Cloud screening method particularly feasible for snow cover mapping

Sari Metsämäki Finnish Environment Institute (SYKE)

LPVE Workshop ESA, Esrin 28-30 Jan 2014

SYKE

Motivation

- Need for cloud screening algorithm in ESA DUE-GlobSnow project (2009 -)
- Project team could not identify a suitable method for Envisat/AATSR, particularly for fractional snow mapping purposes
- Undetected clouds usually lead to false snow identification
- Very conservative cloud mask may reduce the area for snow mapping
 - Problems over snow-covered boreal forests and at the edges of snow-covered terrain or at thin snow cover

Official AATSR cloud mask (provided in level 1b) presents severe false cloud commissions over land areas

Framework for method development

- No need to identify all (small/semi-transparent) clouds in confident snow-free areas
- \succ Cloud screening is targeted, not cloud classification \rightarrow binary information, no classes, no propabilities

- Must be relatively simple and computationally fast
- Must be applicable for Northern Hemisphere, no regional/local tuning
- Must not confuse between fractional snow and clouds (it's the fractional snow we want to see!)

Should work particularly over seasonally snow-covered areas and throughout the potential snow season

Major features of SCDA2.0

Simple Cloud Detection Algorithm

Designed to work with only a few spectral bands

Common for Terra/MODIS, Envisat/AATSR, ERS 2/ATSR-2, NPP Suomi/VIIRS → R550, R1.6, BT3.7,
 BT11, BT12

Based on empirically determined thresholds for single bands and their ratios

- Driven by BT11-BT3.7
- Ratio NDSI / R550 important in avoiding false cloud commissions

Several other test for BT12, R550 and NDSI

SYKE

GlobSnow Snow Extent Product Daily Fractional Snow Cover (DFSC)

Version 2.0

Fractional Snow Cover (FSC) - Steps of 1% in product

50%

75%

100%

100%

25%

0% Water

GlobSnow Snow Extent Product

Weekly Aggregated Fractional Snow Cover (WFSC)

Version 2.0

Fractional Snow Cover (FSC) - Steps of 1% in product

50%

75%

Not

Layer-1 values when FSC is not retrieved

mapped in

product time frame

retrieval

retrieval

Water

0%

Glacier

retrieval algorithm applicable

25%

GlobSnow Snow Extent Product

Monthly Aggregated Fractional Snow Cover (MFSC) Version 2.0

Cloud masks for GlobSnow-2 SE-product from NPP Suomi/VIIRS

GlobSnow Snow Extent Product Daily Fractional Snow Cover (DFSC) Version 2.0

Fractional Snow Cover (FSC) - Steps of 1% in product

100%

25% 0% Water Glacier Not Toolow Miss

Layer-1 values when FSC is not retrieved

for snow

ing or Cloud Snow retrieval No snow algorithm retrieval breakdown algorithm algorithm

SYKE

AATSR cloud (operational)

GlobSnow-2 cloud SCDA v2.0

MODIS cloud (from MOD10_L2) Improvement from GlobSnow-1 cloud mask :

GlobSnow-1

Edges of snowcovered area falsely interpreted as snow Improvement from GlobSnow-1 cloud mask :

GlobSnow-2

Snow-covered forest and tundra

AATSR cloud (operational)

MODIS cloud (from MOD10_L2)

GlobSnow-2 cloud SCDA v2.0

Snow-covered forest and tundra

GlobSnow-2 cloud SCDA v2.0

Snow-covered terrain

AATSR cloud (operational) MODIS cloud (from MOD10_L2) GlobSnow-2 cloud SCDA v2.0

GlobSnow-2 cloud SCDA v2.0

cloud

Thin/fractional snow

False cloud commissions, as reported by Hall et Riggs, 2007

Hall, D. K., & Riggs, G. A. (2007). Accuracy assessment of the MODIS snow products. *Hydrological Processes*, 21(12), MODIS cloud (from MOD10_L2)

GlobSnow-2 cloud SCDA v2.0

False cloud commissions for Mongolia still a concern (1)

Fractional snow at the edge of snow-covered areas are easily misclassified as cloud (yellow here)

False cloud commissions for Mongolia still a concern (2)

GS-2 SE, Feb 20, 2009

NASA MOD10_L2, Feb 20, 2009

Occasional cloud omissions in summer months for some cloud types

SYKE

Way forward

- Improvements are allways welcome! Issue with clouds is not solved...
- On-going work: better detection of summertime clouds
 - Reference image approach is investigated (based on SCAmod FSC retrieval method)
 - Expansion of teaching data set for decision rules
- Cloud shadows currently not considered in SCDA2.0
 - 1-2 pixels buffering does not completely solve this problem
- In situ observations on cloudiness could help the method development and validation: e.g. sky-cameras
- Need of proper cloud screening method for snow mapping purposes from Sentinel-3 SLSTR
 - SCDA2.0 is a good basis for that

Thank you for your attention!

Acknowledgement to

- Finnish Meteorological Institute (FMI)
- Gamma Remote Sensing AG
 for GlobSnow-processings

