

SPIRE/STRATOS (GNSS-RO) Quality Assessment Summary

Author(s):

Alessandro Piro Task 4 Mission Expert

Approval:

Alessandro Piro Task 4 Lead

Accepted:

Clement Albinet EOP-GMQ EDAP Technical Officer

EDAP.REP.017

Issue: 1.2

10/07/20

AMENDMENT RECORD SHEET

The Amendment Record Sheet below records the history and issue status of this document.

ISSUE	DATE	REASON
1.0	05/02/20	First Issue
1.1	25/03/20	Reviewed Issue
1.2	10/07/20	Updated as per ESA review/comments

TABLE OF CONTENTS

1.	ACRONYMS	3
2.	INTRODUCTION	4
3.	QUALITY ASSESSMENT MATRIX	5
4.	ASSESSMENT OVERVIEW	6
4.1	Product Information	6
4.2	Product Generation	8
4.3	Ancillary Information	9
4.4	Uncertainty Characterisation	10
4.5	Validation	11
5.	DETAILED ASSESSMENT	12
6.	CONCLUSION	25

1. ACRONYMS

AIS	Automatic identification System
GPS Global Positioning System	
GNSS Global Navigation Satellite System	
LT	Lower Troposphere
MEO	Middle Earth Orbit
POD	Precise Orbit Determination
RO	Radio Occultation
RS	Radiosonde

2. INTRODUCTION

SPIRE Global is a data and Analytics Company that designs, builds, tests, operates and collects data from its satellite constellation composed of Lemur-2 satellites. Each of these satellites carry two payloads: STRATOS GPS radio occultation meteorology payload and SENSE AIS payload for ship tracking.

STRATOS is the SPIRE GNSS receiver for remote sensing & precision orbit determination:

- Performs POD (Precise Orbit Determination) using the zenith L1, L2 antenna;
- Performs radio occultation (RO) on high-gain, side-mounted L1, L2 antennas;
- Currently enables atmospheric & ionospheric remote sensing;
- Applications: weather model assimilation of RO, space weather monitoring, ionosphere corrections for navigation, thermospheric density (POD);
- Currently modifying STRATOS for passive bistatic radar (GNSS-R) applications.

STRATOS makes use of GPS occultation measurements to determine temperature, pressure and humidity profiles of Earth's atmosphere for application in operational meteorology.

The instrument consists of GPS receivers to track the signals of several MEO satellites and measure the time delay and bend angle of signals that travel through the atmosphere located in the line of sight of the two spacecraft.

These phase delay measurements due to refraction by the atmosphere can be made from the satellite altitude to very close to the surface leading to precise information on the properties of the atmosphere at an accurate vertical resolution.

GNSS-RO is a technique that provides unique temperature, pressure, and moisture vertical soundings through the atmosphere, similar to the type of data collected by a weather balloon.

The L2 Products provided are representing the "dry" temperature, pressure (~ 6 - 70 km, although climatology dominates above ~50 km), "wet" temperature, pressure, and water vapor pressure (< 6 km), with the following characteristics:

- Vertical sounding resolution: ~100 m
- Along-track resolution: ~200 km
- Across-track resolution: ~1 km
- Accuracy: ~0.5 K
- Vertical resolution: ~5 Pa

3. QUALITY ASSESSMENT MATRIX

Product	Product	Ancillary	Uncertainty	Validation	Кеу
Information	Generation	Information	Characterisation	Validation	Not Assessed
	Sensor Calibration &		Uncertainty		Not Assessable
Product Details	Characterisation	Product Flags	Characterisation Method	Reference Data Representativeness	Basic
	Pre-Flight				Intermediate
	Sonsor Calibration &				Good
Availability &	Characterisation	Additional	Uncertainty Sources	Reference Data	Excellent
Accessibility	Post-Launch	Information Included		Information Not Public	
Product Format	Retrieval Algorithm Method		Uncertainty Values Provided	Validation Method	
User Documentation	Retrieval Algorithm Tuning		Geolocation Uncertainty	Validation Results	
Metrological Traceability Documentation	Additional Processing				

Figure 1 – SPIRE Product Quality Evaluation Matrix.

4. ASSESSMENT OVERVIEW

4.1 **Product Information**

Product Details		
Product Name	GNSS-RO	
Sensor Name	STRATOS (GNSS-RO)	
Sensor Type	GPS receivers to track the signals of several MEO satellites	
Mission Type	Constellation ~80 Nanosatellites	
Mission Orbit	Multiple Orbits at c.a. 530 km of altitude	
Product Version Number	v1	
Product ID	atmPrf	
Processing level of product	Level-2	
Measured Quantity Name	Bending Angle, Temperature, Refractivity	
Measured Quantity Units	Degrees, K.	
Stated Measurement Quality	e.g. stated 2% radiometric accuracy	
Spatial Resolution	c.a. 100 meters in altitude	
Spatial Coverage	Atmospheric Profiles – Global Coverage	
Temporal Resolution	c.a. 0.3 sec.	
Temporal Coverage	1 month of data	
Point of Contact	SPIRE Global	
Product locator (DOI/URL)	https://www.spire.com/en/spire/about-spire-global	
Conditions for access and use	Commercial Data, conditions defined by contract	
Limitations on public access	N/A (conditions defined by contract)	
Product Abstract	Ref. to <u>https://cdaac-</u> <u>www.cosmic.ucar.edu/cdaac/cgi_bin/fileFormats.cgi?type=atmPrf</u>	

Availability & Accessibility		
Compliant with FAIR principles	Yes	
Data Management Plan	Not available to users.	
Availability Status	There is no catalogue available online, but data can be requested through an API. Data availability defined by contract.	

Product Format		
Product File Format netCDF4 and .bufr - Ref. to Spire Product Specifications		
Metadata Conventions	e.g. v1	
Analysis Ready Data?	No	

User Documentation			
Document	Reference	QA4ECV Compliant	
Product User Guide	Spire Level 2 Product README File	Partially	
ATBD	Spire Level 2 Algorithm Theoretical Baseline Document v1.0	Yes	

	Metrological Traceability Documentation
Document Reference	N/A
Traceability Chain / Uncertainty Tree Diagram Available	NO

4.2 **Product Generation**

Sensor Calibration & Characterisation – Pre-Flight		
Summary	Receiver Qualified, but no details available.	
References	 (Jeroen Cappaert) Building, Deploying and Operating a Cubesat Constellation - Exploring the Less Obvious Reasons Space is Hard, 32nd AIAA/USU Conference on Small Satellites, August 4-9 2018. (Adriian Perez Portero, Ruiz De Azúa Ortega, Juan AdriánMés informacióMés informació; Camps Carmona, Adriano JoséMés informacióMés informació; Muñoz Martin, Joan FrancescMés informacióMés informació) Design, Implementation and Verification of Cubesat Systemsfor Earth Observation; 2019-05-26 (http://hdl.handle.net/2117/134850) 	

Sensor Calibration & Characterisation – Post-Launch		
Summary	GNSS phase measurement = no drift, no calibration, no inter-instrument biases. Anyway, in the processing chain there is Open-loop tracking of both setting and rising RO events	
References	• Seizing Opportunity: Spire's CubeSat Constellation of GNSS, AIS, and ADS-B Sensors (Dallas Masters, 107-Masters-Spire_GNSS_AIS_ADS-B.pdf), Stanford PNT Symposium, 2018-11-08	

Retrieval Algorithm Method (Include for Level 2 Products Only)			
Summary	Geometric optical (GO) processing is the first stage of the RO data processing. It serves for the initial evaluation of the occultation parameters and smooth models of the Doppler frequency shift and phase excess. Ionospheric Correction and bend angle determination. Abel Transformation and refractivity determination. Determination of atmospheric products (model inversion).		
References	 Spire Level 2 Processing Input_Output Data Definition v1.0 Spire Level 2 Algorithm Theoretical Baseline Document 		

Retrieval Algorithm Tuning (Include for Level 2 Products Only)			
Summary	Non-spherical symmetry Turbulence, strong convection, noise Super- refraction conditions		
References	 (Lidia Cucurull) Global Positioning System (GPS) Radio Occultation (RO) Data Assimilation, GSI/EnKF Community Tutorial, 11-14 August 2015 Seizing Opportunity: Spire's CubeSat Constellation of GNSS, AIS, and ADS-B Sensors, (I07-Masters-Spire_GNSS_AIS_ADS-B.pdf) 		

Additional Processing		
Description	N/A	
Reference	N/A	

4.3 Ancillary Information

Product Flags		
Product Flag Documentation	Product with Bad Flag	
Comprehensiveness of Flags	Yes	

Ancillary Data		
Ancillary Data Documentation	N/A	
Comprehensiveness of Data	N/A	
Uncertainty Quantified	NO	

4.4 Uncertainty Characterisation

Uncertainty Characterisation Method			
Summary	N/A		
Reference	N/A		

Uncertainty Sources Included		
Summary	There is no uncertainty source included.	
Reference	N/A	

Uncertainty Values Provided		
Summary	The bending angle standard deviation is provided inside the product	
Reference	Ref. to "Bend_ang_stdv" parameter Spire Product Specifications v1.0 document	
Analysis Ready Data?	Νο	

Geolocation Uncertainty		
Summary	N/A	
Reference	N/A	

4.5 Validation

Validation Activity #1					
Independently Assessed?	Yes				
	Reference Data Representativeness				
Summary	Dataset has been defined by contract with Spire and it is a month of data (profiles) distributed over the globe. It represents a very small representative dataset, just to assess a high level and preliminary quality assessment.				
Reference	1 month SPIRE data (2019-05-26/2019-06-25)				
	Reference Data Quality & Suitability				
Summary	In the core region (stratosphere), Spire data is highly consistent with IGRA radiosondes.				
Reference	 This note (Neill Bowler) Initial assessment of GNSS-RO data from Spire, IROWG19 (Christian Marquardt) Assessment of Spire Commercial RO Data 				
	Validation Method				
Summary	Two verifications have been considered: - Intercomparison with collocated data from IGRA Network - Review of literature and presented studies.				
Reference	 IGRA Network Data (Neill Bowler) Initial assessment of GNSS-RO data from Spire (Christian Marquardt) Assessment of Spire Commercial RO Data 				
	Validation Results				
Summary	 In the core region (stratosphere), Spire data is highly consistent with IGRA radiosondes; the particular, this occur for specific range of altitude where data are not always comparable: 0 - 5 Km - Near 5 km (where Moisture is significant); 12 - 13 Km - Tropopause; 35 - 40 Km - Upper Stratosphere. 				
Reference	 (Dallas Masters) Status and Plans for Spire's Growing Commercial Constellation of GNSS Science CubeSats (Neill Bowler) Initial assessment of GNSS-RO data from Spire (Christian Marquardt) Assessment of Spire Commercial RO Data (Vu Nguyen) Space Weather Observations from Spire's Growing CubeSat Constellation 				

5. DETAILED ASSESSMENT

In the present study IGRA data have been compared with SPIRE data.

The analysis has been performed using one month of SPIRE data (2019-05-26/2019-06-25) and IGRA 2019 radiosonde profiles. The colocation of profiles to be compared have been realized considering from each IGRA station (Lat/Lon) a 300 km square and SPIRE data inside the square have been compared with IGRA data, with a time constraint of \pm 3h.

Figure 2: IGRA data (blue) and Spire data (red)

In a square of 300 Km with a time constraint of \pm 3h, 363 products have been compared (Figure 2).

5.1 ALTITUDE-TEMPERATURE COMPARISON

Spire data files are organized in .netcdf format as we can see in the below figure.

Panoply: Panoply — Sources File Edit View History Bookmarks Plot Window Help		
Create Plot Combine Plot Open Dataset		
Name	Long Name	Type
# Statement 2019-05-27T21-26-38Z.2226020.091.G30.nc	atmPrf_2019-05-27T21-26-38Z.2226020.091.G30.nc	Local File
🤤 azim	Azimuth of perigee plane at occultation point with respect to North	-
Azim	Azimuth angle of the occultation plane with respect to North	1D
🗢 bad	Badness flag. 1 = Profile flunked quality control, 0 = Profile passed QC	-
Bend_ang	Raw (unoptimized) bending angle	1D
Bend_ang_stdv	Raw bending angle standard deviation	1D
bScore	Badness score [bScore <35 == good]	-
curv	The X, Y, and Z offset of the center of sphericity from the center of mass of the Earth	1D
🤤 errstr	OK or error message	-
Impact_parm	Impact parameter from center of curvature	1D
🗢 Lat	Latitude of perigee point	1D
🗢 lat	Latitude of perigee point at occultation point	-
🗢 Lon	Longitude of perigee point	1D
🗢 Ion	Longitude of perigee point at occultation point	-
MSL_alt	Mean sea level altitude	1D
Opt_bend_ang	Optimized bending angle	1D
Opt_bend_ang_stdv	Optimized bending angle standard deviation	1D
Pres	Dry pressure	1D
R_GNSS	Transmitter location	2D
R_LEO	Receiver location	2D
🗢 Ref	Refractivity	1D
rfict	Local curvature radius of the reference ellipsoid	-
rgeoid	Height of the geoid above the reference ellipsoid	-
<pre>start_time</pre>	Starting time for the occultation	-
stop_time	Ending time for the occultation	-
Temp	Dry temperature	1D

Figure 3: Spire data structure (.netcdf format)

IGRA data files are organized in file ".txt" (Figure 4).

Each column represents a measurement (Temperature, Pressure, Altitude etc...)

AFM000409	948-data - Notepad				
File Edit For	rmat View Help				
#AFM0004094	48 2018 01 01 00 2300	96 ncdc-gts	ncdc-gts	345500	692167
21 -9999 8	32200B-9999 -1B-9999	160 310	21		
20 - 9999 8	31800 -9999 20B-9999	180 -9999	-9999		
20 - 9999 8	31500 -9999 20B-9999	180 -9999	-9999		
20 - 9999 7	79100 -9999 48B-9999	250 -9999	-9999		
20 - 9999 7	78900 -9999 -9999 -9999	-9999 210	51		
20 -9999 7	75000 -9999 -9999 -9999	-9999 0	0		
20 -9999 7	72900 -9999 16B-9999	240 -9999	-9999		
10 -9999 7	70000 3087B -9B-9999	230 345	26		
20 -9999 6	57700 -9999 -9999 -9999	-9999 310	15		
20 -9999 6	54900 -9999 -9999 -9999	-9999 345	57		
20 -9999 6	52900 -9999 -79B-9999	210 330	77		
20 - 9999 5	57800 -9999 -9999 -9999	-9999 335	159		
20 -9999 5	54600 -9999 -135B-9999	240 -9999	-9999		
10 -9999 5	50000 5680B -195B-9999	190 335	180		
20 - 9999 4	14800 -9999 -263B-9999	160 -9999	-9999		
10 -9999 4	40000 7300B -311B-9999	220 325	257		
20 -9999 3	39900 -9999 -9999 -9999	-9999 325	262		
20 -9999 3	39100 -9999 -321B-9999	230 -9999	-9999		
20 -9999 3	33600 -9999 -9999 -9999	-9999 335	221		
20 -9999 3	33200 -9999 -425B-9999	120 -9999	-9999		
20 -9999 3	31400 -9999 -9999 -9999	-9999 330	226		
20 -9999 3	30800 -9999 -459B-9999	130 -9999	-9999		
10 -9999 3	30000 9270B -449B-9999	180 330	319		
20 -9999 2	28900 -9999 -9999 -9999	-9999 330	386		
20 -9999 2	25700 -9999 -9999 -9999	-9999 325	442		
10 -9999 2	25000 10470B -501B-9999	200 330	427		
20 -9999 2	73200 -9999 -9999 -9999	-9999 335	396		

Figure 4: IGRA data structure

A python algorithm has been made to read and compare IGRA/Spire data.

In the figure 5, the profiles of Spire altitude [Km] / temperature [K] using direct altitude measurement (blue dots) and altitude obtained from pressure measurement (green dots) were plot, together with the altitude [Km] / temperature [K] for an IGRA station. Red dots represent IGRA data, blue dots SPIRE data and green dots represent SPIRE altitude obtained from pressure data.

As we can see in figure 5, there is a bias between SPIRE Altitude/Temperature and SPIRE Altitude (from Pressure)/Temperature. To compare SPIRE/IGRA data, the SPIRE altitude obtained from pressure has been used (figure 6).

Figure 5: Temperature compare IGRA/SPIRE with altitude obtained from pressure

Under 5 Km of altitude, the temperatures are not comparable. The figures have then been plotted from 5 Km of altitude (figure 6): this is expected since the moisture becomes significant.

Figure 6: SPIRE data (green / time 11:01) compared to IGRA data (blue / time 12:05)

Since data acquisition measurement between IGRA and Spire data have been done at different altitude scale, in order to perform an intercomparison IGRA/SPIRE temperature, for each IGRA altitude and temperature measurement $h(T_{igra})$, we selected the minimum Spire altitude measurement $h(T_{spire})$ in a range of 100 metres:

$$h(T_{spire}) \le min(h(T_{igra}) + 100)$$

Figure 7: shows different temperature time acquisition between IGRA (12:05) and Spire (11:01).

For the same altitude has been calculate the difference between temperatures (IGRA/SPIRE) and histogram has been plotted (fig. 8). Considering the error as Gaussian, mean (dash green line) and sigma (blue dash lines) has been calculated (fig. 9).

Figure 9: Difference of Temperature for IGRA/SPIRE data (2019/06/12 Lat: 56.0858, Lon:-171.5768)

Plot below (fig. 10) shows the comparison between IGRA/SPIRE pressures for the same IGRA station.

171.5768)

In the next page are reported Temperature, Difference Temperature and histogram for 6 IGRA/SPIRE data.

Difference temperature plots below shows how for determinate altitude the difference of temperature is not in the range of -/+sigma.

Difference Temperature IGRA/SPIRE date:2019/05/27, Lat: 54.523 Lon: -164.246

Temperature [K] Acquisition time IGRA/SPIRE [hh:mm] 11:02

Histogram of difference Temperature IGRA/SPIRE date:2019/05/27, Lat: 54.523 Lon: -164.246

Temperature Compare IGRA/SPIRE date:2019/06/09, Lat: 62.246 Lon: -151.176

Difference Temperature IGRA/SPIRE date:2019/06/09, Lat: 62.246 Lon: -151.176

Temperature [K] Acquisition time IGRA/SPIRE [hh:mm] 11:04

Histogram of difference Temperature IGRA/SPIRE date:2019/06/09, Lat: 62.246 Lon: -151.176

Temperature Compare IGRA/SPIRE date:2019/06/15, Lat: 60.966 Lon: -149.174

Temperature [K] Acquisition time IGRA/SPIRE [hh:mm] 11:02

Difference Temperature IGRA/SPIRE date:2019/06/15, Lat: 60.966 Lon: -149.174

Histogram of difference Temperature IGRA/SPIRE date:2019/06/15, Lat: 60.966 Lon: -149.174

Temperature Compare IGRA/SPIRE date:2019/06/16, Lat: 60.211 Lon: -160.407

Difference Temperature IGRA/SPIRE date:2019/06/16, Lat: 60.211 Lon: -160.407

Temperature Compare IGRA/SPIRE date:2019/06/10, Lat: 59.969 Lon: -149.098

Temperature [K] Acquisition time IGRA/SPIRE [hh:mm] 11:01

Histogram of difference Temperature IGRA/SPIRE date:2019/06/10, Lat: 59.969 Lon: -149.098

Temperature compare IGRA/SPIRE date:2019/06/03, Lat: 59.169 Lon: -154.967

Temperature [K] Acquisition time IGRA/SPIRE [hh:mm] 11:01

Histogram of difference Temperature IGRA/SPIRE date:2019/06/03, Lat: 59.169 Lon: -154.967

Figure 16: Temperature, Difference Temperature and histogram for collocated point [Lat: 59.169 Lon: -154.967] IGRA/SPIRE data

From the above plots we can see the comparison of SPIRE data with IGRA radiosonde.

Difference of temperatures between these data in function of altitude shows how the error is in the range of the average temperature +/- the standard deviation, with some exceptions.

6. CONCLUSION

In the core region (stratosphere), Spire data is highly consistent with IGRA radiosondes; the particular, this occur for specific range of altitude where data are not always comparable:

- 0 5 km, in particular close to 5 km (where moisture is significant);
- 12 13 Km Tropopause;
- 35 40 Km Upper Stratosphere;
- A positive bias has been measured (0.5 1 K);
- In the upper troposphere to mid-stratosphere, Spire data is highly consistent;
- In the troposphere, measurements penetrate close to the ground, with systematic and random uncertainties;
- Differences between RO in the troposphere, need to be better understood.

This is also in agreement with literature referenced.

The deviation in Upper Stratosphere could be associated to the inversion errors associated with the observational noise.

The lower troposphere is important for understanding the physics of convective cloud systems, precipitation, and the hydrological cycle.

The deviation in tropopause are probably related to RS data have vertical resolution ranging from a few hundred metres to about a kilometre, and this is also considered as a limitation for tropopause (GNSS RO technique derives atmospheric profiles with a high vertical resolution and makes the spatial distribution of the data more homogenous).

The deviation in LT are fundamentally related:

- to moisture, that impacts the bending angle (in lower troposphere);
- to atmospheric propagation effects, such as the super-refraction;
- to contribution from the horizontal gradients of refractivity to a single bending angle.

In general, when there is no moisture in the atmosphere, the profiles of pressure and temperature retrieved from refractivity correspond to the real atmospheric values. But when the moisture in the atmosphere increases, the retrieval of pressure and temperature could be affected: in particular the retrieved temperature could be lower (cooler) than the real temperature of the atmosphere since the dry molecules would compensate the same refractivity produced by the real atmosphere.

The moisture contribution to refractivity is consistent in middle and lower troposphere: for this reason, an independent knowledge of temperature, pressure or water vapour pressure is important for the correct estimation the other two parameters. Usually:

- temperature is given by an external source (model) and resolved for pressure and moisture; or
- parameters are derived by a-priori model and optimal estimation is done.

Finally, Radio Occultation data are presenting many benefits:

- All weather-minimally affected by aerosols, clouds or precipitation;
- High accuracy (equivalent to ~ 0.1 Kelvin from ~7-25 km);
- Equivalent accuracy over ocean than over land;
- No instrument drift, no need for calibration;
- No satellite-to-satellite measurement bias;
- Observations can be used in numerical weather predictions without a bias correction scheme.