

INNOVATIVE SOLUTIONS for a safer, better world

Evaluation of satellite-based snow data for estimating SWE and SCA for water resource applications

25 2011

Carrie M. Vuyovich^{1,2} Jennifer M. Jacobs² Steven F. Daly¹ Elias J. Deeb ¹ Steven F. Newman¹ Blaine F. Morriss¹ Elke Ochs¹

¹ ERDC/CRREL ² University of New Hampshire

Motivation

Objective: To evaluate satellite SWE products across multiple regions and over time at a watershed scale for use in water resource applications.

Watershed analysis:

- Allow independent comparison of watershed SWE volumes to discharge
- Eliminates need to reproject or re-grid

Methodology

National comparison

- Compared SWE estimates by 2100 HUC8 watersheds across the U.S.
 - ► SNODAS, AMSR-E and SSM/I
 - ▶ 2004 2011
 - Statistical comparison of peak SWE and temporal trends
 - Analyzed by elevation and forest cover
- Statistics:
 - ► Average, Maximum, Minimum
 - ► Difference in annual max
 - ► Correlation
 - ► Spearman's rank-order
 - Nash-Sutcliffe efficiency

HAMPSHIRE

Methodology

Regional comparison:

- Water balance analysis
 - Hydro-Climatic Data Network (HCDN) reference basin dataset used to identify watersheds with minimal human impacts.

$R = SWE_{max} + P - ET - GW \pm \Delta SM$

- Where SWE_{max} is max annual
- R, P and ET are the total volumes, March June
- GW is the loss to deep groundwater
- ΔSM is the change in soil moisture over analysis period
- Snow Extent analysis
 - MOD10A1, processed to filter clouds
 - Compared total basin SE to SWE during melt period

Jew Hampshire

National Comparison results Passive microwave and SNODAS SWE by HUC8

SNODAS - AMSR-E

Correlations of annual maximum SWE for each HUC8. Hatched area shows regions with >20% forest fraction or > 200 mm annual maximum SWE.

Conclusions:

- Best comparison in areas with < 20% forest cover with an average annual maximum SWE < 200 mm
 - Good agreement in the northern Great Plains and southern Rockies regions

 \mathbb{R}^2

High: 1

ow · 0

Comparison of passive microwave and SNODAS SWE by HUC8

Nash-Sutcliffe Efficiency measure:

$$E = 1 - \frac{\sum_{t=1}^{T} (Q_o^t - Q_m^t)^2}{\sum_{t=1}^{T} (Q_o^t - \overline{Q_o})^2}$$

SNODAS - AMSR-E

SNODAS - SSM/I

- Comparison of weekly time series show good agreement even in regions where
 passive microwave data does not capture the magnitude of SWE
- Regional Analyses:
 - Great Plains region, differences between SNODAS and passive microwave
 - New England, differences in passive microwave algorithms

Nash-Sutcliffe

High: 1

Low : -1

Differences in Central Plains

SNODAS – AMSR-E Nash-Sutcliffe results overlaid with NOHRSC gamma flight lines

- Lack of observations in the Central Plains region is a likely reason for the differences between the SNODAS data and the passive microwave
- Significant interest in Plains snow due to recent snowmelt driven flood events.

Great Plains Regional Analysis

Objective: Evaluate SWE estimates from the 3 datasets (SNODAS, AMSR-E and SSM/I) through water budget analysis in selected Great Plains basins.

Basin Selection:

• Half of basins within the northern plains region of good agreement, and half in Central Plains region of disagreement between SNODAS and passive microwave.

- Sheyenne River near Cooperstown, ND
- 2. Cannonball River at Breien, ND
- . Moreau River near Whitehorse, SD
- Bad River near Ft. Pierre, SD
- 5. Cheyenne River at Spencer, WY
- 6. White River near Interior, SD
- 7. White River near Oacoma, SD
- 8. Ponca Creek near Verdel, NE
- 9. South Loup River at St. Michael, NE

Example Results

Results

Timing of snowmelt

Timing of Spring runoff typically corresponds to onset of snowmelt. Method: calculated timing difference between start of spring runoff and peak SWE

Results

ERDC

Great Plains Snow Extent Analysis

Objective: Compare basin SWE estimates to total basin SE during melt period Method: Produce daily cloud-free snow extent image and calculate total SE over each basin

Our Solution

- Use 16 days of SCA data (1 scene per day) and exclude FSC < 20%
- Evaluate SCA on a per-pixel basis using only cloud-free pixels
 - ► If the **two most recent** values are snow, output **snow**
 - ► If either is no snow, output **no snow**
 - ► If there are no cloud-free days, output **cloud**
- Mask output based on historical SCA and surface water

Missouri River Basin FSCA

Great Plains Snow Extent Analysis

Great Plains Snow Extent Analysis

Basin	AMSR-E	SSM/I	SNODAS
Sheyenne River near Cooperstown, ND	0.69	0.74	0.55
Cannonball River at Breien, ND	0.58	0.59	0.61
Moreau River near Whitehorse, SD	0.36	0.36	0.25
Bad River near Ft. Pierre, SD	0.38	0.46	0.25
Cheyenne River at Spencer, WY	0.24	0.28	0.06
White River near Interior, SD	0.50	0.56	0.36
White River near Oacoma, SD	0.29	0.35	0.11
Ponca Creek near Verdel, NE	0.24	0.34	0.26
South Loup River at St. Michael, NE	0.33	0.46	0.25
Entire Missouri River Basin	0.79	0.73	0.48

R², total basin SWE and SE during melt period, 2004-2011.

2011 Missouri River Flood

SSM/I SWE on 1st of each month in 2011, compared to historical statistics, 1987-2010.

