Number of bright soil    |
| (UINT16)                                             |                |             |            | surface pixels inside    |
|                                                      | 6FF2F          | 1 0         |            | the grid cell            |
| nD_llag_clouds_lce                                   | 000000         | 1.0         | 0.0        | Number of cloud or ice   |
| (UINTIO)                                             |                |             |            | cell                     |
| nh flag vegetation                                   | 65535          | 1.0         | 0.0        | Number of land           |
| (UINT16)                                             |                |             |            | surface(vegetation)      |
|                                                      |                |             |            | pixels inside the grid   |
|                                                      |                |             |            | cell                     |
| nb_flag_water                                        | 65535          | 1.0         | 0.0        | Number of water          |
| (UINT16)                                             |                |             |            | bodies or cloud shadow   |
|                                                      |                |             |            | pixels inside the grid   |
| 0 (11 X7                                             | 0              | Demender om | the level  | cell                     |
| norm_surf_reflec_X<br>$(\mathbf{X} = 2.5 \times 13)$ | 0              | 2 processi: | ng version | Normalized surface       |
| (X-2, 5, 6, 13)<br>(UINT16)                          |                | -           | 5          | reflectance (grid cen    |
| (011110)                                             |                |             |            | X represents the         |
|                                                      |                |             |            | MERIS band number        |
| REC RED                                              | 0              | 0.003937    | -0.003937  | Red Rectified            |
| (UINT8)                                              |                |             |            | Reflectance (grid cell   |
|                                                      |                |             |            | average)                 |
| REC_NIR                                              | 0              | 0.003937    | -0.003937  | Near Infrared Rectified  |
| (UINT8)                                              |                |             |            | Reflectance (grid cell   |
| - ·                                                  | 4004065        | 1+10 6      |            | average)                 |
| sun_zenith                                           | 4294967        | I'ING-0     | 0.0        | Solar zenith angle (grid |
| (UIN132)                                             | 4294967        | 1*10e-6     | 0.0        | Standard deviation of    |
| (UINT32)                                             | 295            | 1 100 0     | 0.0        | solar zenith angle       |
| (011(152)                                            |                |             |            | inside the grid cell     |
| sat zenith                                           | 4294967        | 1*10e-6     | 0.0        | Observation zenith       |
| (UINT32)                                             | 295            |             |            | angle (grid cell         |
|                                                      |                |             |            | median)                  |
| sd_sat_zenith                                        | 4294967        | 1*10e-6     | 0.0        | Standard deviation of    |
| (UINT32)                                             | 295            |             |            | sensor zenith angle      |
|                                                      | 1001055        | 1.1.1.0     |            | inside the grid cell     |
| sun_azimuth                                          | 4294967<br>295 | 1*10e-6     | 0.0        | Sun azimuth angle        |
| (UIN132)                                             | 4204067        | 1*100 6     | 0.0        | (grid cell median)       |
| sd_sun_azimuth                                       | 295            | TT06-0      | 0.0        | Standard deviation of    |
| (01N132)                                             |                |             |            | inside the grid cell     |
| sat azimuth                                          | 4294967        | 1*10e-6     | 0.0        | Observation azimuth      |
| (UINT32)                                             | 295            |             |            | angle (grid cell         |
| ()                                                   |                |             |            | median)                  |
| sd_sat_azimuth                                       | 4294967        | 1*10e-6     | 0.0        | Standard deviation of    |
| (UINT32)                                             | 295            |             |            | sensor azimuth angle     |
|                                                      |                |             |            | inside the grid cell     |

## 5 Example of MLAP file content

The MLAP file contains 25 datasets. The following figures display examples of MERIS level 3 Aggregated HDF datasets (Figure 2) and metadata (Figure 3 and Figure 4), when opened with the *HDFView* Software<sup>2</sup>.

Figure 2 Example of MERIS Level 3 Aggregated HDF datasets

| Properti   | es - MER01_ENV01_2   | 20030201000000_20030228000        | . 🖻  |
|------------|----------------------|-----------------------------------|------|
| General    | Attributes           |                                   |      |
| Cilo Namo: | 000000 20020228000   | 0000 L2 MUL 000001 200N750N015    | OVA/ |
|            | 000000_20030228000   | 0000_E3_MOE_000001_300N730N015    | 000  |
| lie Path:  | Y:lausseoplPROJIHDF  | _Functions\Runs\TEST_MERIS\DATA(2 | 003  |
| File Type: | HDF4, size=22793K, g | groups=1, datasets=25             |      |
| Tag, Ref:  | 0, 0                 |                                   |      |
| Group Mer  | nbers                |                                   |      |
| Number of  | members: 25          |                                   |      |
|            | Name                 | Туре                              |      |
| nb_flag_br | right                | Dataset                           |      |
| nb_flag_cl | ouds_ice             | Dataset                           |      |
| nb_flag_ve | getation             | Dataset                           |      |
| nb_flag_w  | ater                 | Dataset                           |      |
| REC_RED    | I                    | Dataset                           |      |
| REC_NIR    |                      | Dataset                           |      |
| fapar      |                      | Dataset                           |      |
| sd_spatial | _fapar               | Dataset                           |      |
| nb_spatial | _fapar               | Dataset                           |      |
| nb_tempo   | ral_fapar            | Dataset                           |      |
| sd_nb_ten  | nporal_fapar         | Dataset                           |      |
| dev_tempo  | oral_fapar           | Dataset                           |      |
| sd_dev_te  | mporal_fapar         | Dataset                           |      |
| norm_surf  | _reflec_2            | Dataset                           |      |
| norm_surf  | _reflec_5            | Dataset                           |      |
| norm_surf  | _reflec_8            | Dataset                           |      |
| norm_surf  | _reflec_13           | Dataset                           |      |
| sun_zenith | 1                    | Dataset                           |      |
| sd_sun_ze  | enith                | Dataset                           |      |
| sat_zenith |                      | Dataset                           |      |
| sd_sat_ze  | nith                 | Dataset                           |      |
| sun_azimເ  | uth                  | Dataset                           |      |
| sd_sun_a   | zimuth               | Dataset                           |      |
| sat_azimu  | th                   | Dataset                           |      |
| sd_sat_az  | imuth                | Dataset                           |      |
|            |                      |                                   |      |
|            |                      | Close                             |      |

<sup>&</sup>lt;sup>2</sup> <u>http://hdf.ncsa.uiuc.edu/hdf-java-html/hdfview/</u>

#### Figure 3 Example of MERIS Level 3 Aggregated HDF metadata for the whole file

| Properties - L3_     | ENV_MER_MGVI_m200674_GLOB_SI_GPOD_         | 9277x92         | 77 🚺       |  |  |
|----------------------|--------------------------------------------|-----------------|------------|--|--|
| General Attribu      | tes                                        |                 |            |  |  |
| Number of attributes | s = 12                                     |                 | Add        |  |  |
| Name                 | Value                                      | Туре            | Array Size |  |  |
| projectionMetaData   | GROUP=ProjectionSinusoidalGROUP=CentralLon | 8-bit ch        | 719        |  |  |
| Mission              | Envisat MERIS                              | 8-bit ch        | 13         |  |  |
| Processing Center    | ESAESRIN                                   | 8-bit ch        | 9          |  |  |
| Software Name        | ReMap - JRC - GEM / IES                    | 8-bit ch        | 23         |  |  |
| Software Version     | ReMap Aggregate - Version 3.2              | 8-bit ch        | 29         |  |  |
| Start Year           | 2006                                       | 16-bit in       | 1          |  |  |
| End Year             | 2006                                       | )06 16-bit in 1 |            |  |  |
| Title                | MERIS Level-3 Data                         | 8-bit ch        | 18         |  |  |
| File Name            | L3_ENV_MER_MGVI_m200674_GLOB_SI_GPO        | 8-bit ch        | 73         |  |  |
| Product Name         | MER_RR3 aggregated Products                | 8-bit ch        | 29         |  |  |
| Start Day            | 185                                        | 16-bit in       | 1          |  |  |
| End Day              | 185                                        | 16-bit in       | 1          |  |  |
|                      |                                            |                 |            |  |  |
|                      |                                            |                 | -          |  |  |
|                      | Close                                      |                 |            |  |  |

Figure 4 Example of MERIS level 3 HDF metadata describing the dataset fapar

| 🔻 Properties - /fapar 🛛 🗙 |                                                                 |        |       |  |
|---------------------------|-----------------------------------------------------------------|--------|-------|--|
| General                   | Attributes                                                      |        |       |  |
| Number of attributes = 5  |                                                                 |        | Add   |  |
| Name                      | Value                                                           | Туре   | Array |  |
| valid_range               | 1, 255                                                          | 8-bit  | 2     |  |
| _FillValue                | 0                                                               | 8-bit  | 1     |  |
| slope                     | 0.003937007859349251                                            | 64-bit | 1     |  |
| intercept                 | -0.003937007859349251                                           | 64-bit | 1     |  |
| long_name                 | Fraction of Absorbed Photosynthetically Active Radiation (FAPAR | 8-bit  | 84    |  |
|                           |                                                                 |        |       |  |
| <u>C</u> lose             |                                                                 |        |       |  |

## 6 References

[1] GOBRON, N., PINTY, B., VERSTRAETE, M. M. AND GOVAERTS Y., 1999: The MERIS Global Vegetation Index (MGVI): Description and Preliminary Application, *International Journal of Remote Sensing*, 20, pp. 1917-1927.

[2] GOVAERTS, Y., VERSTRAETE, M. M., PINTY, B. AND GOBRON, N., 1999: Designing Optimal Spectral Indices: A Feasibility and Proof of Concept Study, *International Journal of Remote Sensing*, 20, pp. 1853-1873.

[3] GOBRON, N., O. AUSSEDAT, B. PINTY, M. TABERNER & M. M. VERSTRAETE (2004) 'Medium Resolution Imaging Spectrometer (MERIS) - Level 2 Land Surface Products - Algorithm Theoretical Basis Document', REVISION 3.0, INSTITUTE FOR ENVIRONMENT AND SUSTAINABILITY, **EUR REPORT NO. 21387 EN**, 20 PP.

[4] GOBRON, N., O. AUSSEDAT, B. PINTY, M. TABERNER & M. M. VERSTRAETE (2004) 'Medium Resolution Imaging Spectrometer (MERIS) - An optimized FAPAR Algorithm - Theoretical Basis Document', REVISION 3.0, INSTITUTE FOR ENVIRONMENT AND SUSTAINABILITY, **EUR REPORT NO. 21386 EN**, 20 PP.

[5] PINTY, B., N. GOBRON, F. MÉLIN AND M. M. VERSTRAETE (2002) 'A TIME COMPOSITE ALGORITHM THEORETICAL BASIS DOCUMENT', INSTITUTE FOR ENVIRONMENT AND SUSTAINABILITY, **EUR REPORT NO. 20150 EN**, 8 PP.

[6] AUSSEDAT, O., N. GOBRON, PINTY B. AND TABERNER M., 2006: MERIS Level 3 Land Surface Time Composite - Product File Description, INSTITUTE FOR ENVIRONMENT AND SUSTAINABILITY, **EUR REPORT NO. 22165 EN**, 20 PP.

#### **European Commission**

#### DG Joint Research Centre, Institute for Environment and Sustainability

Title: MERIS Level 3 Land Surface Aggregated Product: File Description Authors: Ophélie Aussedat, Malcolm Taberner, Nadine Gobron and Bernard Pinty Luxembourg: Office for Official Publications of the European Communities 2007 – 16 pp.

EUR - Scientific and Technical Research series; ISSN 1018-5593

#### Abstract

This document describes the format of the products of the Medium Resolution Imaging Spectrometer (MERIS) Level 3 aggregated products. These data are operationally processed and produced at the Grid Processing-on Demand (G-POD) of European Space Research Institute (ESRIN) using the European Commission – DG Joint Research Centre (JRC) algorithm and software.

![](_page_15_Picture_0.jpeg)

The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.