Verification of MSI Low Radiance Calibration Over Coastal Waters, Using AERONET-OC Network

Yves Govaerts and Marta Luffarelli Rayference

Radiometric Calibration Workshop for European Missions ESRIN, 30-31 August 2017

This work is founded by the ESA S2 RadVal project

Overview

- Developing and inter-comparing algorithms for validating low radiances of Sentinel-2 Level 1C products;
- Based on a comparison of low-radiance Sentinel-2 signal over coastal waters (<u>AERONET-OC stations</u>) and theoretical TOA signal simulated in the same conditions, using 6SV;
- Following GUM recommendations for uncertainty propagation

DATA SET

- AERONET-Ocean Color Network: provides total water-leaving radiance at a defined geometry, i.e. in a limited field-of-view;
- Water-leaving radiance is converted into reflectance and injected in 6SV.

Source: AERONET-Ocean Color Website

Site names	Lat/Lon
COVE SEAPRISM	36.9° N - 75.1° W
Galata	43.0° N-28.1° E
Gloria	44.6° N – 29.4° E
GOT Seaprism	9.3° N - 101.4° E
G. Dalen Lighthouse	58.6° N – 17.5° E
Helsinki L. Tower	59.9° N - 24.9° E
LISCO	41° N - 73.3° W
Lucinda	18.5° S - 146.4° E
MVCO	41.3° N - 70.6° W
Palgrunden	58.7° N - 18.2° E
Thornton	51.5° N – 3° E
USC Seaprism	33.6° N - 118.1° W
Venice (AAOT)	45.3° N - 12.5° E
WaveCIS	28.9° N - 90.5° W
Zeebrugge	51.7°N – 3.1°E

Level 1.5 All stations

Level 1.5 2016

Source: "Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface", D. D'Alimonte, T. Kajiyama

Field	Symbol	Description
Time of acquisition	ť'	Date (day/month/year) and Time (hours/minutes/seconds) of the measure
Solar Zenith	$\theta'_{s}(\lambda_{C})$	Solar zenith angle at t' (in degree)
Solar Azimuth	$\phi'_{s}(\lambda_{C})$	Solar Azimuth angle at t' (in degree)
L _t mean	$L'_{T}(\lambda_{C})$	Above-water total radiance at $\theta_v = 40^{\circ}$ (in mW/(cm ² sr µm))
AOT	$T'_A(\lambda_C)$	Aerosol optical thickness (no units)
OOT	$\tau'_{O}(\lambda_{C})$	Ozone optical thickness (no units)
ROT	$T'_{R}(\lambda_{C})$	Rayleigh optical thickness (no units)
Surface pressure	h's	Surface pressure (in hPa)
Wind speed	w's	Surface wind speed (in m/s)
Chlorophyll-a	Chla	Chlorophyll-a concentration (in mg/m ³)

Source: AERONET-Ocean Color Website

• Accuracy

Field	Symbol	Uncertainty
L _t mean	L′ _T	Relative: 2.7% (in 400-1000 nm)
AOT	τΆ	Absolute: 0.02
Wind speed	w's	Relative: 1.1%

Source: "Description and access to AERONET-OC data", Zibordi

Temporal variation

Temporal variation of the normalized water-leaving radiance L_{wn} over 1 day

Source: AERONET-Ocean Color Website

Sentinel-2 L1C data extraction: data type

Field	Symbol	Description
Time of acquisition	t	Day/month/year, Hours/minutes/Seconds
Solar Zenith	θ_{s}	Solar zenith angle (in degree)
Solar Azimuth	φ _s	Solar Azimuth angle (in degree)
Viewing Zenith	θ_v	Viewing zenith angle (in degree)
Viewing Azimuth	Φν	Viewing Azimuth angle (in degree)
Lat-Lon		Latitude, Longitude (in degree)
Reflectance	0	L1c TOA BRF for each band (no units)

Data: Sentinel-2/MSI Sentinel-2 L1C data extraction

Extraction of 4 areas of 4*4 60-meter resolution pixels around the AERONET-OC platform, which allows us:

- To avoid the possible contamination of the reflectance by the shadow of the platform
- To determine the observation uncertainties, based on the standard deviation of the pixel reflectance in those 4 areas of interest assuming that all 4x4 pixels are identical

 $\sigma_{MSI}(\lambda_{MSI}) = \sqrt{(\sigma_{MSI}^{north}(\lambda_{MSI}))^2 + (\sigma_{MSI}^{south}(\lambda_{MSI}))^2 + (\sigma_{MSI}^{east}(\lambda_{MSI}))^2 + (\sigma_{MSI}^{west}(\lambda_{MSI}))^2 + (\sigma_{MSI}^{w$

Possible contamination

Venice – B12 – January 2016

Source: Google Maps

Lucinda – Sentinel-2 Band 12

Sentinel-2 data extraction: filtering

100 80 60 40 20 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 Reflectance (no units)

Histogram of all pixel reflectance in band 12 for all readable Sentinel 2 data:

If one pixel is rejected, the entire area is rejected

Data: Comparison S2/A-OC

Viewing Angles

Variables	Sentinal-2/MSI	AERONET-Ocean Color		
Time of acquisition	Must be within a \pm	15 minute window		
Solar Zenith	$\theta_{s} \cong \theta'_{s}$			
Solar Azimuth	φ _s ∈[145°, 165°]	ϕ'_{s} = Daily variation		
Viewing Zenith	$\theta_v \in [0^\circ$, 10°]	$\theta'_{v} = 40^{\circ}$		
Viewing Azimuth	φ _v ∈[15°, 210°]	$\phi'_v = \phi'_s - 90^\circ$		

Data: Comparison S2/A-OC

Spectral Bands

METHOD

Determination of the aerosol model

6SV offers 5 build-in aerosol models of interest : -Maritime -Continental -Urban -Biomass Burning -Desert

Sum of 3 contributions:

- Reflectance due to whitecaps,
- Sunglint or specular reflectance,
- Scattered reflectance emerging from the sea (only case I waters in 6SV)

$$\rho_{s} \left(\theta_{s}, \theta_{v}, \phi, \lambda\right) = \rho_{wc} \left(\lambda\right) + (1 - W) \rho_{gl} \left(\theta_{s}, \theta_{v}, \phi, \lambda\right) + (1 - \rho_{wc} \left(\lambda\right)) \rho_{sw} \left(\theta_{s}, \theta_{v}, \phi, \lambda\right)$$

Case I vs Case II Waters

Chlorophyll-a is dominant in the waters. As its concentration increases, reflectance decreases in the blue/green band.

Inorganic sediments composed the suspended matter. Waters are brighter in the 500-600nm band.

Source: Morel, 1977

Summary

- The sea surface reflectance ρ'_s is expected to be dominated by the scattered reflectance emerging from the sea ρ'_{sw} , since we select measures with:
 - low wind speeds : $\rho'_{wc} \rightarrow 0$
 - geometries avoiding sunglint $\rho'_{gl} \rightarrow 0$
- In 6SV, ρ^\prime_{sw} is computed in the case of homogeneous waters, neglecting:
 - the contribution of (yellowish or reddish) inorganic matter that can absorb or scatter the light entering the surface
 - the reflection of the light on a close ocean floor (case of shallow waters)

Method: Sea Reflectance Model Estimation of the water-leaving reflectance ρ'_{sw}

It is assumed that the ratio f between the sea surface reflectance (no atmopshere) and the bottom of atmosphere reflectance calculated with 6S or derived from AERONET-OC observations are the same

Method: Sea Reflectance Model Estimation of the water-leaving reflectance ρ'_{sw}

$$f' = \frac{\rho'_{s}(\mu'_{s}, \mu'_{v}, \phi')}{\bar{\rho}'_{s}(\tau; \mu'_{s}, \mu'_{v}, \phi')} = \frac{\rho_{s}(\mu_{s}, \mu_{v}, \phi)}{\bar{\rho}_{s}(\tau; \mu_{s}, \mu_{v}, \phi)}$$

By replacing each term, we get:

$$f' = \frac{\rho_{wc}'(\lambda_c) + (1 - W)\,\rho_{gl}'(\theta_s', \theta_v', \phi', \lambda_c) + (1 - \rho_{wc}'(\lambda_c))\rho_{sw}'(\theta_s', \theta_v', \phi', \lambda_c)}{\bar{\rho}_s'(\theta_s', \theta_v', \phi', \lambda_c)}$$

Hypotheses: the whitecaps contribution is negligible (since the wind speed is low) and the sunglint is correctly modeled by 6SV. Therefore:

Atmospheric-free waterleaving reflectance

BOA totalculated with 6SVCalculated with 6SV reflectanted on AOT based on wind speed

Method: Sea Reflectance Model Estimation of the water-leaving reflectance ρ'_{sw}

Simulation uncertainty estimation For all parameters

$$\sigma_R(t, s, \lambda_{MSI}; p_i) = \sqrt{\sum_{i=1}^N \left(\frac{\partial R(t, s, \lambda_{MSI}; p_i)}{\partial p_i} \sigma_{p_i}\right)^2}$$

Cross-terms are neglected

р _і	Units	σ_{pi}	Source		
Wind speed	m/s	1.1%	AERONET-OC		
Wind direction	degree	45°	-		
Water leaving Reflectance	-	Following Equation	AERONET-OC		
Surface pressure	hPa	1%	AERONET-OC		
AOT at 550nm	-	0.02	AERONET-OC		
Aerosol type	-	Second best	AERONET-OC		
TCWV	Kg/m ²	10%	AERONET		
TCO3	Dobson units	20%	ECMWF reanalysis		

Uncertainties

For the water-leaving reflectance

$$\sigma_{\rho_{sw}}(t, s, \lambda_{MSI}; p_i) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial \rho_{sw}}{\partial p_i} \sigma_{p_i}\right)^2 + \left(\frac{\partial \rho_{sw}}{\partial \theta_s} \Delta \theta_s\right)^2 + \left(\frac{\partial \rho_{sw}}{\partial \theta_v} \Delta \theta_v\right)^2}$$
Variations of the optical path with theta_v
$$\int_{0}^{1} \int_{0}^{1} \int$$

MONTE-CARLO VALIDATION OF UNCERTAINTY ESTIMATION

Method

The perturbed quantity δ_{pi} is randomly chosen inside a Gaussian distribution whose HWHM is the uncertainty associated to σ_{pi} of the parameter p_i .

For one Monte-Carlo draw

Monte-Carlo validation

RESULTS

Variables	Sentinal- 2/MSI	Variables	AERONET_OC	
Time of acquisition	20/01/2016 At 10:27:49	Time of acquisition	20/01/2016 At 10:32:50	
Solar Zenith	$\theta_{\rm s}=67.04^{\circ}$	Solar Zenith	$\theta'_{\rm s} = 66.3^{\circ}$	
Solar Azimuth	$\phi_{s} = 164.02^{\circ}$	Solar Azimuth	$\phi_{s} = 168.0^{\circ}$	
Viewing Zenith	$\theta_v = 5.28^\circ$	Viewing Zenith	$\theta'_{v} = 40^{\circ}$	
Viewing Azimuth	$\phi_v = 180.72^{\circ}$	AOT(555)	0.135912	
		Wind speed	4.37872 m/s	

A case study: WaveCIS (24/01/2016)

Variables Sentinal-		Variables	AERONET_OC		
	2/MSI	Time of	24/01/2016		
Time of	24/01/2016	acquisition	At 16:47:47		
acquisition	At 16:49:56	Solar Zenith	$\theta'_{s} = 52.24^{\circ}$		
Solar Zenith	$\theta_{\rm s}=$ 52.6 $^{\circ}$	Solar Azimuth	φ _s = 154.42°		
Solar Azimuth	ϕ_{s} = 153.45°	Viewing Zenith	$\theta'_{v} = 40^{\circ}$		
Viewing Zenith	$\theta_v = 10.45^\circ$	AOT(555)	0.040813		
Viewing Azimuth	$\phi_v = 18.94^{\circ}$	Wind speed	1.891505 m/s		

A case study: WaveCIS (24/01/2016)

A case study: WaveCIS

A case study: WaveCIS

A case study: WaveCIS

S-2 data: from 7/2015 to 9/2016

Stations	Cove Sea prism	Galata	Gloria	HLT	LISC O	MVC O	Palgru nden	Venice
S-2 measures	24	35	45	43	38	31	44	78
Readable	13	24	31	37	19	18	35	41
Used	2	0	0	3	0	0	4	10

Overall mean absolute bias

Overall mean relative bias

Overall mean relative bias: zoom

Conclusions (1)

- Development of a method for the validation of the S2/MSI low radiance values, based on the use of AERONET-OC and 6SV RTM;
- The water-leaving reflectance is deduced from AERONET-OC total reflected radiance observation and injected in 6S;
- Uncertainty estimation validated against Monte-Carlo simulations.

Conclusions (2)

- The bias between MSI/6SV is within the 5% requirement, knowing that :
 - comparisons of 6SV with LibRadTran show that it is slightly too bright due to missing molecules (O4, NO2);

There is room to improve the aerosol type characterization (single scattering albedo and phase function) and spectral interpolation between AERONET-OC and MSI band.

Thanks for your attention