CECMWF

Commission

A

The road from Sentinel-5p to Paris

Richard Engelen ECMWF

acve → ATMOSPHERIC COMPOSITION VALIDATION AND EVOLUTION

18-20 October 2016 | ESA-ESRIN | Frascati (Rome) Italy

By how much will Sentinel-5p improve the air quality forecast for Paris?

Number of days that ECMWF weather forecasts provide useful information

Forecast sensitivity

From: Cardinali and Prates, 2009

COPERNICUS

Copernicus Atmosphere Monitoring Service

Combine observations with state-ofthe-art data assimilation and forecasting systems to provide air quality information on the global and regional scale.

CAMS IN A NUTSHELL

Space Agencies

In-situ component

CAMS

Tuesday 24 May 2016 00UTC MACC-RAQ Forecast t+000 VT: Tuesday 24 May 2016 00UTC Model: ENSEMBLE Height level: Surface Parameter: PM10 Aerosol [μg/m3]

> Tuesday 24 May 2016 00UTC MACC-RAQ Forecast t+000 VT: Tuesday 24 May 2016 00UTC Model: ENSEMBLE Height level: Surface Parameter: PM10 Aerosol [µg/m3]

> > ruesday 24 May 2016 00UTC MACC-RAQ Forecast t+000 VT: Tuesday 24 May 2016 00UTC fodel: ENSEMBLE Height level: Surface Parameter: PM10 Aerosol [µg/m3]

Tuesday 24 May 2016 00UTC MACC-RAQ Forecast t+000 VT: Tuesday 24 May 2016 00UTC Model: ENSEMBLE Height level: Surface Parameter: PM10 Aerosol [μg/m3]

The challenge for ACVE

THE SPACE SEGMENT

SATELLITE DATA

Characterization of satellite observation errors is the first step in the chain.

FROM L1 TO L2

Buchwitz et al., 2013

Using NWP principles for atmospheric composition forecasting

THE GLOBAL ELEMENT

CAMS - GLOBAL

ernicus

Space Agencies

Fire emissions

Anthropogenic emissions

2
$$J(x) = (x - x_b)^T B^{-1} (x - x_b) + (H(x) - y)^T R^{-1} (H(x) - y)$$

SATELLITE DATA USED

Species	Instruments
Global system	
O ₃	OMI, SBUV, GOME-2, MLS, OMPS, S5p
CO	IASI, MOPITT, S5p
NO ₂	OMI, GOME-2, S5p
SO ₂	OMI, GOME-2, S5p
Aerosol	MODIS, PMAp, VIIRS, S3
CO ₂	GOSAT, OCO-2
CH ₄	GOSAT, IASI, S5p
GFAS fire emissions	MODIS, GOES, SEVIRI, VIIRS

SYSTEMATIC ERRORS

opernicus

GLOBAL FORECAST

VALIDATION – PART 1

Validation report of the CAMS near-real time global atmospheric composition service

System evolution and performance statistics Status up to 1 June 2016

Issued by: KNMI Date: 21/09/2016 REF.: CAMS84_2015SC1_D.84.1.4_201609

Seven know more than one

THE REGIONAL ELEMENT

CAMS - REGIONAL

In-situ component

Anthropogenic emissions

Tuesday 24 May 2016 00UTC MACC-RAQ Forecast t+000 VT: Tuesday 24 May 2016 00UTC Model: ENSEMBLE Height level: Surface Parameter: PM10 Aerosol [µg/m3]

Tuesday 24 May 2016 00UTC MACC-RAQ Forecast t+000 VT: Tuesday 24 May 2016 00UTC Model: ENSEMBLE Height level: Surface Parameter: PM10 Aerosol [µg/m3]

Model ensemble

CECMWF

Regulatory Observations

Annual mean PM10 concentrations for 2013

European Environment Agency

EMISSIONS

All CAMS regional AQ models use the same emissions

Meteorology

Winter smog (PM, NOx, SO₂...) Photochemical smog (O₃, PM...)

All CAMS regional models are driven by the same meteorological fields from the operational ECMWF NWP system.

Chemical modelling

Ensemble

Pm10 Aerosol - 20130508 00UTC to 20130515 00UTC

Validation – part 2

The ensemble median consistently outperforms any individual model!!!

CECMWF

Global to regional

CECMWF

How is the CAMS information being used

APPLICATIONS

CAMS outputs are used as input for national and city-scale forecasts, combined with local expertise, AQ models and observations.

Downstream applications

max of 8hr mean 22JUL2016

Arianet arl - CC BY-NC-ND - o3 - run 20160722

2016-07-21-23:41

What can we do to estimate end-to-end uncertainty?

EVOLUTION

Regional

CAMS EPSGRAM

Roma(41.9°N, 12.48°E)

Forecast Sunday 16 October 2016 00 UTC

The ensemble spread provides an indication of the uncertainty.

This is especially useful when values approach or overshoot regulatory thresholds.

Is it likely or is it just one model forecasting these high values?

Does not account for uncertainties in boundary conditions, meteorology, emissions, ...

Estimating global errors

Estimate Analysis error within 4D-Var

Ensemble data assimilation

 $J' = B^{-1} + H^{T}R^{-1}H = A^{-1}$

Minimization provides one eigenvector per iteration (with limitations).

Ensemble forecasting

All methods need estimates of:

- Background errors
- Observation errors
- Errors in emissions
- Model errors

Ensemble data assimilation can estimate flow dependent analysis and background errors, but there is a limit to the ensemble size.

Scores based on anomaly correlations need an accurate climatology and are focused on the random error component.

35

Atmospheric composition forecasts contain significant systematic errors.

Systematic errors

Carbon monoxide

CAMS CIFS/TM5 AN GAW intercomparison Hohenpeissenberg Ozone September 2016 bias [ppb] D0: 2.4 D1: 2.2 D2: 2.0 D3: 2.5 MNbias [%] D0: 7 D1: 7 D2: 6 D3: 7

Chemistry tends to find an equilibrium driven by the emissions.

Aerosol Optical Depth

WHAT TO DO?

Monday 23 May 2016 00UTC CAMS Forecast (+036 VT: Tuesday 24 May 2016 12UTC

Space Agencies

WHAT TO DO?

Space Agencies

In-situ component

Observation System Simulation Experiment (OSSE)

- Characterize all errors
- Complex
- Unknown error sources
- Unclear how to propagate all error elements

day 24 May 2016 00UTC

By how much will Sentinel-5p improve the air quality forecast for Paris?

AA

European Commission

Thank you

