

Customer	: ESRIN	Document Ref : IDEAS+-SER-IPF-SPE-2337	
Contract No	: 4000111304/14/I-AM	Issue Date : 31 August 2015	
ESA Doc Ref	: PO-RS-MDA-GS-2009	Issue : 3 / G	

TITLE: ENVISAT-1 PRODUCTS SPECIFICATIONS

ANNEX A: PRODUCT DATA CONVENTIONS

Abstract : This document contains data conventions used by the other volumes

Written by	:	Approval	:
	M. Cardaci- IDEAS	+	Lidia Saavedra de Miguel – IDEAS+
		Accepted	:
			Bojan Bojkov - ESA
Distribution	:		
	Hard Copy File: Filename:	IDEAS+-SER-IPF-SPE-2337	_3 / G.doc

TABLE OF CONTENTS

EX A PRODUCT DATA CONVENTIONS	9
PRODUCT FILE NAMING	9
DATA REPRESENTATION	
2.3 Unused Fields	15
BIT / BYTE NUMBERING	16
TIME	16
GEOLOCATION INFORMATION	17
BUFR AND GRIB FORMAT	18
ALIGNMENT IN STRUCTURES FOR THE IBM SP2	18
222	PRODUCT FILE NAMING. DATA REPRESENTATION 1 ASCII Character Set 2 Logical Values 3 Unused Fields BIT / BYTE NUMBERING TIME GEOLOCATION INFORMATION BUFR AND GRIB FORMAT SIZES

INDEX OF TABLES

TABLE A.1-1 PRODUCT NAME FIELDS	9
TABLE A.2-1 DATA TYPES	12
TABLE A.2-2 ASCII EQUIVALENT FORMATS	12
TABLE A.2.1-1 DECIMAL VALUE AND CORRESPONDING ASCII CHARACTER	14
TABLE A.2.2-1 LOGICAL VALUES	15
TABLE A.4-1 MJD FORMAT	17
TABLE A.8-1 TYPE SIZE AND ALIGNMENT FOR THE RISC SYSTEM/6000	18

INDEX OF FIGURES

No figures in the document

TIONS

AMENDMENT POLICY

This document shall be amended by releasing a new edition of the document in its entirety. The Amendment Record Sheet below records the history and issue status of this document.

AMENDMENT RECORD SHEET

ISSUE	REVISION	DATE	CHANGE STATUS	ORIGIN
1	А	12/01/1996	Issue 1	SRR
1	В	16/02/1996	SCR #16, CR #16 Issue 1, Revision B	SRR
			Reason for Change: Updated to reflect information in PO-TN-ESA-GS-0381 and to address RIDs of Feb. 2/96 pertaining to the Level 0 structure. MPH, SPH, DSD, and DSR structures modified. Table added showing generalized Level 0 product structure. RIDs Addressed: ESA/0001: FEP header defined ESA/0002: PF-Host time stamp clarified ESA/0004: Processing PCD added ESA/0006: AF PCD ADS and DSD added ESA/0007: page A-3 updated ESA/0008: page B-3 updated ESA/0009: Table 8.1.1 modified ESA/0011: TBD changed to Range/	
			Doppler ESA/0013: FEP header defined	
			ESA/0014: Table 8.4.7.4-2	
			corrected CSF/1:	

ISSUE	REVISION	DATE	CHANGE STATUS	ORIGIN
			filename in MPH corrected	
			CSF/2:	
			page A-3 updated	
			CSF/3:	
			MPH PCD information	
			updated	
			CSF/5:	
			DSD added to Level 0	
			SPH	
			CSF/6:	
			Section on AATSR	
			updated and re-issued	
			CSF/8:	
			AATSR_O Summary	
			Sheet updated	
1	С	04/04/1996	SCR #38, CR #38	Products
			Issue 1, Revision C	Review
				Meeting #1
			Reason for Change:	
			Updated Sections 1-6, 17 and Annex A	
			to reflect changes discussed at the	
			Products Review Meeting #1,	
			March 5-8, 1996, as per action item "AI MDA 6 April 96" from	
			PO-MN-ESA-00416, Pg. 35.	
2	А	20/05/1996	SCR #71, CR #71	
-		20,00,1000	Issue 2	
			Separate volume created	
2	В	10/02/1997	SCR #102, CR #102	Products
			Issue 2, Revision B	Review
				Meeting #2
			Reason for Change:	
			Originator_ID codes created.	
			Minor updates.	
3	А	27/05/1997	SCR #169 , CR #169	Products
			Issue 3, Revision A	Review
				Meeting #3
			Bit numbering convention corrected	
			MJD format placed in table	
3	В	20/09/2001	Definition of Ac as recovering both	
			unsigned and signed char types.	
3	С	10/09/2002	Added IECF as Originator ID on table	
			A.1-1	
3	D	05/05/2004	Added ACRI and FINPAC as	P.Gilles
			Originator IDs on table A.1-1 and	mail of 5/
			updated the complete list to reflect	05/2004
			operational status	Subj: Prod

IDEAS+ ANNEX A: PRODUCT DATA CONVENTIONS Issue 3 / G

ISSUE	REVISION	DATE	CHANGE STATUS	ORIGIN
				Spec Update
3	E	20/06/2005	New originator IDs: PAM for matera NRT production O_M for Orbite Mission	Request from P.F emenias and Change of Scenario on Matera
3	F	09/01/2014	Update of Originators list to include DSI	JCCB-CP- 323 - UPDATE OF ENVISAT PRODUCT SPECIFICAT IONS for DSI
			Update of interpretation of product counter in case of reprocessing campaigns	JCCB-CP- 323 - UPDATE OF ENVISAT PRODUCT SPECIFICAT IONS for DSI
3	G	31/08/2015	Update of Stations list to reference external ESA document ("EO Parameter Code List" - PGSI-GSEG-EOPG-TN-07-0001)	JCCB-CP- 323 - update of envisat product specifications for dsi (updated decision JCCB 20.08.2015)

IDEAS+-SER-IPF-SPE-2337 ANNEX A: PRODUCT DATA CONVENTIONS Issue 3 / G

IDEAS+

REGISTER OF CHANGES

Section	Change
Table A11	Added "DSI" centre in field "Originator ID"
Table A11	Added reference to "note 1" in field "counter" (reference in the table and text after the table.
All	Porting of template
All	Updated with IDEAS+ contract details
Table A11	Field #3 (originator ID): replaced table with reference to ESA document: "EO Parameter Code List" (PGSI-GSEG-EOPG-TN-07-0001). Existing list replaced with footnote
Table A11	Field #3 (originator ID): added LRC = LRAC backup chain

ANNEX A PRODUCT DATA CONVENTIONS

This appendix summarizes the product conventions used in this document

A.1 PRODUCT FILE NAMING

The first field of the Main Product Header contains the product name. The naming convention for products is described below.

```
filename = <product_ID> <processing_stage_flag>
```

```
<originator_ID><start_day> <"_"> <start_time> <"_"> <duration> <phase>
<cycle> <"_"> <relative_orbit> <"_"> <absolute_orbit> <"_"><counter>
<"."> <satellite_ID> <.extension>
```

The naming convention for auxiliary data files is described in Volume 16.

Table A.1-1 Product Name Fields			
Field.	Size in Characters	Description	
Product_ID	10	10 character string identifies sensor, mode and processing level. See Volume 4 for details. Characters not used are replaced with an underscore character.	
Processing Stage flag	1	Set to "N" for Near Real Time product Set to "V" for fully validated (consolidated) product Set to "T" for Test product Set to "S" for a special product. Letters between N and V are assigned in order of level of consolidation (i.e., closer to	
originator ID	3	V = better consolidated) Identification of the center which generated the file. The 3 character code may be one of the codes listed in NOTE (2) below. All codes are TBC by ESA	
start_day	8	In the case of instrument products it corresponds to the start day of the product from the UTC time of the first DSR. The format is YYYYMMDD. For Auxiliary files it may correspond to file creation date.	
start_time	6	Time coverage of the product expressed in seconds. If the duration of a product is not	

Table A.1-1 Product Name Fields			
Field. Size in Characters		Description	
		relevant information it will be set to "00000000".	
duration	8	Time coverage of the product expressed in seconds. If the duration of a product is not relevant information it will be set to "00000000".	
phase	1	Mission phase identifier	
cycle	3	Cycle number within the mission phase	
relative_orbit	5	Relative orbit number within the cycle at the beginning of the product	
absolute_orbit	5	Absolute orbit at the beginning of the product	
counter	4	Numerical wrap-around counter for quick file identification. For a given product type the counter is incremented by 1 for each new product generated by the product originator (see note 1)	
satellite ID	2	E1 = ERS-1, E2 = ERS-2, N1 = ENVISAT-1	
Extension	Variable	Optional field. Used only for distribution to users to indicate common archiving and compression standards if used (e.g., .gz, .Z, .tar, .tarZ, .gif, .jpeg, etc.)	

Note:

- In the case of Reprocessing Campaigns, the 4 digits of the file counter could optionally be set to the same value (as an example: "0000"). The file counter will in this case only differentiate (i.e. be incremented) in case of real processing duplicates.
- (2) At the time of this PSS update, the **current list of stations** is attached here. See also The up to date list is available from the following ESA document: "EO Parameter Code List" (PGSI-GSEG-EOPG-TN-07-0001), for eventual subsequent additions:

Code => Station PDK => PDHS-K PDE => PDHS-E IEC => IECF LRA => LRAC LRC => LRAC (backup chain) PDC => PDCC FOS => FOS-ES PDA => PDAS-F PAM => Matera for NRT production UPA => UK-PAC IDEAS+ ANNEX A: PRODUCT DATA CONVENTIONS

> DPA => D-PAC IPA => I-PAC FPA => F-PAC SPA => S-PAC EPA => E-PAC ECM => ECMWF ACR => ACRI FIN => FINPAC O_M => Orbite Mission DSI => DSI

For example, a fully consolidated Level 0 MIPAS product which contains data starting on Feb 10, 1999 at 13:32:54 covering a complete orbit (6040 seconds), from data acquired during mission phase "A", cycle 31, relative orbit 67, absolute orbit 15598, generated at the D-PAC and compressed using the gzip utility would have the form:

MIP NL 0PVD-P19990210 133254 00006040A031 00067 15598 0324.N1.gz

This file naming convention assumes the use of an operating system that allows long filenames. Platforms which use operating systems that do not support long filenames must use a subdirectory tree. The maximum length of a subdirectory name is eight characters.

For example, an MS-DOS file system (name limited to 12 characters with a periodon the ninth) would use a subdirectory structured as:

```
<first 8 characters of Product ID> \ <last 2 characters of
Product_ID><Processing_Stage_Flag> <originator_ID> \ <start_day> \
<start_time> \ <duration> \ <phase> <cycle> \ <relative_orbit> \
<absolute orbit> \ <counter> <satellite ID><.extension>
```

```
e.g
```

MIP NL \0PVD-P\19990210\133254\00006040\A031\00067\15598\0324N1.gz

A.2 DATA REPRESENTATION

The eligible data types for product structures are listed in Table A.2-1.

Table A.2-1 Data Types				
Variable Type	С Туре	Abbreviation	Range	
Character	char	sc: signed char	-128 to 127 (2's comp.)	
		uc: unsigned char	0 to 255	
2-byte integer	short	ss: signed short integer	-32768 to 32767 (2's comp)	
		us: unsigned short integer	0 to 65535	
4-byte integer	4-byte integer long sl: signed long in		-2147483648 to 2147483647	
		ul: unsigned long integer	0 to 4294967295	
8-byte integer	long long	sd: signed long long integer	-9223372036854775808 to 9223372036854775807	
		ud: unsigned long long integer	0 to 18446744073709551615	
4-byte single precision floating point	float	fl	3.4028e+38 (max) 1.17549e-38 (min)	
8-byte double precision floating point	double	do	1.79e+308 (max) 2.22e-308 (min)	

The IEEE 754-1985 is the chosen standard for storing real numbers.

For header structures which use ASCII values, the following methods for representing binary data types in ASCII are followed:

Table A.2-2 ASCII Equivalent Formats					
Variable Type	С Туре	ASCII format	ASCII Abbreviation		
Character	sc: signed char	Single ASCII character (if designated a 1 byte number in	Ac		
	uc: unsigned char	original MPH or SPH format will be SXXX ^a			
2-byte integer	ss: signed short integer	SXXXXX	As		

IDFAS+

Issue 3/G

	Table A	A.2-2 ASCII Equivalent Formats	
Variable Type	С Туре	ASCII format	ASCII Abbreviation
	us: unsigned short integer	(6 bytes)	
4-byte integer	sl: signed long integer ul: unsigned	SXXXXXXXXXX (11 bytes)	AI
	long integer		
8-byte integer	sd: signed long long integer	SXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Ad
	ud: unsigned long long integer		
4-byte single precision floating point	fl	SX.XXXXXXXESXX (15 bytes)	Afl
8-byte double	do	SX.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Ado
precision floating		(25 bytes) S.XXXXXX (8 bytes)	Ado06
point		(12 bytes) (12 bytes)	Ado46
		SXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Ado73

a. S = sign (+ or -), X = a single number in ASCII format between 0 and 9

Note that the sign is always included, even for positive numbers, and unused positions are set to zero. E.g. the number 1.435E12 is represented as +1.43500000E+12; the long integer 123456789 is represented as +0123456789. The range of value allowed for each ASCII format can be deduced of the format, e.g. Ac range is -999 ... 999 . However this does not means that all the representable values will be used, e.g. some field counter declared as Ac will never take negative values.

A.2.1 ASCII Character Set

The standard ASCII character code set used for ENVISAT Products is the first 128 characters of the 8-bit ISO8859 - 1 character code, which is identical to the long established US-ASCII 7-bit character code. For the sake of clarity, the complete list of ASCII codes used for products is given below. The rules used to

create ASCII header structures are given in Volume 5 of this document. When ASCII character strings are included in binary data sets, the string is left-justified within the field.

ASCII blank-space characters are added to the right of the string to fill the field. Note the symbol \emptyset is used in the documentation to indicate the position of an ASCII blank-space character (character 32) in Table A.2.1-1.

Table A.2.1-1 Decimal Value and corresponding ASCII character

0 NUL	1 SOH	2 STX	3 ETX	4 EOT	5 ENQ	6 ACK	7 BEL
NOL	5011	517		LUI		AON	DEL
8	9	10	11	12	13	14	15
BS	HT	NL	VT	NP	CR	SO	SI
16	17	18	19	20	21	22	23
DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB
24	25	26	27	28	29	30	31
CAN	EM	SUB	ESC	FS	GS	RS	US
32	33	34	35	36	37	38	39
SP	ļ	65	#	\$	%	&	,
40	41	42	43	44	45	46	47
()	*	+	,	-		1
48	49	50	51	52	53	54	55
0	1	2	3	4	5	6	7
56	57	58	59	60	61	62	63
8	9	:	;	<	=	>	?
64	65	66	67	68	69	70	71
@	А	В	С	D	E	F	G

IDEAS+ ANNEX A: PRODUCT DATA CONVENTIONS Issue 3 / G

72	73	74	75	76	77	78	79
H	1	J	K	L	M	N	O
80	81	82	83	84	85	86	87
P	Q	R	S	T	U	V	W
88	89	90	91	92	93	94	95
X	Y	Z	[\]	^	-
96	97	98	99	100	101	102	103
,	a	b	ç	đ	e	ţ	g
104	105	106	107	108	109	110	111
և	į	į	k	ູ	M	ឮ	Q
112	113	114	115	116	117	118	119
₽	g	្រ	ន្ថ	t	นู	¥	₩
120	121	122	123	124	125	126	127
X.	¥	द	{		}	~	DEL

A.2.2 Logical Values

Logical values are values which may be either true or false. The following convention is followed:

Table A.2.2-1 Logical Values									
Logical	Value	ASCII Representation ^a							
True	1	ASCII code 49							
False	0	ASCII code 48							

a. See Table A.2.1-1

A.2.3 Unused Fields

In cases where a field is not fully filled by the value which it contains, placeholder values are used. For ASCII strings, the placeholder character is the ASCII blank-space character (ASCII character 32). For numerical-values, the placeholder value is zero unless otherwise stated. For ASCII numerics (defined in Table A.2-2 above) an ASCII numeric of 0 (in the appropriate format) may be used if specified.

A.3 BIT / BYTE NUMBERING

For the purpose of identifying bits within a multi-byte structure, the numbering convention shown below is used. Byte 0 is the most significant byte. It is transmitted before byte 1. Within a byte, bit 0 is the least significant bit. This is the convention defined in the Product Format Guidelines (document R-1).

1 byte structure:

Bytes	BYTE 0											
Bits	7	6	5	4	3	2	1	0				

2 byte structure:

Bytes				BYTE	E 0			BYTE 1									
Bits	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

3 byte structure:

Byte s		BYTE 0							BYTE 1									BYTE 2							
Bits	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0	

4 byte structure:

Bytes				BYI	ΓE 0							BYT	ΓE 1							BY1	ΓE 2							BYT	TE 3			
Bits	3 1	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0

A.4 TIME

Within the PDS time is used with an accuracy of 1 microsecond, expressed as:

• **UTC** (Universal Time Coordinate) almost equivalent to GMT (Greenwich Meridian Time) presented as a string of 27 significant characters with the format:

DD-MMM-YYYYØhh:mm:ss.ttttt

where

DD:	day	[131]
MMM:	month	[JAN, FEB,NOV, DEC]
YYYY:	year	[19502050]

Ø:	blank characte	r
hh:	hour	[0023]
mm:	minutes	[0059]
ss:	second	[0059]
ttttt:	us	[000000999999] may be blanked by spaces if
irrelevant		

e.g. December 29, 1999 at 10:00 is coded as 29-DEC-1999 10:00:00.000000 or 29-DEC-1999 10:00:00

• **MJD 2000** (Modified Julian Day 2000) is the decimal number of day since January 1, 2000 at 00:00 hours. It is represented by 3 long integers (4 bytes each, 12 bytes total) as follows:

	Table A.4-1 MJD format									
N	Description	Units	Byte Length	Data Type	Dim					
1	Number of days elapsed since the 1st of January 2000 at 0:0 hour. It may be negative, and is thus a signed long integer	days	4	sl	1					
2	Number of seconds elapsed since the beginning of that day	S	4	ul	1					
3	Number of microseconds elapsed since the last second	us	4	ul	1					
Total			12							

e.g., December 29, 1999 at 10:00 is coded as {-3, 36000, 0}

As a general rule, UTC time format is used in the MPH and SPH, while MJD format will be used when time stamps are required for DSRs within a DS.

A.5 GEOLOCATION INFORMATION

The WGS84 co-ordinate system is used for all latitude/longitude geolocation. The system is described in detail in Document R-20.

Geolocation information is expressed within ENVISAT products using the following convention:

latitude:	4 byte signed long integer
	units = 10^{-6} degrees
	positive north (-90 = south pole, $+90 =$ north pole)

longitude:	4 byte signed long integer		
	units = 10^{-6} degrees		
	positive east, 0 = Greenwich meridian, range: [-180, 180) i.e.,		
	west direction includes -180, east does not include +180		

Latitude is always listed prior to longitude.

A.6 BUFR AND GRIB FORMAT

The Binary Universal Form for the Representation of meteorological data (BUFR) is a bit-oriented data exchange format used in meteorology. It is not supported within the ENVISAT PDS but ENVISAT products may be converted to this format outside the PDS. The format is described in Document R-21.

GRIB is the GRIdded Binary form for meteorological data representation. It is not supported within the ENVISAT PDS, but auxiliary data accepted into the PDS from the ECMWF may be in this format. The format is described in Documents R-28 and R-29.

A.7 SIZES

All sizes provided in this document follow the following convention:

- 1 kilobyte = 1×10 bytes = 1 kB or 1 kByte
- $1 \text{ megabyte} = 1 \times 10 \text{ bytes} = 1 \text{ MB or } 1 \text{ MByte}$

A.8 ALIGNMENT IN STRUCTURES FOR THE IBM SP2

All sizes listed in the Product Specifications assume byte aligned structures. However, the IBM SP2 aligns structures in memory according to the table below.

Table A.8-1 Type Size and Alignment for the RISC System/6000				
Туре	Alignment of Member	Size (Bytes)		
char	byte aligned	1		
short	2-byte aligned	2		

Table A.8-1 Type Size and Alignment for the RISC System/6000					
Туре	Alignment of Member	Size (Bytes)			
(long) int	4-byte aligned	4			
long long int	8-byte aligned	8			
pointer	4-byte aligned	4			
float	4-byte aligned	4			
double	8-byte aligned if -qalign=natural. Otherwise, word aligned.	8			
long double with -qlongdouble or -qldb1128 option.	16-byte aligned if -qalign=natural. Otherwise, word aligned.	16			

This means that if data is stored as structures, the sizes listed in the Product Specifications may not correspond exactly to the size of memory the IBM SP2allocates to store them.

For example, suppose an ADSR consisted of 5 characters followed by a float:

e.g.

unsigned char data1[5]; float data2;

Since a float is 4 bytes and a char is 1 byte, the size of this data would be listed as 9 bytes.

However, suppose this data was declared as a structure (as in the DDT):

e.g.

struct st
{
unsigned char data1[5];
float data2;
};

According to Table A.8-1, the IBM will only store a float in memory beginning on a 4-byte boundary. Therefore, it will add 3 bytes of padding to the unsigned character array before storing the float. Thus, the actual size of the structure in memory becomes 5 bytes + 3 bytes padding + 4 byte float = 12 bytes.

Obviously, this padding is not desirable as it tends to bloat the size of products and causes the byte alignment to differ from that of the Product Specifications. Output products must have the same size and alignment as specified within this document.

There are two possible solutions to this problem:

- 1. The IBM C++ compiler has a flag which can be set to force the use of byte aligned structures.
- 2. Elements of a structure may be copied individually to ensure proper alignment and size of data members.

DISTRIBUTION LIST

NAME	COPY	NAME	COPY
Henri Laur (ESA)	1		
Bojan Bojkov (ESA)	1		
Simon Jutz (ESA)	1		
Pascal Gilles (ESA)	1		

End of Document