Multi-pass ERS-ENVISAT Cross-Interferometry Methods and Results

Urs Wegmüller, Charles Werner, Othmar Frey, Tazio Strozzi, and Maurizio Santoro

Gamma Remote Sensing AG, Gümligen, Switzerland, http://www.gamma-rs.ch, wegmuller@gamma-rs.ch

This work was supported by ESA under contract 22526/09/I-LG. ERS and ASAR data copyright ESA (CAT 6744).

Contents

Review ERS-ENVISAT cross-interferometry (EET CInSAR)

Review multi-pass differential interferometry methods

Consider EET multi-pass CInSAR specifics

Application examples for EET multi-pass CInSAR

- DEM generation
- Glacier topography and motion mapping
- Grounding line mapping for ice-sheets

Conclusions

ERS-ENVISAT cross interferometry

- Between 2002 and 2010 the ENVISAT satellite was operated on the same orbit as ERS-2 (35 days repeat cycle) with a very short temporal separation of 28 minutes
- However, the radar center frequency of ENVISAT ASAR (5.331 GHz) has been slightly changed compared to ERS-2 (5.300 GHz)
- At perpendicular baselines around 2 km the baseline effect can composite the frequency difference effect on the reflectivity spectrum allowing to get coherent interferograms
- → 28 minute interval and 2km perpendicular baseline

ERS-ENVISAT cross interferometry

$$\phi = \phi_{orb} + \frac{4\pi}{\lambda} \frac{B_{\perp}}{r \cdot \sin \theta} h + \frac{4\pi}{\lambda} r_{disp} + \phi_{path} + \phi_{noise}$$

- Ambiguity height 4.7m (2km perp. baseline)
 very sensitive to elevation
- 2.8 cm displacement per phase cycle but displacement is for a short 28 minute interval suited for relatively fast displacements

2-pass interferometry

- At present predominantly *2-pass differential* interferometry is used (SRTM availability):
 - Ground-displacement mapping:
 Simulate orbital and topographic phase (using DEM)
 Subtract → deformation phase + error terms
 - DEM generation:
 Simulate orbital and initial topographic phase (using DEM)
 Assume no deformation
 → residual topographic phase + error terms

Multi-pass interferometry

- Basic idea: Use two or more observations to resolve interferometric phase equations for terrain height and displacement rate
 - Preconditions:
 - different baselines (or time intervals)
 - sufficient coherence
 - Assumptions:
 - identical terrain height
 - motion is uniform
- Unwrapping done:
 - solve equations to retrieve terrain height, displacement rate and quality information
- Unwrapping not done:
 - derive suited combined interferogram(s)

Combined interferograms

- 1) Scale unwrapped phase of one interferogram and subtract it from another interferogram to get a combined interferogram without topographic phase
- 2) Combine two interferograms with same observation interval to eliminate the deformation phase phase $(s_1s_2^*)$ = phase (s_1) – phase (s_2)
- 3) Generate combined interferogram with strongly reduced sensitivity to terrain height or deformation
 - can be done without phase unwrapping
 - scaling with integer factors possible
 - e.g. pair1 (B_⊥ 205m) 2x pair2 (B_⊥ 100m) → combined interferogram with 5m effective baseline

Combined EET interferograms

- EET CInSAR characteristics:
 - B₁ ~2000m (1400m to 2600m)
 - dt 28 min.
- EET combined interferogram characteristic (pair1 pair2):
 - relatively short effective baseline
 - negligible effective time interval
 - much reduced topographic phase sensitivity (fewer topographic fringes)
 - not affected by uniform motion
- Application potential:
 - facilitate phase unwrapping (more robust DEM generation)
 - DEM over uniformly moving surface (not affected by motion)
 - separation of topographic and displacement phase
 - mapping fast non-uniform motion (e.g. tidal motion of ice sheets)

DEM generation with 4 EET CInSAR pairs

Po Valley, Italy Descending track 165 EET pairs:

Date	B _⊥ [m]	dDC [Hz]
20071006	1760	754
20071215	1398	699
20080223	1674	359
20090207	2203	861

Main problems

- 1) Atmospheric errors
 - → can be reduced by combination of individual DEMs
- 2) Unwrapping problems even in relatively flat areas due to distinct height steps /steep ramps with elevation changes > 3m
 - → can be reduced using combined interferograms Track 165 combined interferograms considered:

Date 1	Date 2	B _⊥ [m]
20071215	20071006	360
20071215	20080223	280
20090207	20071006	445
20090207	20080223	525

Resulting DEM generation approach

- 1) Calculate combined interferograms
- 2) Unwrap combined interferograms
- 3) Generate individual DEMs
- 4) Generate DEM based on all combined interferograms
- 5) Unwrap EET Cross-interferograms using DEM from step 4
- 6) Generate individual EET DEMs
- 7) Generate DEM based on all EET Cross-interferograms and quality information

Po Valley – EET CInSAR DEM (2 tracks)

Multi-pass EET CInSAR over fast glaciers

Objectives:

- 1) Map glacier topography
- 2) Map glacier velocity

EET pairs used over West Antarctica:

Date	B _⊥ [m]	dDC [Hz]
20100226	2267	500
20100402	1940	380

Multi-pass combination:

Date 1	Date 2	B _⊥ [m]
20100226	20100402	327

EET CInSAR and combined interferogram

combi:

topographic phase reduced

no phase from uniform motion

26.2.10, 2267m 2.4.10, 1940m

combi, 327m

EET CInSAR and combined interferogram

Potential over fast glaciers

- Glacier topography can be mapped
 - unwrapping complexity reduced
 - no phase from uniform motion
- Generating glacier velocity maps failed (so far)
 - effective baselines for combined interferograms were all significantly smaller than EET baselines (e.g. 300m versus 2000m)
 - up-scaling topographic phase with a factor
 - > 5 results in high phase noise and atmospheric errors which clearly dominate over the rel. small displacement phase typically expected (cm scale)

Multi-pass EET CInSAR for the mapping of the grounding line of shelf ice

Objectives:

- 1) Identify tidal phase
- 2) Map grounding line

EET pairs used over West Antarctica:

Date	B _⊥ [m]	dDC [Hz]
20100226	2267	500
20100402	1940	380

Multi-pass combination:

Date 1	Date 2	B _⊥ [m]
20100226	20100402	327

Interferograms over partly grounded ice

Observations

- Grounding line mapping facilitated if sign of phase slope changes at grounding line position (E1/2, EET1, EET2)
- High sensitivity of EET pairs to topography results in high phase gradients over land which makes discrimination from tidal phase more difficult
- Combined EET interferogram well suited for grounding line mapping if:
 - effective baseline is short (in our example 337m)
 - sign of phase slope changes at grounding line position (not the case in our example)

Application over Larsen B ice shelf

Observations

- In EET pairs the grounding line can be determined in some areas
- In other areas this seems too difficult due to a too high phase gradients which makes it difficult to accurately locate the sign change of the phase slope
- In EET combination phase gradients are often similar over the tidal zone and over the grounded area (because of terrain slopes)
- In this EET combination (with no phase gradient phase change and a quite long effective baseline) the grounding line cannot be reliably mapped for most of the shelf ice in this area

Conclusions

Main potentials of EET multi-pass approaches:

- DEM generation gets more robust and more accurate
- DEM generation over fast uniformly moving surfaces
- Grounding line detection: good potential
 - with short effective baselines
 - if sign of phase slope changes at grounding line

