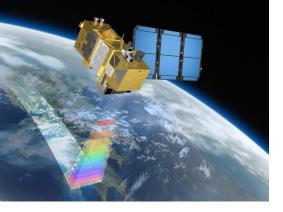


Validation of Sentinel-2 Biophysical Prototype Products using ESA Field Campaigns

Frédéric Baret1, Fernando Camacho2, Beatrice Berthelot3, Richard Fernandes4, Marie Weiss1, Riccardo Duca5

1INRA-EMMAH Avignon, France2 EOLAB, Valencia, Spain3 Magellium, Toulouse, France4CCRS, Otawa, Canada5ESA/ESTEC, Noordwijk, The Netherlands



Natural Resources Canada

Objectives

 Provide first evaluation of Sentinel2 Level2B potential land biophysical products performances

– LAI

- FAPAR
- CCC (Canopy Chlorophyll Content)
- CWC (Canopy Water Content)
- Propose guidelines for the validation of decametric products
- Propose additional campaigns

Outlook

- Prototype products considered
- Campaigns available
- Simulation of S2 L2a products
- Available ground measurements
- Results
- Conclusion

The prototype products considered

• CFI: Neural-networks trained on radiative transfer model simulations

Baret , F., Weiss, M. and Berthelot, B., 2009. Sentinel-2 MSI Products - WP1152 Algorithm Theoretical Basis Document for product Group B, INRA-EMMAH, Avignon.

Verger, A., Baret, F. and Camacho de Coca, F., 2011. Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: evaluation over an agricultural area with CHRIS/PROBA observations. Remote Sensing of Environment, 115: 415-426.

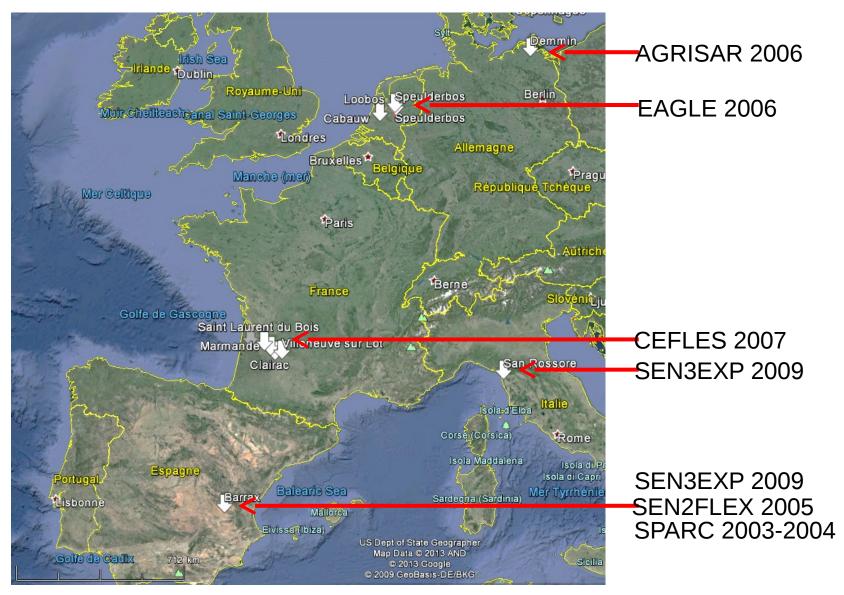
Non-CFI: Vegetation indices calibrated with radiative transfer model simulations

- LAI: NDRE

Canisius, F., Fernandes, R. and Chen, J., 2010. Comparison and evaluation of Medium Resolution Imaging Spectrometer leaf area index products across a range of land use. Remote Sensing of Environment, 114(5): 950-960.

- FAPAR: MGVI

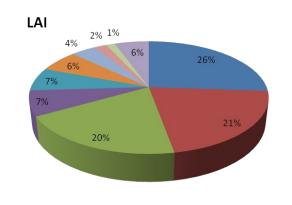
Gobron, N. et al., 2006. Monitoring the photosynthetic activity of vegetation from remote sensing data. Advances in Space Research, 38(10): 2196-2202.


- CCC: MTCI

Dash, J. and Curran, P.J., 2004. The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25(23): 5403-5413.

- CWC: NDWI

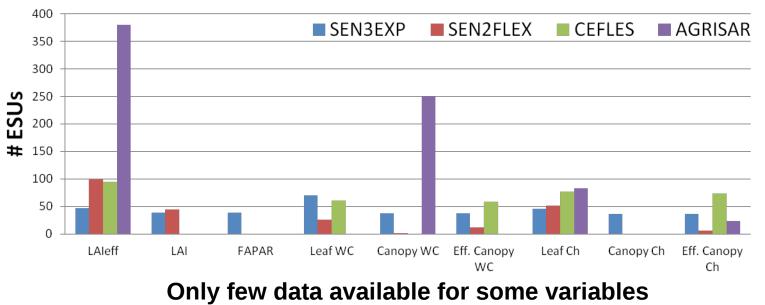
Hunt, E.R.J., 1991. Airborne remote sensing of canopy water thickness scaled from leaf spectrometer data. Int. J. Remote sensing, 12(3): 643-649.


The campaigns available

Available ground measurements

	L	AI, FAPAR, FCo	over	WC	Ch		
CAMPAIGN	DHP	LICOR	AccuPAR	Destructive sampling	SPAD	ССМ	
SEN3EXP	\checkmark	\checkmark	×	\checkmark	~	×	
SEN2FLEX	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	
CEFLEX	\checkmark	\checkmark	×	\checkmark	\checkmark	×	
AGRISAR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	
SPARC	\checkmark	\checkmark	×	\checkmark	×	\checkmark	

Several methodologies, often poor documentation Need for a guidelines!!



Wheat
Corn
Sugar Beet
Rapeseed
Barley
Alfalfa
Onion
Sunflower

Grass / Herbaceous

Other

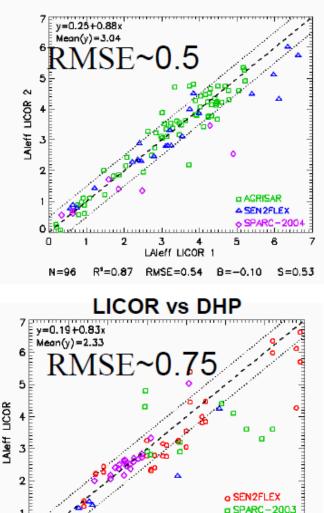
Mostly crops were sampled Need for other experiments!

Difference between effective and actual variables

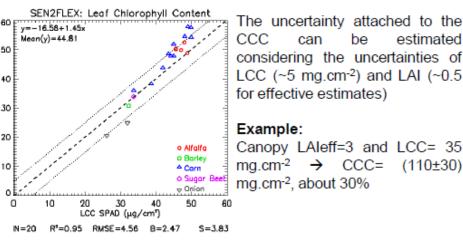
Ground data: checking the methods

50

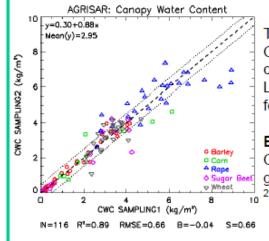
40


30 CCM

10


8 20

("wo/6rf)


LICOR vs LICOR

Leaf Chlorophyll Content: CCM vs SPAD

Canopy Water Content: Sampling1 vs Sampling2

The uncertainty attached to the CWC can be estimated considering the uncertainties of LWC (~50 g·m-2) and LAI (~0.5 for effective estimates).

Example:

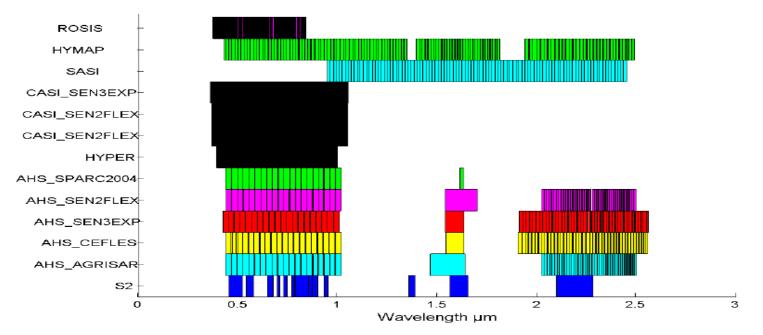
Canopy LAleff=3 and LWC=330 g·m⁻² →CWC of (10±3) x10² g·m⁻ 2, about 30%

4

3

2

A SPARC - 2004


6

7

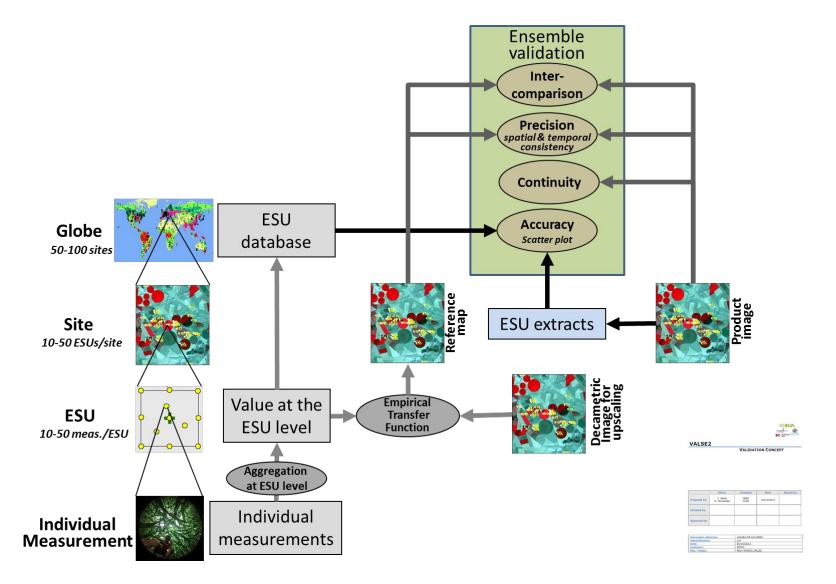
CCRS

5

Simulation of S2 L2a products

- A range of available airborne sensors
- Not always the proper spectral sampling to simulate S2 (red-edge, SWIR)
- Geometric performances not always very good
- Radiometric calibration sometimes questioning
- Atmospheric correction uncertainties
- Use of the S2 simulator to get S2 L2a products

Need for better sensors (APEX, HYPER) ... and actual S2 data!!


Results (1): available database

Ground data well organized with metadata

Plot ESU			Northing	Easting	Extent (m)	Land	Start Date	End Date	LAI							
Plot # Label	#	ESU Label	Coord	Coord	of ESU (diameter)	Cover	(dd/mm/yyyy)	(dd/mm/yyyy)	Method	Nb. Replicatio ns	LAleff	Uncertainty	LAI	Uncertainty		
1	A1	1	A1-E1	39.0472	-2.10851	20	Alfalfa	11/07/2005	11/07/2005	LICOR2	17	0.74	0.09	NA	NA	
1	A1	1	A1-E1	39.0472	-2.10851	20	Alfalfa	11/07/2005	11/07/2005	LICOR3	21	0.74	0.1	NA	NA	
1	A1	1	A1-E1	39.0472	-2.10851	20	Alfalfa	11/07/2005	11/07/2005	DHP	17	0.84	NA	1.08	NA	
1	A1	2	A1-E2	39.0458	-2.11167	20	Alfalfa	11/07/2005	11/07/2005	LICOR2	15	0.63	0.08	NA	NA	
1	A1	2	A1-E2	39.0458	-2.11167	20	Alfalfa	11/07/2005	11/07/2005	LICOR3	21	0.82	0.11	NA	NA	
1	A1	2	A1-E2	39.0458	-2.11167	20	Alfalfa	11/07/2005	11/07/2005	DHP	16	0.89	NA	1.16	NA	
1	A1	3	A1-E3	39.0471	-2.11259	20	Alfalfa	11/07/2005	11/07/2005	LICOR2	15	0.56	0.09	NA	NA	
1	A1	3	A1-E3	39.0471	-2.11259	20	Alfalfa	11/07/2005	11/07/2005	LICOR3	21	0.71	0.08	NA	NA	
1	A1	3	A1-E3	39.0471	-2.11259	20	Alfalfa	11/07/2005	11/07/2005	DHP	16	0.62	NA	0.90	NA	
12	C3	31	C3-E4	39.064	-2.10303	20	Corn	11/07/2005	11/07/2005	LICOR2	24	3.54	0.15	NA	NA	
12	C3	31	C3-E4	39.064	-2.10303	20	Com	11/07/2005	11/07/2005	LICOR3	24	3.05	0.12	NA	NA	•••
12	-C3 -	31	C3-E4	39.064	-2.10303	• 20•	Corn	11/07/2005	11/07/2005	DHP	14	4 • •	• NA	9.76	• • •NA	[
12	C3	32	C3-E5	39.0646	-2.10339	20	Corn	11/07/2005	11/07/2005	DHP	10	5.4	NA	9.15	NA	

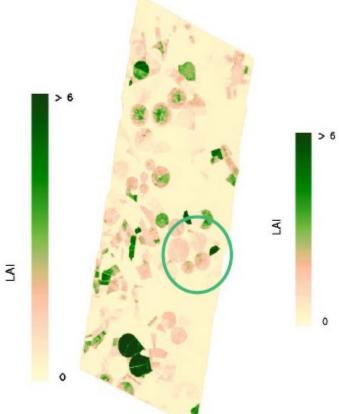
• Airb		Number of flig	hts/intruments		Number of validation points	2 L2a well	
	SPARC	2003	ROSIS (2)	HYMAP (4)		25	
orga	SPARC	2004	AHS (15)			22	
J	SEN2FLEX	2005	AHS (5)	CASI (7)		100	
	AGRISAR	2006	AHS (34)	CASI (18)		84	
	EAGLE	2006	AHS	CASI			
	CEFLES	2007	AHS (70)	HYPER (2)		164	
	SEN3EXP-B	2009	AHS (20)	CASI (19)	SASI (15)	60	
	SEN3EXP-SR	2009	AHS (17)	CASI (15)	SASI (15)	26	9

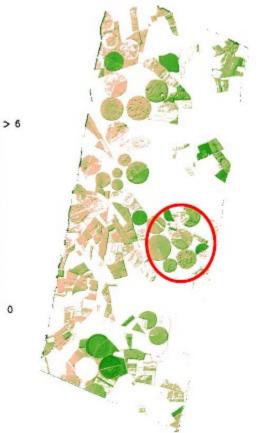
Results(2): methods for validation

Baret , F. and Fernandes, R., 2012. Validation Concept, European Space1Agency,

Results(3.1): LAI-AHS

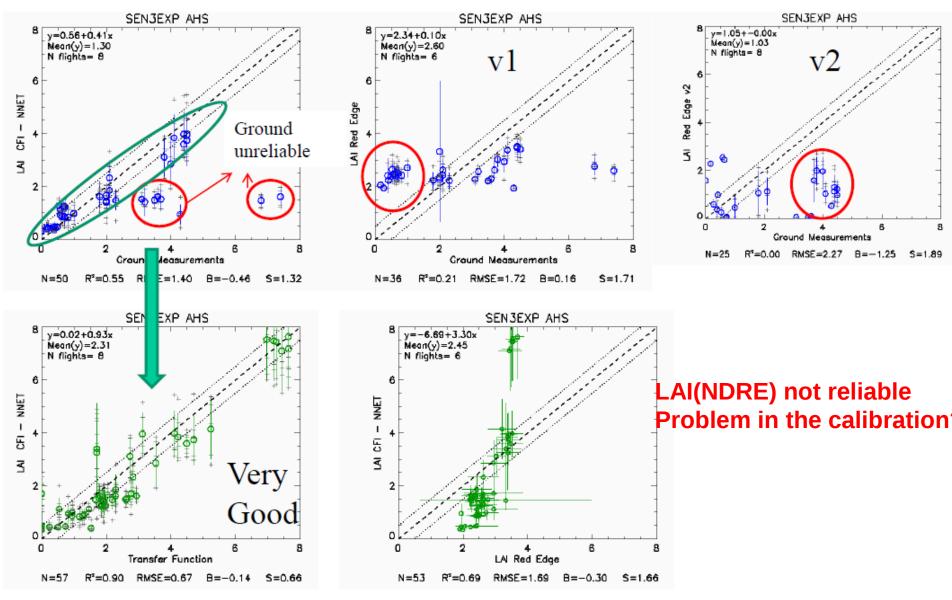
CFI

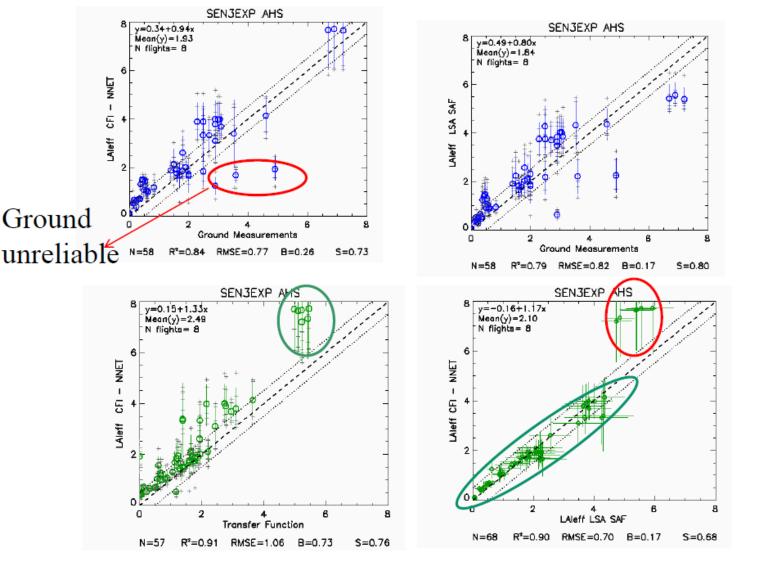

SENJEXP CFI-NNET AHS 090622 1004Z_P02AD


CCRS v1

SENJEXP LAI RedEdge v1 AHS 090622 1004Z_P02AD

v2




Large discrepancies!!

11/15

Results(3.2): LAI-AHS

Results(3.3): LAI-AHS / LSA SAF

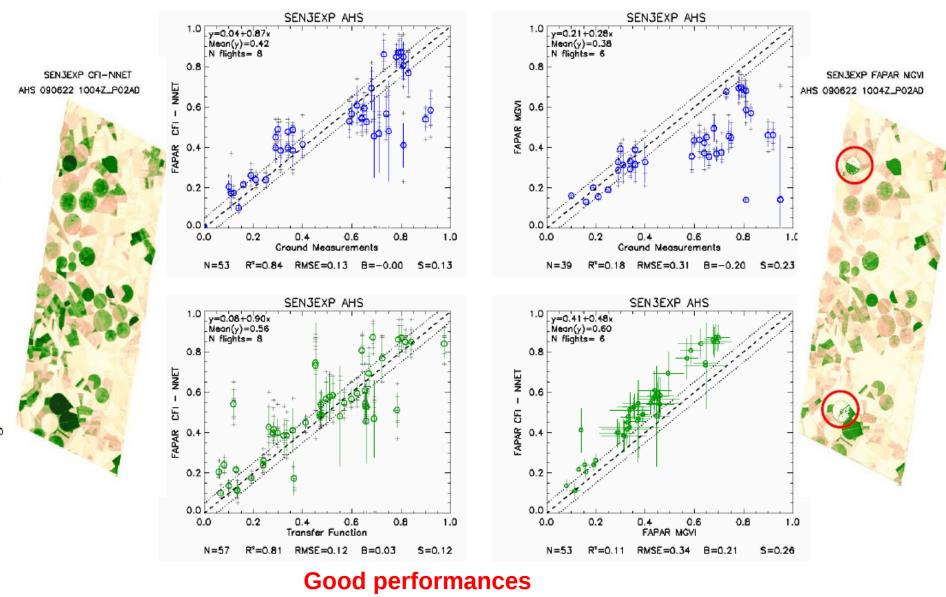
Very good consistency with LSA SAF Question for the high LAI values

13/15

Results(3.4): FAPAR

SENJEXP FAPAR MCVI AHS 090622 1004Z_P02AD

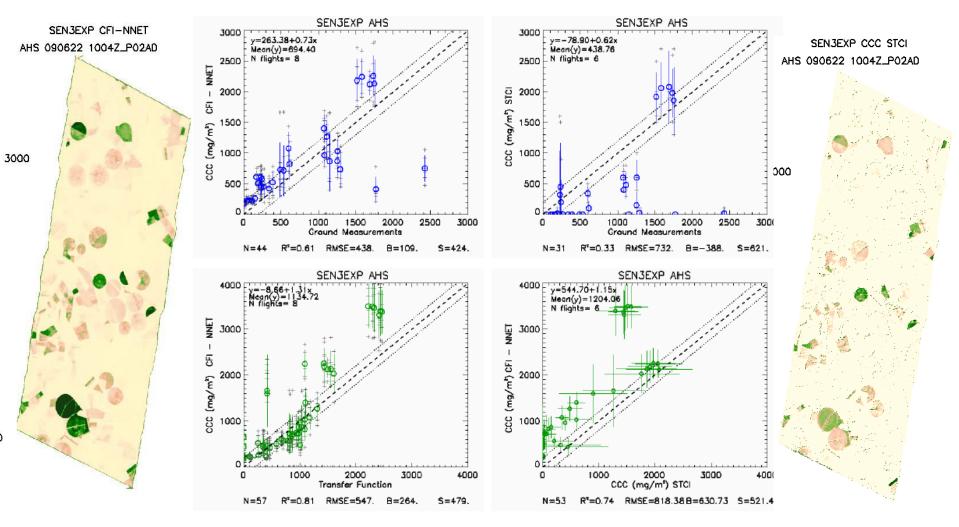
SENJEXP CFI-NNET AHS 090622 1004Z_P02AD


FAPAR

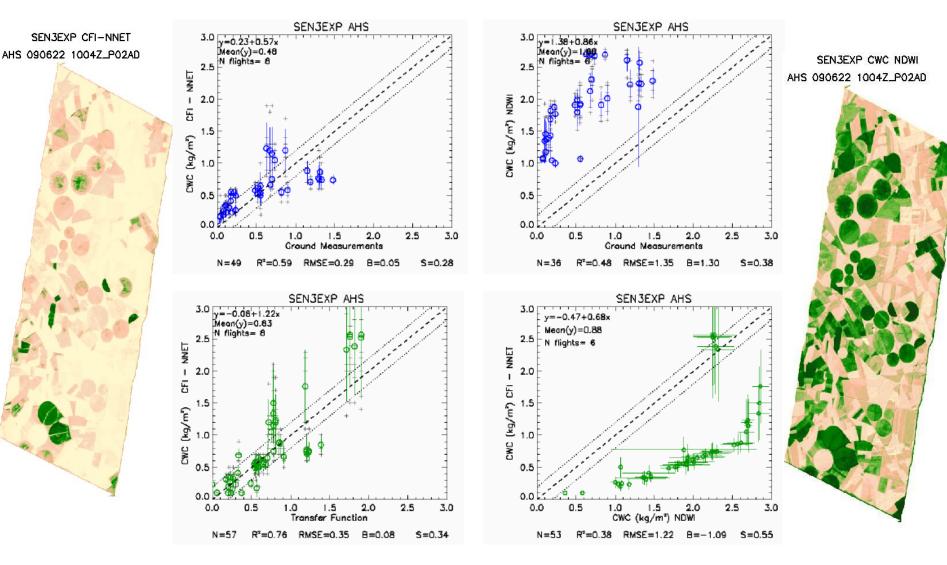
FAPAR

٥

Very good spatial consistency Some tuning for MGVI(S2)


Results(3.5): FAPAR

Some underestimation for MGVI(S2)


15/15

Results(3.6): CCC

Relatively Good performances for CFI Some inconsistencies for MTCI: calibration problem?

Results(3.7): CWC

Relatively Good performances for CFI Some inconsistencies for NDWI: calibration problem?

Conclusions

Organizing validation experiments

- Need proper guidelines for ground measurements
- Devices, protocols, sampling, processing
- A guideline was proposed
- Difficulties in getting proper S2 simulations from airborne campaigns
- Geometric uncertainties, radiometric calibration, atmospheric correction, spectral sampling ...
- As a result only few campaigns have been exploited
- Need additional campaigns (forests, with the dynamics!)
- A campaign was completed in June-September over the Hardth Forest (Mulhouse)

• S2 CFI algorithm shows potentials

- Needs further validation including over simulated 3D scenes
- Non CFI (spectral indices) need probably a better calibration
- Will probably need fine tuning when actual S2 will be available
- Application to other sensors (Landsat8, DMC, Rapide-eye ...)
- Need compositing/fusion algorithms to fully exploit the temporal dimension
- Need for specific algorithms for LAI, CCC and CWC exploiting the knowledge on the landcover