

The GOCE gradiometer - instrument status, data processing and product performance

<u>Rune Floberghagen</u>, Michael Fehringer, Daniel Lamarre, Danilo Muzi and Mark Drinkwater

www.esa.int

Observed gravity gradients

- The following plots show gradiometer Level 1b data products from 30 September to 16 November 2009
- Sinc filtered and Hanning windowed to emphasise measurement band (high-pass)
- Gradients are:
 - given in instrument reference frame
 - internally calibrated (i.e. no confrontation with pre-GOCE gravity field information to determine scales, biases, n cprs, etc.)

Observed gravity gradients: U_{xx}

Observed gravity gradients: U_{yy}

Observed gravity gradients: U_{zz}

Observed gravity gradients: U_{xx} - U_{zz}

Observed gravity gradients: U_{xz}

Observed gravity gradients: U_{xy} and U_{yz}

Differences w.r.t. EIGEN5C: Uxx

Differences w.r.t. EIGEN5C: U_{yy}

Differences w.r.t. EIGEN5C: U_{zz}

Differences w.r.t. EIGEN5C: U_{xy} and U_{yz}

GRADIOMETRY Comparison with EGM2008 up to degree/order 250

Change of proof mass angular control about less-sensitive axis

- A very significant 30% improvement has been achieved by not using electrode pairs along the directions of individual gradiometer arms in proof mass angular control
- Conclusion: there was a "noise" introduced using in-line electrodes for angular control; remaining error now in transversal axis

Parameter update for determination of centrifugal accelerations

- Affects the mix of star camera and gradiometer observations
- Implemented in dedicated Kalman filter as part of Level 1 processing

• Trace of gradient tensor in upper measurement band now \sim 20 mE/ \sqrt{Hz}

Differential accelerations

Centrifugal accelerations

Along-track gradients (GRF)

Cross-track gradients (GRF)

Radial gradients (GRF)

Satellite-to-Satellite Tracking Instrument

- Top class orbits: **current POD accuracy is at 1-2 cm level** in each of the three orthogonal directions
- In most cases better than 2 cm 3D RMS
- Rapid science orbits (<1 day latency) are at 3-4 cm accuracy
- Validated by Satellite Laser Ranging to within absolute differences of approximately 2.5 cm

Orbit overlaps

Reduced-dynamic vs. kinematic orbits

POD validation by Satellite Laser Ranging

CONCLUSIONS

- Science data are continuously delivered to ground (1 Hz data rate); no gaps in gradiometer data stream
- Gradiometric observing system (satellite + instrument) performs excellently
- Precise orbit product is top-notch
- Analysis of gradiometer data quality indicates that all mission objectives will be met
- Data from non drag-free periods (commissioning phase, April September) will also be made available (use with care!)