

Deliverable: WP4000:

“SYSTEM SPECIFICATION AND
ARCHITECTURAL DESIGN”

15th March 2007

GOCE User Toolbox Specifications (GUTS)
DEVELOPMENT OF ALGORITHMS FOR THE GENERATION OF A GOCE USER TOOLBOX AND

AN ABSOLUTE DYNAMIC TOPOGRAPHY PRODUCT

WP4000: System Specification and

Architectural Design

Page 2 of 50

Ref:
ESA/XGCE-DTEX-EOPS-SW-04-0001 “GOCE User Toolbox Specifications (GUTS)”
Coordinator: Per Knudsen (DNSC)

Deliverable: WP4000: “System Specification and Architectural Design”
Responsible partner: Reading eScience Centre
Prepared by Dan Bretherton

DOCUMENT CHANGE LOG
Rev. Date Sections

modified
Comments Changed by

1 6th December
2006

N/A Draft version 2.7 submitted to ESA
for review

Dan Bretherton
& Keith Haines

2 15th March
2007

N/A Final version 2.8 revised according to
ESA review

Dan Bretherton
& Keith Haines

WP4000: System Specification and

Architectural Design

Page 3 of 50

List of Contents

1. INTRODUCTION ..4
2. OVERVIEW OF GUT DESIGN ..5
3. TOOLBOX COMPONENTS ...6

3.1. Computationally Expensive Tasks..6
3.2. Management of Internal data store ...6
3.3. Management of High Level Workflows ...6
3.4. Command Interface ..7
3.5. Graphical Components ...7

4. RE-USE OF EXISTING SOFTWARE ..7
5. USER INTERFACES...8

5.1. Command Interface ..8
5.1.1. Introduction ..8
5.1.2. Python language elements used in GUT...8
5.1.3. Full specification of command interface ..11

GUT Package..11
Main Object ..11
Spatial Object ...12
Spectral Object ...14
Covar Object...16
Filter Object..16

5.2. Graphical User Interface (GUI) ..16
5.3. Application Program Interface (API)..17

6. SPECIFICATION OF INPUT AND OUTPUT..17
6.1. Introduction ..17
6.2. Data exports..18
6.3. Data imports ...19
6.4. Reports and logs ...21

7. SPECIFICATION OF LOGICAL DATA STRUCTURES..21
Main Object ..21
Spatial Object ...22
Spectral Object ...25
Covar Object...26
Filter Object..27

8. LOGICAL MODEL OF SYSTEM FUNCTIONALITY.. 27
8.1. Processing Units ...28
8.2. Scientific Data Flows..35

9. LIST OF ABBREVIATIONS...45
10. REFERENCES ...45
11. Appendix: Using the Command Interface ...46

WP4000: System Specification and

Architectural Design

Page 4 of 50

APPLICABLE AND REFERENCE DOCUMENTS
1. XGCE-DTEX-EOPS-SW-04-0001, Issue 1.3, Statement of Work
2. XGCE-DTEX-EOPS-SW-04-0001: Development of Algorithms for the Generation of a GOCE User Toolbox and

an Absolute Dynamic Topography Product. Proposal in Response to ESA Request for Quotation. Issue 6, 14
December 2005.

3. GO-ID-HPF-GS-0041: Product Specification for L2 Products and Auxiliary Data Products, Issue 5.0, 28.08.2006
4. GO-TN-HPF-GS-0111: GOCE Standards. Issue: 2, 22 / 09 / 2006.
5. GO-MA-HPF-GS-0110: GOCE Level 2 Data Handbook, Issue 3, 22 / 09 / 2006.
6. GOCE User Toolbox : User Toolbox Requirement Document.
7. Toolbox Functionality and Algorithm Specification Document, Revision 2, February 2007

1. INTRODUCTION
The GOCE User Toolbox Specification (GUTS) project has been inter-comparing algorithms for translation of GOCE
High level Processing Facility (HPF) data for use in the fields of oceanography and solid Earth science. The toolbox
will be composed of a collection of executable tools, sets of auxiliary data and a user interface, with dedicated plug-in
points to allow for easy integration of new algorithms, new data and the GOCE HPF product files. The architecture of
the toolbox will allow any user to substitute their own auxiliary data or to integrate extra modules to extend the toolbox
for individual applications. The ancillary data will include mean sea surface height (MSSH) data from altimetry and
dynamic topography (DT) data from models or other oceanographic measurements, as well as a-priori non-GOCE geoid
information. Good documentation will be necessary in order to facilitate communication between the various user
communities. The software will be developed on an Open Source basis, to allow the flexible use and development of
the toolbox by the science community.
The system specification and architectural design for GUTS include the following information:
- Definition of all system external interfaces and formats.
- Development of logical model of system functions.
- Complete specification of output content: data products, metadata, reports and logs.

Within this project the designs and specifications are limited to a logical description of the toolbox architecture and data
flow, and do not include software design details. The purpose of this Work Package (WP4000) has been to provide the
link between scientists in the GUTS team and the software engineers who will implement the toolbox. The emphasis of
this report is on the design and operation of the main user interface and the specification of the main software building
blocks. The information and the language used in this report is deliberately aimed at scientists rather than software
engineers, because it has been important for the GUTS team as a whole to participate in the development of these
design specifications during the GUTS project. For this reason, common software engineering terminology and
diagramming techniques such as the Unified Modelling Language (UML) are not used. These will be more appropriate
for use in the software architectural design document. Instead, the information here is presented in a way that closely
matches the specification of the scientific work-flows and functional algorithms as they are presented in the WP3000
report. It is particularly important that the proposed mode of interaction with the toolbox is fully understood and agreed
by scientists, because the users of the toolbox will themselves be scientists.

The GUT design is described in the following sections, which are written as though GUT already exists in order to
simplify the language. The first release of GUT will not include the ability to use the error covariance matrix of the
GOCE spherical harmonic coefficients in the calculation of geoid or MDT products. This is because the algorithms to
do so have not been researched, and because the computational and storage requirements of this functionality are too
high for most desktop computers. However, it is anticipated that once an agreed and tested algorithm is available for
using the covariances efficiently, the covariance calculations required will, if feasible, be included in future versions of
GUT. Provision for the error covariance matrix and associated error products is included in the design presented in this
report.

WP4000: System Specification and

Architectural Design

Page 5 of 50

2. OVERVIEW OF GUT DESIGN
This section gives an overview of the toolbox design, with justifications for the key design decisions. The core
scientific algorithms are implemented as C and Fortran functions, mostly derived from existing software with the
minimum amount of modification. All the existing software being considered for use in GUT at the time of writing is
written in Fortran, but the capability for incorporating C will also be maintained. Both languages are appropriate for
this purpose because they are free from software licensing costs and are widely used by scientists, maximising access
for members of the scientific community involved in oceanography and solid earth studies. The C and Fortran scientific
codes are managed using Python, which also provides the main user interface to GUT. The GUI provides access to
some or all of the GUT functionality available through the Python interface. Detailed GUI design will be carried out
during the implementation phase of GUT development.

There are several advantages to using Python for GUT implementation, as described below.
- Runs on many platforms, including Linux, Windows, MacOS and Solaris
- Provides a powerful, user friendly command interface with scripting ability
- Easily extensible by adding new C and Fortran based functionality
- Provides powerful mathematical capabilities [6]
- Considerable user interaction and programming capability will be required for GUT, more so than for previous

ESA toolboxes. Python is highly suitable for such requirements

Python has many useful features but execution speed is not one of them. To achieve acceptable performance, all of the
computationally expensive aspects of GUT processing will take place in C and Fortran routines rather than in Python.
This approach has been used successfully in other scientific software toolboxes. Two popular Python-based toolboxes
are described briefly below.
- VISAN [3,7], the GUI for the Basic Envisat Atmospheric Toolbox (BEAT). According to the developers, the

BEAT project "aims to provide scientists with tools for ingesting, processing, and analysing atmospheric remote
sensing data." VISAN is used for browsing and plotting data, and incorporates a Python command prompt
providing access to the full range of BEAT functionality via the Python application program interface (API).

- Climate Data Analysis Tool (CDAT). CDAT [9] is used for analysis of gridded data in a variety of different
formats. Typical operations include plotting, aggregation of multiple files, differencing data sets, calculating
departures from a climatology, re-gridding and calculating the mean variance and covariance of a variable.

VISAN is described in its documentation as a "visualization and analysis application for atmospheric data". Access to
the atmospheric data is provided by BEAT, and the analysis capability is provided largely by Python, which allows the
user to write their own data analysis and processing scripts. In GUT, the emphasis is on the data processing rather than
the data access and visualisation, though GUT will have to be able to do these things as well. In other words, GUT
users will not be expected to write their own Python scripts for using the GOCE products, because these scripts will be
an important part of GUT itself. Of course, users will be able to write scripts and programs in Python and other
languages to augment GUT capabilities.

Python is not the only way to implement GUT, and it is possible that the important features of the design specified in
this report could be implemented in another way. However, if alternative solutions are evaluated during the
implementation phase it is important to consider the key features of the protective user environment, which facilitates
good science and improves the traceability of results. The user environment consists of the following elements:
• Command interface
• Relationships between logical data structures, which include algorithm parameters, spatial and spectral fields, filter

matrices and error covariance matrices
• Rules governing execution of scientific work-flows
• Session management
• Internal Data Store (IDS)

WP4000: System Specification and

Architectural Design

Page 6 of 50

All the elements of the user environment are described in more detail in the following sections.

3. TOOLBOX COMPONENTS

3.1. Computationally Expensive Tasks

The parts of GUT that process large data structures and carry out mathematical calculations are written in Fortran and
C. These computationally expensive tasks are described by a series of Processing Units, which are defined in Section 8
("Logical Model of System Functionality"). The Processing Units include data pre-processing tasks and scientific
calculations. Existing software will be re-used in the implementation of the Processing Units wherever possible. The
scientific software being considered for re-use in GUT is described in the report from WP3000 [2]. All the software
under consideration at present is written in Fortran, but the facility to incorporate C/C++ into GUT will be retained to
ensure flexibility in the future. Software re-use is discussed in more detail in Section 4 ("Re-use of Existing Software").

3.2. Management of Internal data store

GUT maintains its own internal data store (IDS) on disk. The mathematical functions involved in the scientific work-
flows take their input from, and write their output to the IDS. All the spatial data in the IDS is represented on the same
set of spatial positions (e.g. a grid), and the reference system is common to the spatial and spectral representations of the
data. Where spatial and spectral representations of the same field are both present (as occurs during execution of some
of the scientific work-flows) they are consistent with each other. Data structures for the parameters, input data,
intermediate stages and final output from scientific work-flow calculations are part of the IDS, which is separate from
the external files where the data originates. This may seem like unnecessary duplication of spatial data, but the IDS is
necessary because imported data may undergo transformations to make it consistent with data already present. Keeping
the transformed fields permanently avoids lengthy transformation tasks being repeated each time a scientific work-flow
is executed. The error covariance matrix of the SH coefficients of gravity potential is not part of the IDS; no
transformations need to be performed on this large matrix, so there is no reason to create a copy in NetCDF format.

The supported formats for data import and export are discussed in Section 6 ("Specification of Input and Output"),
which includes details of existing data handling software that may be suitable for re-use in GUT. Low level data import
and export routines from some existing software packages can be re-used in GUT for dealing with a range of file
formats.

3.3. Management of High Level Workflows

The high-level scientific work-flows are managed by Python software. Work-flows are executed by means of a
sequence of calls to non-Python mathematical subroutines, which interact independently with the internal data store.
These non-Python subroutines will be used to implement the Processing Units defined in Section 8 ("Logical Model of
System Functionality"). Experts' scientific knowledge is encapsulated by the rules governing the sequences of events,
and in the relationships between the logical data structures involved in the work-flows. Subroutines from other
languages can be incorporated in the Python language by creating Python extensions [5]. It may not be practical to
incorporate all existing software in this way. In cases where this is not practical, Python can also be used to manage
binary executables in a way that is similar to a conventional shell scripting language. The Processing Units must be
able to access data on the hard disk themselves, because it may not be possible to store all the data they need in memory
simultaneously on all computers where GUT will be running. The default grid has 1/30 degree resolution, and some
operations, such as grid differencing, have to deal with two gridded fields at the same time. Spatial filter matrices can
also be very large.

WP4000: System Specification and

Architectural Design

Page 7 of 50

3.4. Command Interface

Python is suitable as the basis for a command interface to GUT because it allows Python statements to be issued
interactively at a command prompt. The command interface is described in Section 5.1 ("Command Interface").

3.5. Graphical Components

A comprehensive GUI can be built on top of the Python application using Python wrappers for wxWidgets [11], an
Open Source suite of application programmers’ tools that formed a key component of the BEAT and BRAT toolbox
GUIs. The GUT visualisation capabilities should be based on VISAN or BRAT, both of which use the Visualisation
Toolkit [13] (VTK) for producing images.

4. RE-USE OF EXISTING SOFTWARE
This section discusses how existing software will be incorporated into the Python application. The two main areas of
GUT where existing software can be incorporated are data handling (mainly import and export) and scientific
algorithms. Existing software for data handling is discussed in Section 6 ("Specification of Input and Output").

As discussed earlier, the computationally expensive tasks described by the Processing Units defined in Section 8
("Logical Model of System Functionality") will be implemented as Fortran or C subroutines. Several programs
containing Fortran code that can be re-used for this purpose have been identified in the WP3000 report. Details of the
Fortran programs (if there are any) relevant to each Processing Unit can be found in the WP3000 report in the
discussion of the corresponding Functional Algorithm. The numbering of the Processing Units is aligned with the
numbering of the Functional Algorithms. WP3000 has established that there is re-usable Fortran code suitable for
implementing many of the Processing Units, but there are still a lot of gaps that will need to be filled by new software
written in C and Fortran.

Two different approaches to re-using software have been suggested for GUT:

1. Re-use large portions of existing programs or whole programs
2. Re-use of some of the algorithms from existing software, possibly taking copies of small subroutines or loops

into GUT.

The second approach would involve re-writing all the scientific software in Fortran or C. This is the best solution from
the software engineering perspective, and also allows greater flexibility for extending the capabilities of GUT in the
future. Consideration of software at the level of small subroutines is a task that will take place during the software
design stage of GUT implementation. Therefore, it is beyond the scope of this document and will not be discussed
further. The rest of this section will outline a solution involving the re-use of large portions of existing software or
whole programs.

Re-using large portions of existing programs or whole programs is a tempting approach because many of the re-usable
Fortran programs identified in the WP3000 report perform tasks that fit in well with the tasks performed by individual
Processing Units, particularly PU04. Some existing programs provide the functionality of more than one Processing
Unit. All existing software should be incorporated into GUT as Python extensions that interact with the internal data
store independently, as discussed earlier in Section 3.1 ("Computationally Expensive Tasks"). This will mean that all
existing software will need to be modified to a certain extent. All the existing input-output routines will need to be re-
written in order to exchange data with the internal data store instead of their own file formats. In cases where a section
of an existing program is taken without self-contained input and output functionality, input and output functions will
need to be written from scratch. Python code should replace any functionality contained in operating system shell
scripts that accompany the existing software, and code modifications may be required during the process of creating
Python extensions.

WP4000: System Specification and

Architectural Design

Page 8 of 50

5. USER INTERFACES

5.1. Command Interface

5.1.1. Introduction
The GUT command interface is an element of the user environment, which contains the input, output and parameters
associated with scientific work-flows. The basic usage procedure involves three main stages.

1. Set up the parameters governing the operation of a particular scientific work-flow
2. Import the necessary data
3. Enter a command to calculate the desired output product

This integrated user environment is a little bit like having your input files, output files and parameter files all in the
same directory, but the GUT user environment is more sophisticated than this conventional approach. The most
important feature of the GUT environment is that the input, output and algorithm parameters are consistent with each
other at all times. This means that the input data files and algorithm parameters do not have to be specified in GUT
commands, and all the output can be reproduced exactly without knowing the command that was entered by the user
to initiate the calculation. In other words, as a GUT user you can always see where your results came from if the
internal data store is retained. Other features of the GUT user interface are described below.

- Users do not interact directly with data and algorithm parameters. Instead, GUT functions called methods are used.
This ensures that the data and parameters are kept consistent, as described above, and enables the user to be
informed about the consequences of important changes they make. Methods are described later in this section.

- Data associated with intermediate stages are saved during execution of work-flows
- A path through a particular work-flow can be executed in full with a single command, or executed in stages with a

series of commands.
- The user environment can be saved to disk, and loaded again at a later time.
- The amount of typing is minimised by the use of a name completion facility, which is analogous to name

completion in Unix and Linux shell environments. The user can select from a list of all possible commands
matching any partially entered command.

- Experts' scientific knowledge is encapsulated in the constraints placed on input data and parameters and the
relationships between them.

The Python language can be used to provide a user interface with the above features. One of the unusual features of the
language is that it allows statements to be entered interactively at a command prompt, in the same way as operating
system shell languages such as the C Shell or the Bash Shell. This makes python suitable as a command interface for
applications such as GUT. Using GUT is not like writing a program (or as little like writing a program as possible), but
users must have a basic knowledge of programming to be able to understand the Python command syntax. In the
following sections, no knowledge of object oriented programming methods is assumed, but some object oriented
programming terminology is used where appropriate. In the remainder of this report the "Courier New" font is used
to highlight elements of GUT commands.

5.1.2. Python language elements used in GUT
This section describes the main Python language elements in GUT. The high level scientific work-flows are controlled
by manipulating Python language elements called objects. An object in GUT consists of the following things:
- Attributes, which describe the object and its contents
- Data, including input data, results from calculations and parameters for algorithms
- Methods. These are things that the object can do

An Object in Python is somewhat similar to a compound variable in a procedural programming language like C. A C
structure is an example of a compound variable; it is a container for two or more variables, which may be instances of

WP4000: System Specification and

Architectural Design

Page 9 of 50

monotonic data types such as integers, arrays, strings or even other structures. The Python object extends this concept
by allowing members of the compound variable to be methods, which are known as functions or subroutines in other
programming languages. The user interacts with GUT by entering commands to execute methods. The methods are
used to manipulate, or perform calculations involving the logical data structures belonging to the Objects. The way in
which the user interacts with the Objects is described in the Appendix ("Using the command interface"). The five types
of Object in GUT are described below.

Main Objects
The most important feature of GUT is called the Main Object. A Main Object is a container for everything
associated with the scientific work-flows, including the input and output data, algorithm parameters and the
algorithms themselves. The only reason why GUT users have to know about Main Objects is that there can be
more than one of them present in the user environment during a user session. There are many advantages to
this approach. For example, it makes it easy to compare the same output field calculated in different ways or
on different grids. However, not all users will find this facility useful, and it can be safely ignored. It is
sufficient to understand the following three things about Main Objects in GUT user sessions:
- There must be at least one Main Object.
- It must have a name given to it by the user.
- It can be saved to disk, and loaded again during a GUT session at a later date.

At the start of a GUT session the user must either create a new Main Object or load a saved one from disk. All
the information necessary to repeat any results stored in the logical data structures in the Object is contained
within the internal data store belonging to the Object. This allows the relevant calculations to be repeated
exactly at a later date if necessary. At the end of a user session the Main Object and its internal data can be
saved to disk as a whole, and data from individual fields can be exported to files. The attributes and data are
consistent with each other at all times. In addition to its attributes and methods, a GUT Main Object contains
four sub-objects, named Spectral, Covar, Filter and Spatial. The five object types represent
logical groupings of data structures, parameters and functionality, designed to make the user interface easier to
use. Generally speaking, the attributes and methods that belong to the Main Object are concerned with the
user environment as a whole. The sub-objects are described below. The full specification of their logical data
structures can be found in Section 7 ("Specification of Logical Data Structures").

Spatial Objects

A Spatial Object concerns data in geographical space. Data are presented to the user as a series of one
dimensional (1-D) vectors. There are two position vectors (one for latitude values and one for longitude
values) and vectors for each of the spatial fields involved in the scientific work-flows. Alternatively, the
data can equally well be imagined as one big 2-D array or matrix, with each row being a record representing
one position on the globe and each column representing a spatial field. This record structure is similar in
concept to the GRAVSOFT file record described in the WP2000 report. It does not matter which view of
the data is preferred because the user does not interact directly with the logical data structures in the Objects,
which exist only to simplify the understanding of the GUT user environment. The actual data structures in
the GUT internal data store are likely to be different to either of these conceptual views, but the user does
not need to know about what goes on in there. In this report the spatial fields are described as being stored
or located in vectors, to make it easier to understand the link between Spatial Object vectors and Spectral
Object arrays of the same name. However, the Spatial Object vectors could equally well be described as
fields in the GRAVSOFT-like record structure described above.

Spectral Objects

Spectral Objects deal with data in the spectral domain. The Spectral Object contains a set of SH coefficients
representing the gravity potential (GOCE L2 product by default) and the spectral representation of all the
spatial fields defined in the Spatial Object. The various sets of SH coefficients appear to the user as separate
arrays within the Spectral Object. Most of these arrays will not be populated with data during a typical GUT

WP4000: System Specification and

Architectural Design

Page 10 of 50

session, because they are not all involved with all the scientific work-flows. The names of the SH arrays are
the same as the names of the 1-D vectors in the Spatial Object.

Covar Objects

A Covar Object deals with error covariances. Error covariance matrices can be generated for the geoid
height, deflection and gravity anomaly output fields in the Spatial Object. The Covar Object is used for
specifying a list of geographical positions to be used for error covariance calculations, and for storing the
resulting error covariance matrices. Omission error covariance information is also produced in the form of
the evaluation of an isotropic, homogenous error function over a range of distances.

Filter Objects

A Filter Object concerns the filtering of spatial and spectral data. Its local data structures include the filter
method specifier, the filter scale parameter and the filter matrix, which is populated the first time a particular
filter is used. There are five types of spatial filter and two types of spectral filter methods provided. Only
one type of filter can be used during any work-flow calculation, i.e. once the filter method has been chosen
and its parameters defined, it remains the same for all the calculations involved in the work-flow, right
through to the final work-flow product. If a spatial filter type is selected, the filter matrix is valid for the
current grid defined in the Spatial Object and will be removed if that grid is changed, subject to user
confirmation. Similarly, if one of the spectral filter types is selected the filter matrix is valid only for the
current maximum degree and order of the surface SH coefficients in the Spectral Object.

A Python command in GUT is constructed from several separate components. Most GUT methods are specified with
respect to a particular, named Main Object, to allow for the possibility of having more than one Main Object present in
a GUT user session. The only exceptions are the methods that are used to create a new Main Object, or to load a saved
Main Object from disk. These methods are specified with respect to a Python language element known as a package,
which could be described as a module in some other programming languages. The components that make up a
command are described below.
- Name of Python package
- Name of Main Object. This is chosen by the user when creating a new Main Object.
- Name of sub-object, if any. There are four sub-objects in a Main Object, whose fixed names are Spatial, Spectral,

Covar and Filter
- Name of method
- Parameters. If a method requires extra information to control its operation, these can be supplied in the form of

comma separated parameters inside the parentheses that form part of the method name. If no parameters are
supplied, the default action of the method is executed

There are three types of Python command in GUT, depending on which of the above components are used. The formats
of these three types of command are described below. Each format description is shown with N parameters, where N
can be any number including zero. In other words, the format of commands where no parameters are given is not
explicitly shown.
- PackageName.MethodName(Parameter1, Parameter2, …, ParameterN)
- MainObjectName.MethodName(Parameter1, Parameter2, …, ParameterN)
- MainObjectName.SubObjectName.MethodName(Parameter1, Parameter2, …, ParameterN)

A number of pre-defined constants are available to GUT users for use as parameters in commands. In addition to GUT
constants, one or more parameters can be specified as None, Python's null value. This indicates to GUT that the
parameter in question should be ignored. This facility is useful when defining a new grid or reference ellipsoid, because
different ways of specifying these involve different numbers of parameters. For example, when defining an irregular
grid it is necessary to specify None as the value for grid cell width and height because these parameters are undefined
for an irregular grid.

WP4000: System Specification and

Architectural Design

Page 11 of 50

In this report, complete method names are always written with trailing empty parentheses, View() for example. Users
will be able to issue GUT commands interactively at a command prompt, one at a time. Alternatively, command
sequences can be saved in a text file and run like an executable program, inside or outside the GUT environment. These
command sequences are known as scripts. GUT itself will be made up primarily of a series of Python scripts, plus a set
of components written in other languages. Further explanation of the use of the command interface is given in the
Appendix, with examples of commands relating to the execution of the scientific work-flows.

5.1.3. Full specification of command interface
This section specifies the Python methods used to interact with the logical data structures and control the execution of
the scientific work-flows. The methods associated with the GUT package and each type of Object are specified below.
The GUT package is not associated with any particular Main Object; its methods are used to bring Main Objects into
the user environment by creating a new Main Object or loading a saved Main Object from a directory on disk. When a
new Main Object is created, its internal data store is populated by the SH coefficients of the gravity potential and the
default MSSH data set, which defines the default grid and reference system. All the attributes are set to their default
values. A new Main Object is immediately ready for use with work-flows 1a and 1b, but other work-flows require
additional data to be imported first.

In the following tables, the "Example of Usage" column shows one or more typical examples of Python commands
involving each method. Pre-defined GUT constants are written in upper case letters. Methods that normally expect
parameters in the parentheses can also be used with no parameters; this results in the default behaviour of the method.
In the tables below, "default behaviour" of a method means the outcome if no parameters are specified.

GUT Package

Name Example of Usage Description
New New("/home/GUT/main_ob1") Creates new Main Object with default attributes

and data in directory main_ob1
Load Load("/home/GUT/main_ob1") Loads a previously saved Main Object and its

internal data store from directory “main_ob1”

Main Object
Most of the Main Object methods are for performing calculations relating to the scientific work-flows defined in
WP3000. The names of these methods are derived from the names of the logical data structures provided for storing the
intermediate stages and final output from the work-flows. The output from the work-flows is always provided in
geographical space, and the results can be found in Spatial Object vectors. Every work-flow product has a unique name
that identifies the method that was used to produce it. In the case of work-flows involving intermediate stages in
geographical space, the intermediate stages can be found in Spatial Object vectors with names that include an additional
identifier beginning with “-Inter”. In the case of work-flows involving data in spectral space, intermediate stages and
some final output can also be found in arrays located in the Spectral Object. There is a Calc method corresponding to
every field in the Spatial Object that is not an input field. Input fields are identified with names beginning with “Input”.
It is important to note that all the Calc methods in the Main Object refer to fields in the Spatial Object, even though
intermediate stages and final output from some of the work-flows also ends up in the Spectral Object. Calc methods
for "-Inter" fields are provided to allow the user to experiment with one particular part of a work-flow, without
incurring the computational cost of going right through to the end product each time. Some Calc methods result in
output to more than one field. CalcVelocity() and CalcDeflection() calculate both the northward and
eastward components of geostrophic current and gravity field deflection. The methods for calculating error covariances
each produce a covariance matrix for a pair of points and the evaluation of an error function for a range of distances.

The table below specifies the methods associated with the Main Object. Most of the methods shown in the table refer to
the Main Object attributes. The Calc methods for intermediate stages and final output from the scientific work-flows

WP4000: System Specification and

Architectural Design

Page 12 of 50

are not listed, to avoid repeating all the data structure names defined in Section 7 (“Specification of Logical Data
Structures”). The only Calc methods that need mentioning specifically are those involved with Remove-Restore
work-flows 4a, 4b, 4c and 4d. The 4a and 4c work-flows are only valid if a spatial filter is specified in the Filter Object,
and the 4b and 4d work-flows are only valid if a spectral filter is specified. Attempting to perform calculations
involving these work-flows when the wrong type of filter is specified results in an error message.

Name Example of Usage Description
Annotation Annotation("Some text") Defines ASCII string of user's comments.

Default behaviour: Display string
ImportAnnotation ImportAnnotation("file.txt") Imports annotations from a text file,

including new-line characters.
Default behaviour: Try to import from

default path.
Info Info("Ellips") Displays the value of the specified Main

Object attribute
Default: Displays values of all attributes

Ellips Ellips(GRS80) Changes all ellipsoid parameters.
Parameters can be specified explicitly by
providing them in the following order:

GM, a, γa, f, J2, ω
One or more of them can be None

(undefined). Alternatively, one of three
constants can be given as a single argument:

GRS80, TOPEX or ENVISAT
Default Behaviour: The default ellipsoid is

used (TOPEX). Adapts internal data
dependent on these values if possible and

discards data that can not be adapted
TideSys TideSys(TIDE_FREE) Changes value of attribute. Adapts internal

data dependent on this value if possible and
discards data that can not be adapted

Save Save("main_path") Saves Main Object attributes and data in
directory specified by user

Load Load("main_path") Loads a previously saved Main Object from
a directory specified by user.

Calc Calc() Starts user dialog session in which user
selects desired calculation from a list.

Spatial Object
In addition to methods for changing the values of attributes, the Spatial Object also provides sets of methods with
names beginning with "Convert", "Filter", "View", "Import", "Export" and "Delete". These sets of
methods are described below.
- The Filter methods are used for filtering spatial fields according to the filter parameters defined in the Filter

Object. These methods are not used for controlling any of the scientific work-flows, and they are not shown in the
table below. The Filter() method launches a wizard that allows the user to select the desired field from a
numbered list.

- The View methods are used to display 2D plots of the spatial fields, and the View() method launches a wizard
that allows the user to select the field and parameters controlling the type of plot required.

WP4000: System Specification and

Architectural Design

Page 13 of 50

- The Convert methods are used for converting spatial data to spectral space. The output of a Spatial Object
Convert method is an array with the same name as the converted Spatial Object vector. For example,
ConvertMDTC_B-Spectral() converts the gridded data in the MDTC_B-Spectral vector to SH coefficients
by SH analysis, the result of this conversion going into Spectral Object array MDTC_B-Spectral. The maximum
degree and order of coefficients used for SH analysis is governed by Spectral Object attribute MaxDegOrdSurface.
The Convert methods are not used for controlling the scientific work-flows. The names of the Convert
methods are derived from the names of the Spatial Object vectors, which are specified in Section 7 ("Specification
of Logical Data Structures"). The Convert methods are not specified in this table, except for the Convert()
method (with no reference to any particular spatial field), which launches a command based wizard.

- There is an Import method for the Annotation attribute and every spatial field vector. These methods are used
for importing data from external data sources into the internal data store of the Main Object. These methods are not
shown in the table below, to avoid repeating information from Section 7. The Import() method launches a
wizard. Importing data is discussed in more detail in Section 6 ("Specification of Input and Output").

- There is an Export method and a Delete method corresponding to every spatial field in the Spatial Object.
These methods are not shown in the table, to avoid repeating information. The Export methods are used to write
spatial data from the internal data store to external files, and the Export() method launches a wizard. Data
export is described in more detail in Section 6 ("Specification of Input and Output"). The Delete methods are
provided to allow the user to manage the internal data store, to allow a Main Object to be used for calculations
involving more than one work-flow without retaining all the input, output and intermediate stages from previous
work-flow calculations. Deleting unnecessary fields may be desirable in situations where disk space is limited.
The Delete() method launches a field deletion wizard

Name Example of Usage Description

Annotation Annotation("Some text") Defines ASCII string of user's comments.
Default behaviour: Display string

ImportAnnotation ImportAnnotation("file.txt") Imports annotations from a text file,
including new-line characters.

Default behaviour: Try to import from
default path.

Info Info("Ellips") Displays the value of the specified
attribute

Default: Displays values of all attributes
GridCalc GridCalc(POINT) Changes value of attribute. Adapts

internal data dependent on this value if
possible and discards data that can not be

adapted
DefineGrid DefineGrid(lat1, lon1,….) Specifies grid parameters. Adapts internal

data dependent on these values if possible
and discards data that can not be adapted

New New() Overwrites Spatial Object with default
attributes and data

Blank Blank() Overwrites Spatial Object with a blank
object containing no data, with all

attributes set to None
MaxDegOrdPotential MaxDegOrdPotential(200) Changes value of

MaxDegOrdPotential. User specifies
DO value. Adapts internal data dependent
on this value if possible and discards data

that can not be adapted

WP4000: System Specification and

Architectural Design

Page 14 of 50

MaxDegOrdSurface MaxDegOrdSurface(200) Changes value of MaxDegOrdSurface.
User specifies DO value. Adapts internal
data dependent on this value if possible

and discards data that can not be adapted
MaxResKMPotential MaxResKMPotential(100) Changes value of

MaxDegOrdPotential. User specifies
resolution in Km. Adapts internal data
dependent on this value if possible and
discards data that can not be adapted

MaxResDegreesPotential MaxResDegreesPotential(0.5) Changes value of
MaxDegOrdPotential. User specifies

resolution in degrees. Adapts internal
data dependent on this value if possible

and discards data that can not be adapted
MaxResKMSurface MaxResKMSurface(100) Changes value of MaxDegOrdSurface.

User specifies resolution in KM. Adapts
internal data dependent on this value if

possible and discards data that can not be
adapted

MaxResDegreesSurface MaxResDegreesSurface(0.5) Changes value of MaxDegOrdSurface.
User specifies resolution in degrees.

Adapts internal data dependent on this
value if possible and discards data that can

not be adapted
Filter Filter() Launches a wizard for filtering a spatial

field
View View() Launches a wizard for producing a 1D or

2D plot of a spatial field
Convert Convert() Launches wizard for converting to

spectral space
Import Import() Launches data import wizard
Export Export() Launches data export wizard
Delete Delete() Launches a wizard for deleting unused

spatial fields in the internal data store

Spectral Object
Any of the 2D arrays of SH coefficients in the Spectral Object can be converted to geographical space using a
Convert method. The names of the Convert methods are derived from the names of the 2D arrays in the Spatial
Object. For example, ConvertMDTC_B-Spectral() converts the SH coefficients in the MDTC_B-Spectral
array to geographical space by SH synthesis, the result of this conversion going into Spatial Object vector MDTC_B-
Spectral. The maximum degree and order of coefficients used for SH synthesis is governed by Spatial Object
attribute MaxDegOrdSurface.

There is an Import method corresponding to the Annotation attribute, and every array of SH coefficients. This allows
the user to supply their own data in spectral form as well as spatial data. The Import() method launched a wizard. A
set of Export methods are provided to allow the user to export data from any of the spectral fields. There is an
Export method corresponding to all the Spectral Object arrays except for InputPotential. The Export() method
launches a wizard. Data import and export are discussed in more detail in Section 6 ("Specification of Input and
Output"). A set of Delete methods are provided to allow the user to delete unused spectral fields in order to save disk

WP4000: System Specification and

Architectural Design

Page 15 of 50

space. The Delete() method launches a wizard. To avoid repeating all of the field names defined in Section 7
(“Specification of Logical Data Structures”), the Convert, Import, Export and Delete methods are not
shown in the table below.

Convert Convert() Launches wizard for conversion of data to
geographical space

Annotation Annotation("Some text") Defines ASCII string of user's comments.
Default behaviour: Display string

ImportAnnotation ImportAnnotation("file.txt") Imports annotations from a text file,
including new-line characters.

Default behaviour: Try to import from default
path.

Info Info("MaxDegOrderSurface") Displays the value of the specified attribute
Default: Displays values of all attributes

MaxDegOrdPotential MaxDegOrdPotential(200) Changes value of MaxDegOrdPotential.
User specifies DO value. Adapts internal

data dependent on this value if possible and
discards data that can not be adapted

MaxDegOrdSurface MaxDegOrdSurface(200) Changes value of MaxDegOrdSurface.
User specifies DO value. Adapts internal

data dependent on this value if possible and
discards data that can not be adapted

MaxResKMPotential MaxResKMPotential(100) Changes value of MaxDegOrdPotential.
User specifies resolution in Km. Adapts
internal data dependent on this value if

possible and discards data that can not be
adapted

MaxResDegreesPotential MaxResDegreesPotential(0.5) Changes value of MaxDegOrdPotential.
User specifies resolution in degrees. Adapts

internal data dependent on this value if
possible and discards data that can not be

adapted
MaxResKMSurface MaxResKMSurface(100) Changes value of MaxDegOrdSurface.

User specifies resolution in Km. Adapts
internal data dependent on this value if

possible and discards data that can not be
adapted

MaxResDegreesSurface MaxResDegreesSurface(0.5) Changes value of MaxDegOrdSurface.
User specifies resolution in degrees. Adapts

internal data dependent on this value if
possible and discards data that can not be

adapted
Import Import() Launches data import wizard
Export Export() Launches data export wizard
Delete Delete() Launches a wizard for deleting unused

spectral fields in the internal data store

WP4000: System Specification and

Architectural Design

Page 16 of 50

Covar Object
In addition to the methods defined in the table below, the Covar Object also provides a set of Export methods for
exporting data from any of the data structures in the Object. The names of these Export methods are derived from the
names of the data structures, which are defined in Section 7 ("Specification of Logical Data Structures"). The
Export() method launches a wizard.

Name Example of Usage Description
Annotation Annotation("Some text") Defines ASCII string of user's comments.

Default behaviour: Display string
ImportAnnotation ImportAnnotation("file.txt") Imports annotations from a text file,

including new-line characters.
Default behaviour: Try to import from

default path.
Info Info("InputOmFunctionStart_1") Displays the value of the specified

attribute
Default: Displays values of all attributes

AddPos AddPos(lat, lon) Adds a position to the Lon and Lat
vectors, used for calculation of error

covariances
DelPos AddPos(lat, lon) Deletes a spatial position from Lon and

Lat
Export Export() Launches a wizard

ErrorFunctionStart Changes value of attribute
ErrorFunctionEnd Changes value of attribute

ErrorFunctionInterval Changes value of attribute
InputPotentialCovComPath InputPotentialCovComPath(

"/data/goce/covariances.dat")
Allows user to specify path to error

covariance matrix

Filter Object
The following methods are provided for changing Filter Object attributes.

Name Example of Usage Description
Annotation Annotation("Some text") Defines ASCII string of user's comments.

Default behaviour: Display string
ImportAnnotation ImportAnnotation("file.txt") Imports annotations from a text file,

including new-line characters.
Default behaviour: Try to import from

default path.
Info Info("Scale") Displays the value of the specified attribute

Default: Displays values of all attributes
Type Type(SPATIAL_CAP) Changes value of attribute. Discards internal

data dependent on this value
Scale Changes value of attribute. Discards internal

data dependent on this value

5.2. Graphical User Interface (GUI)

Detailed design of the GUI will not be performed as part of the GUTS project, but it is important to establish how it
might be implemented and what its capabilities could be. Ideally, the GUT GUI would allow the user to do everything

WP4000: System Specification and

Architectural Design

Page 17 of 50

that can be done using the Python command interface, but it would require a lot of effort to design a clear, well laid out,
user-friendly GUI that was capable of performing all these functions in accordance with the high level workflows in the
WP3000 report [2]. One possible approach would be to adapt the BRAT GUI, which provides the following facilities
for altimetry data.
- Data extraction and viewing
- Data processing
- Calculating statistics
- Re-gridding
- Computing basic altimeter parameters
- Calendar and date conversion
- Format conversion

The extra functionality required for GUT could be incorporated by allowing the user to select and then manipulate
GUT Objects by editing attributes and executing methods. It is possible to imagine a GUI that allows the user to
select the desired object from a list, and then select from a list of the attributes and methods belonging to that object.
The method naming convention described earlier would be beneficial in this respect, for the same reason that it will
make things easier for command interface users. It might be sensible to restrict GUI users to having only one Main
Object in a user session. To avoid the GUT GUI becoming too cluttered and difficult to use, it may be better to leave
the calculations involving the high level workflows out of the GUI altogether. It has been suggested that this part of
GUT should be a completely separate application, accessible only through Python. Some desirable, non-essential
GUI features have also been discussed. These include the management of data downloads from servers selected from
a list, and the management of shared work-spaces for GUT objects. A visual display linking the toolbox commands
with the scientific work-flow diagrams would be very instructive for novice users.

5.3. Application Program Interface (API)

The API enables programmers to build elements of GUT into their own software applications. The implementation of
GUT will be accompanied by detailed documentation of the software architecture, including full specification of the
Python language elements that are not normally exposed to the user. This will allow Python programmers to utilise any
part of GUT, from the low level algorithms to the high level workflows.

Ideally, the API would also provide access to GUT functionality from other programming languages and proprietary
scientific scripting languages such as IDL and MATLAB. However, for the first release of GUT at least, the non-
Python API will be restricted to the software used to implement the Processing Units defined in Section 8 ("Logical
Model of Sytem Functionality"). The non-Python API will consist of a set of Fortran subroutines that each take input
from a NetCDF file and send output to a NetCDF file. Functions for controlling the scientific work-flows will not be
part of the non-Python API.

6. SPECIFICATION OF INPUT AND OUTPUT

6.1. Introduction

When a Main Object is created during a GUT user session, its internal data files are created in a directory specified by
the user. Later, the Save method can be used to save the Main Object itself in that directory. The Main Object, with
all its attributes and sub-objects is saved by Python in a process known as pickling. The saved Main Object then has a
permanent presence on disk, in the directory containing the pickled Python objects and the internal data files. This
Main Object can be loaded into another GUT session at a later date by using the Load method. Note that the logical
data structures in the GUT user environment can not be loaded and saved individually by the user; the internal data
store belonging to a Main Object is loaded and saved as a whole. The rest of this section concerns the Import and
Export methods associated with the Spatial, Spectral and Covar objects. These methods deal with external data files,

WP4000: System Specification and

Architectural Design

Page 18 of 50

which are not part of the internal data store belonging to each Main Object. The Import methods read data from
external files into the internal data store, and the Export methods write data from the internal store to external files.

6.2. Data exports

The user can export data from the Spatial, Spectral and Covar objects, including intermediate stages of scientific work-
flows in spatial or spectral form. There is an Export method for every vector and array associated with these objects,
except for the SH coefficients representing the gravity potential and their error covariance matrix. Export method
names are identified using the names of the data structures specified in Section 7. The default exported file names are
also derived from these data structure names. The default file name is used if the user does not specify a file name. The
following file formats can be used for data exports from GUT:
- NetCDF. This is a binary format that is used for each Main Object's internal data store. This format is normally

associated with gridded data or point lists, but can be used to store any collection of multidimensional arrays.
Therefore, all data structures in the Spatial, Spectral and Covar objects can be exported in this format. Open Source
NetCDF software libraries are available for Python, Fortran and C, plus other languages not used in GUT.

- GRAVSOFT. This is an ASCII format, which is described in the WP2000 report. GRAVSOFT is suitable for
export of real-space data on grids and in point lists, and surface SH coefficients. Components of the GRAVSOFT
software, which is written in Fortran, can be re-used in GUT for the data export routines. A separate metadata file
in an ASCII format is required for exports in GRAVSOFT format. The metadata file has the same file name stem
as the GRAVSOFT file.

The format of GUT command names is described in Section 5.1 ("Command Interface"). Export method names are
derived from the data structure names, as described in that section. Therefore, the Export method name in the
command specifies the data structure to be exported. Export from input fields is allowed, to enable GUT to be used for
the simple task of grid adaptation, where external data on a different grid can be imported, adapted to the current Spatial
Object grid and then exported. The basic format of an export command is given below.

MainObjectName.SubObjectName.ExportMethodName(FilenameString, FieldIdentifier, FormatSpecifier)

The FormatSpecifier parameter can be either "NETCDF" or "GRAVSOFT". These specifiers are Python constants, as
described in Section 5.1. An error results if an Export command specifies a file format that is not supported for the
data structure in question. The following types of data export are supported.

NetCDF and GRAVSOFT formats are suitable for the export of spatial field data from the Spatial Object. Fields can
only be exported one at a time, but the same output file can be specified in more than one Export command. GUT
exports from the Spatial Object contain the following metadata:
- Attributes from Spatial Object of origin
- Attributes from Main Object of origin
- Data structure identifier (see Section 7 - "Specification of Logical Data Structures"), from which the user can infer

details of the origin of the data, such as what type of calculation was used to produce the results.
NetCDF files can store metadata themselves, but the GRAVSOFT files require a separate metadata file to store this
information.

Surface SH coefficients from the Spectral Object can be exported in NetCDF or GRAVSOFT format. One
GRAVSOFT file contains one array of SH coefficients, but a NetCDF file can contain more than one array. The SH
coefficients of the gravity potential can not be exported from the Spectral Object. It does not make sense to provide
export facilities for this array because GUT does not modify them in any way. Exports of SH coefficients contain the
following metadata:

- Attributes from Spectral Object or origin
- Attributes from Main Object of origin

WP4000: System Specification and

Architectural Design

Page 19 of 50

- Data structure identifier (see Section 7 - "Specification of Logical Data Structures"), from which the user can infer
details of the origin of the data, such as what type of calculation was used to produce the results.

A separate metadata file is required for each exported GRAVSOFT file.

Error covariance matrices and covariance function evaluation vectors from the Covar Object can be exported only in
NetCDF format. Each output file contains one error covariance matrix or function evaluation vector. These exports
include the following metadata:

- Attributes from Covar Object of origin
- Attributes from Main Object of origin
- Data structure identifier (see Section 7 - "Specification of Logical Data Structures"), from which the user can infer

details of the origin of the data, such as what type of calculation was used to produce the results.

6.3. Data imports

The subject of importing data into GUT is more complicated than exporting for several reasons:
- The importing routines in GUT deal with adapting data to the grid and/or reference system specified by the

attributes in the Main Object and Spatial Object.
- The importing routines need to be supplied with certain parameters that describe the imported data, such as the grid

and reference system specifications
- More file formats are supported for importing than for exporting
- There are restrictions on which data structures can receive imported data
These issues are discussed in more detail below.

The following file formats are supported for data import to Spatial Object vectors.
- ICGEM
- NetCDF
- GRAVSOFT
- AVISO. Some AVISO data is distributed in NetCDF format but some data sets are only available in Geophysical

Data Record (GDR) format.
- GMT. This is the format used by the General Mapping Tool (GMT). The default land surface height data set will

be supplied in this format.

The following file formats are supported for data import to Spectral Object SH coefficient arrays (potential and surface)
- ICGEM
- GRAVSOFT
- NetCDF

The default data sets to be supplied with GUT are specified in WP3000. It does not matter what formats these are
supplied in from the point of view of the software design, as long as the formats are supported by GUT.

Data can be imported into any spatial or spectral field, but most of the time it will only be necessary for the user to
import into fields used for input to the scientific work-flows. If data imported in spectral form is required in spatial
form by one of the work-flows, the user must convert the data to spatial form before using the work-flow. Convert
methods in the Spectral Object are provided for this purpose. The tables in Section 7 ("Specification of Logical Data
Structures") specify the default data set associated with each of the "Input" fields in the Spatial and Spectral Objects.
There is an Import method associated with each spatial and spectral data structure specified in Section 7
(“Specification of Logical Data Structures”). Additionally, all object types in GUT have a ImportAnnotation()
method for importing ASCII text into the Annotation attribute. There is no Import method for the error covariance
matrix of the GOCE coefficients, because this matrix is not part of the Internal Data Store. The name of each Import
method is derived from the name of the data structure in question. For example, the

WP4000: System Specification and

Architectural Design

Page 20 of 50

ImportInputGeoidHeight() method imports data into the InputGeoidHeight field. The format of an Import
method command is described below:

MainObjectName.SubObjectName.ImportMethodName(FilenameString, FieldIdentifier, FormatSpecifier)

The FieldIdentifier parameter is for specifying the field or data structure of the required data in the external file. The
FormatSpecifier parameter can be either NETCDF, GMT, AVISO, ICGEM or GRAVSOFT. These specifiers are
Python constants, as described in Section 5.1 ("Command Interface").

The default MSSH data set defines the default grid and reference system. When a new Main Object is created, two
Import methods are executed automatically: Spatial.ImportInputMSSH() and
Spectral.ImportPotential(). These import data from the default MSSH data set and the default gravity
potential coefficients, which establishes the default grid and reference system and readies the new Main Object for
calculations involving work-flows1a and 1b. The user must execute other Import methods before using any of the
other work-flows.

All the default data sets are supplied with GUT-specific metadata, as described in the previous section ("Data Exports").
The ICGEM files have some information in the header but an additional metadata file is required for GUT-specific
information. The NetCDF files store all the required metadata internally. When GUT-specific metadata are supplied
with external data files, the Import methods know how to find the important parameters describing the data being
imported, and can associate them with the attributes of the GUT Objects. The Import methods always look for GUT-
specific information in the metadata. If found, the import procedure takes place automatically, the values of the
relevant attributes being read from the file header or metadata file. This feature is useful for importing data from the
default data sets and for transferring data between two GUT work-flows, where the output from one work-flow is
exported, then imported to become the input for another work-flow. If the metadata are not found, as is likely to be the
case when importing data from external sources, the user is prompted to enter the relevant parameters describing the
imported data, including the grid and reference system specification parameters.

The low level data ingestion routines in the GRAVSOFT software can be re-used in GUT for importing data in
GRAVSOFT format. The low level data ingestion routines in BRAT might be useful for GUT imports of altimetry data
in NetCDF and other formats. Software written in Perl that is currently being developed by the GOCE HPF team may
be suitable for re-use in GUT for importing ICGEM files. Tools for handling GDR (AVISO) data are available from
AVISO.

The rules for adapting imported spatial data to a different grid specification are described below. In general, imported
data is always adapted to the grid described by the Spatial Object attributes. There are several possible scenarios that
need particular mention.
- Scenario: The imported data is on a grid and the Spatial Object attributes specify a grid. Action: Imported data is

adapted to the grid specified by the Spatial Object attributes
- Scenario: The imported data is on a grid and the Spatial Object attributes specify a point list. Action: Imported data

is interpolated to the point list specified by the Spatial Object
- Scenario: The imported data is specified for a point list and the Spatial Object attributes specify a grid. Action: The

import procedure can not be performed according to the general rule, but the user is given the option of
interpolating all the data in the Spatial Object to the point list specified in the imported data file.

- Scenario: The imported data and the Spatial Object attributes specify two, overlapping regional grids. Action: Only
data in the overlapping region is taken from the file, and existing data outside the overlapping region is discarded
from the Spatial Object, subject to user confirmation. The new Spatial Object grid covers the overlapping region
only.

- Scenario: The imported data and the Spatial Object attributes specify two regional grids that do not overlap.
Action: The import operation is not allowed, and an error is reported to the user.

WP4000: System Specification and

Architectural Design

Page 21 of 50

- Scenario: The imported data and Spatial Object attributes both specify point lists. Action: The import operation is
not allowed, and an error is reported to the user.

6.4. Reports and logs

A record of GUT user sessions is stored by each Main Object. The Python methods that form part of the command
interface record their use in a log file, along with any warnings and errors reported to the user. The log file is part of the
internal data store belonging to the Main Object.

7. SPECIFICATION OF LOGICAL DATA STRUCTURES
This section specifies and labels all the logical data structures that form the conceptual view of the data and parameters
presented to the user. There are physical data structures in the internal data store files corresponding to each logical
data structure. The data structures are grouped according to the Python objects used to interact with them in the
command interface described earlier. These data structures form the basis of the logical model of system functionality
described in Section 8. Pre-defined Python constants are written in upper case letters. Unspecified values are shown
using Python's null value, None.

Main Object

Attributes

Name Type Possible values Default value Description

Annotation String ASCII chars,
including '\n'

"Default " Description of the object

Ellips_GM Float GOCE default
(3.986004415·1014)

GM

Ellips_a Float TOPEX value
(6378136.3)

a

Ellips_gamma_a Float None γa
Ellips_f Float TOPEX value

(1/ 298.257)
f

Ellips_J2 Float None J2
Ellips_omega Float None ω

TideSys Flag Python constants:
TIDE_FREE,
ZERO_TIDE,
MEAN_TIDE

As for GOCE L2
products

Tide system

GeodeticCalc Flag Python constants:
HEIGHT,

ANOMALY or
DEFLECTION

Python constant:
HEIGHT

Controls which geodetic quantities
are calculated in work-flows 1a and
1b. Set by choice of Calc method

by user

Data

Name Type Description
Spatial Python object Data in the spatial domain

Spectral Python object Data in the spectral domain
Covar Python object Data associated with error covariance calculations for geodetic

quantities
Filter Python Parameters associated with the filtering algorithms

WP4000: System Specification and

Architectural Design

Page 22 of 50

Spatial Object

Attributes

Name Type Possible values Default value Description
GridType Flag Python constants:

REGULAR,
UNSTRUCTURED or

LIST

Python constant:
REGULAR

Determines whether or
not the Spatial Object

holds a regular or
unstructured grid or a

point list
GridCalc Flag Python constants:

POINT or AVERAGE
Python constant:

POINT
Specifies whether

values at grid points
represent only those

points or area averages
for the grid cells. Area

averages are only
allowed if the Spatial

Object holds a grid (as
opposed to a list of

points). Area average
calculations are only

allowed for geodeditic
output fields.

Executing Calc
methods for other
fields while area

averages are specified
results in an error

MaxDegOrdPotential Integer In range 1 to
Spectral.
 MaxDegOrdPotential

Spectral.
 MaxDegOrdPotential

Maximum degree and
order for SH synthesis
from SH coefficients
of gravity potential

MaxDegOrdSurface Integer In range 1 to
Spectral.
 MaxDegOrdSurface

Spectral.
 MaxDegOrdPotential

Maximum degree and
order for SH synthesis

from surface SH
coefficients

LatMin Integer In range -90 to 90 -80 Grid starting latitude
(degrees North)

LatMax Integer In range -90 to 90 82 Grid ending latitude
(degrees North)

LonMin Integer In range -180 to 180 -180 Grid starting longitude
(degrees East)

LonMax Integer In range -180 to 180 180 Grid ending longitude
(degrees East)

LatCell Float 1/30 Regular grid cell
height (degrees)

LonCell Float 1/30 Regular grid cell width
(degrees)

InputMSSH_Start Integer 4-digit year 1993 Start date for mean

WP4000: System Specification and

Architectural Design

Page 23 of 50

InputMSSH_End Integer 4-digit year 1999 End date for mean
InputMDT_Start Integer 4-digit year According to default

data set
Start date for mean

InputMDT_End Integer 4-digit year According to default
data set

End date for mean

Annotation String ASCII chars, including
'\n'

"Default " Description of the
object

Data
Each spatial field vector has a unique name. There are three categories of vector: input, intermediate and output.
Vectors are assigned to one of these categories depending on whether they are an input to a scientific work-flow, a final
output or an intermediate stage. Input vector names all begin with "Input". The output vectors are the official GUT
work-flow products. They each represent the final output from a scientific work-flow, and are highlighted in bold type
in the table below. Vectors storing intermediate stages in a work-flow have names that begin with the name of the final
output, plus an extra identifier starting with "-Inter". For example, the final output of Work-flow 4a is stored in a vector
called MDTC-A_Spatial, and the two intermediate stages have vectors called MDTC_A-Spatial-InterAprioriMDT and
MDTC_A-Spatial- InterMDTCorrection. The names of these data structures may need to be reviewed in the context of
their use in the command interface described in Section 5.1 ("Command Interface"), because many of the GUT method
names are derived from the names of the data structures they act on. This leads to some long and cumbersome method
names such as ExportMDTC_A-Spatial-InterMDTCorrection(), although the name completion facility in
Python would minimise the amount of typing that would be required in order to enter such a command. The idea of
using Work-flow Objects rather than a single Main Object, as discussed in the Appendix ("Using the Command
Interface"), may be an appropriate solution to the problem of rationalising the method names used in commands.

Filtering takes place during the execution of some of the scientific work-flows. GUT work-flow products can either be
filtered or unfiltered, depending on their position in the work-flow. These products must be clearly separate from the
results of "manual" filtering operations, which can be initiated by the use of the Spatial Object Filter methods. The
user can manually filter any of the input, intermediate or output fields. To avoid confusion with GUT work-flow
products, this manual filtering operation results in a new field with the same name plus a preceding "Filtered_". These
fields are not shown here. They do not play a part in any of the work-flows, and although they can be exported like any
of the other fields, they are not GUT work-flow products.

Type Name Description

Vector Lat Latitude in degrees
Default: Positions in grid of default InputMSSH

Vector Lon Longitude in degrees
Default: Positions in grid of default InputMSSH

Vector InputPotential Gravity potential
Default: None. SH coefficients are used in work-flows

Vector InputLandHeight Height of land above reference ellipsoid
Default: ETOPO2v2 digital elevation model

Vector InputGeoidHeight Geoid height
Default: EGM_GEO_2

Vector InputGravityAnomaly Not part of any work-flow. Import facility provided just
to allow grid adaptation followed by export. This facility
provides GUT_002
Default: EGM_GAN_2.

Vector InputEWDeflection Not part of any work-flow. Import facility provided just
to allow grid adaptation followed by export. This facility
provides GUT_003
Default: EGM_GVE_2

WP4000: System Specification and

Architectural Design

Page 24 of 50

Vector InputNSDeflection Not part of any work-flow. Import facility provided just
to allow grid adaptation followed by export. This facility
provides GUT_004
Default: EGM_GVN_2

Vector InputGeoidHeightVarCom Commission error variances. Not part of any work-flow.
Import facility provided just to allow grid adaptation
followed by export
Default: EGM_GER_2

Vector InputGravityAnomalyVarCom Commission error variances. Not part of any work-flow.
Import facility provided just to allow grid adaptation
followed by export
Default: EGM_GER_2

Vector InputEWDeflectionVarCom Commission error variances. Not part of any work-flow.
Import facility provided just to allow grid adaptation
followed by export
Default: EGM_GER_2

Vector InputNSDeflectionVarCom Commission error variances. Not part of any work-flow.
Import facility provided just to allow grid adaptation
followed by export
Default: EGM_GER_2

Vector InputMSSH MSSH for MDT calculations
Default: CLS01

Vector InputAverageSLA Average SLA for a period taken from a SLA time-series
Default time series: ?

Vector InputAverageADT Average ADT for a period taken from a ADT time-series
Default time series: ?

Vector InputMDT MDT
Default: OCCAM model at 1/12 degree

Vector InputMDTS Satellite MDT
Default: None (Should be output from WF3a or WF3b)

Vector GeoidHeight Geoid Height
Vector EWDeflection Gravity deflection from the vertical, E-W direction
Vector NSDeflection Gravity deflection from the vertical, N-S direction
Vector GravityAnomaly Gravity anomaly
Vector GeoidHeightVarCom Commission error variances of Geoid Height. This will

not be included in the first release of GUT
Vector EWDeflectionVarCom Commission error variances of Gravity deflection from

the vertical, E-W direction. This will not be included in
the first release of GUT

Vector NSDeflectionVarCom Commission error variances of Gravity deflection from
the vertical, N-S direction. This will not be included in
the first release of GUT

Vector GravityAnomalyVarCom Commission error variances of Gravity anomaly. This
will not be included in the first release of GUT

Vector GeoidHeightVarOm Omission error variances of Geoid Height
Vector EWDeflectionVarOm Omission error variances of Gravity deflection from the

vertical, E-W direction
Vector NSDeflectionVarOm Omission error variances of Gravity deflection from the

vertical, N-S direction
Vector GravityAnomalyVarOm Omission error variances of Gravity anomaly

WP4000: System Specification and

Architectural Design

Page 25 of 50

Vector MSSH_Average MSSH calculated using reference MSSH and average
SLA

Vector MDT_Average MDT calculated using reference MDT and average SLA
Vector MDTS_Spatial MDTS from WF3a
Vector MDTS_Spatial-

 InterMDTS
Unfiltered MDTS

Vector MDTS_Spectral MDTS from WF3b
Vector MDTS_Spectral-

 InterMSSH
Intermediate MSSH. Spatial field not created in work-
flow

Vector MDTS_Spectral-
 InterGeoidHeight

Intermediate geoid height. Spatial field not created in
work-flow

Vector MDTS_Spectral-
 InterMDTS

Intermediate MDTS.

Vector MDTC_A-Spatial MDTC, RR method A in spatial domain
Vector MDTC_A-Spatial-

 InterAprioriMDT
A-priori MDT

Vector MDTC_A-Spatial-
 InterMDTCorrection

MDT correction

Vector MDTC_A-Spectral MDTC, RR method A in spectral domain
Vector MDTC_A-Spectral-

 InterAprioriMDT
A-priori MDT. The spectral version of this field is
calculated in the WF

Vector MDTC_A-Spectral-
 InterSmoothAprioriMDT

Smooth A-priori MDT. The spectral version of this field
is calculated in the WF

Vector MDTC_A-Spectral-
 InterMDTCorrection

MDT correction. The spectral version of this field is
calculated in the WF

Vector MDTC_B-Spatial MTDC, RR method B in spatial domain
Vector MDTC_B-Spatial-

 InterUnfilteredMDTCorrection
MSSH – geoid – MDT

Vector MDTC_B-Spatial-
 InterMDTCorrection

Filtered {MSSH – geoid –MDT}

Vector MDTC_B-Spectral MTDC, RR method B in spectral domain
Vector MDTC_B-Spectral-

 InterAprioriGeoidHeight
MSSH – MDT, with gaps filled with geoid

Vector MDTC_B-Spectral-
 InterGeoidHeight

Intermediate geoid. The spectral version of this field is
calculated in the WF

Vector MDTC_B-Spectral-
 InterUnfilteredMDTCorrection

A-priori-geoid - geoid. The spectral version of this field
is calculated in the WF

Vector MDTC_B-Spectral-
 InterMDTCorrection

Filtered {MSSH – geoid. – MDT}. The spectral version
of this field is calculated in the WF

Vector MDTC_B-Spectral-
 InterAprioriMDT

Filtered a-priori MDT. The spectral version of this field is
calculated in the WF

Vector NVelocity Northwards component of geostrophic current

Spectral Object

Attributes

Name Type Possible values Default value Description
MaxDegOrdPotential Integer In range 1 to 250 250 Maximum degree & order

WP4000: System Specification and

Architectural Design

Page 26 of 50

of SH coefficients
representing the gravity

potential
MaxDegOrdSurface Integer In range 1 to default for

MaxDegOrdPotential
Default for

MaxDegOrdPotential
Maximum degree & order
for SH analysis of spatial
fields, i.e. for converting
from spatial to spectral

space
Annotation String ASCII chars, including

'\n'
"Default " Description of the object

Data
The Spectral Object has a 2D array equivalent to every vector in the Spatial Object. The names of the arrays in the
Spectral Object are the same as the names of the vectors in the Spatial Object. Spatial fields can be converted to an
array of SH coefficients during the course of a scientific work-flow. Any spatial field in the Spatial Object can also be
manually converted to spectral space using a Spatial Object Convert method. The result of these conversions is
stored as an array in the Spectral Object. The only data that are supplied in spectral form by default in GUT are the SH
coefficients of the gravity potential. To avoid repeating most of the information in the Spatial Object data table above,
the only two Spectral Object array that is shown in the table below is for the gravity potential coefficients, because this
is the only Spectral Object array that does not have a corresponding vector in the Spatial Object. All the other arrays
are undefined until a spatial field is converted to spectral space during a user session.

Type Name Description

Covar Object

Attributes

Name

Type Possible
values

Default
value

Description

ErrorFunctionStart Float ? None Starting distance for evaluation of omission
error covariance function

ErrorFunctionEnd Float ? None Ending distance for evaluation of omission
error covariance function

ErrorFunctionInterval Float ? None Interval for evaluation of omission error
covariance function

Annotation String ASCII chars,
including '\n'

"Default
"

Description of the object

Data

Name Type Description
Lon Vector Longitudes for positions for error covariance

calculations
Lat Vector Latitudes for positions for error covariance calculations

GeoidHeightCovOm 2D Array Omission error variance-covariance matrix
GeoidHeightCovOmFunction Vector Evaluation of omission error covariance function of

distance
GravityAnomalyCovOm 2D Array Omission error variance-covariance matrix

GravityAnomalyCovOmFunction Vector Evaluation of omission error covariance function of
distance

WP4000: System Specification and

Architectural Design

Page 27 of 50

EWDeflectionCovOm 2D Array Omission error variance-covariance matrix
EWDeflectionCovOmFunction Vector Evaluation of omission error covariance function of

distance
NSDeflectionCovOm 2D Array Omission error variance-covariance matrix

NSDeflectionCovOmFunction Vector Evaluation of omission error covariance function of
distance

InputPotentialCovCom

2D Array Error covariance matrix for SH coefficients of the
gravity potential. This matrix is not part of the IDS.
Instead, the path to the matrix in ICGEM format is

stored by Covar Object attribute
InputPotentialCovComPath.

 This data structure will not be included in the first
release of GUT

Default: EGM_GVC_2
GeoidHeightCovCom 2D Array Commission error variance-covariance matrix. This will

not be included in the first release of GUT
GravityAnomalyCovCom 2D Array Commission error variance-covariance matrix. This will

not be included in the first release of GUT
EWDeflectionCovCom 2D Array Commission error variance-covariance matrix. This will

not be included in the first release of GUT
NSDeflectionCovCom 2D Array Commission error variance-covariance matrix. This will

not be included in the first release of GUT

Filter Object

Attributes

Name Type Possible values Default value Description

Type Flag Python constants:
SPATIAL_JEKELI,
SPATIAL_GAUSSIAN,

SPATIAL_CAP,
SPATIAL_HANNING,
SPATIAL_HAMMING,
SPECTRAL_JEKELI or
SPECTRAL_PELLINEN

Python constant:
SPATIAL_JEKELI

Filter type

Scale Integer ? ? Length scale
Annotation String ASCII chars, including '\n' "Default " Description of the object

Data

Name Type Description
Matrix 2D Array Filter matrix

8. LOGICAL MODEL OF SYSTEM FUNCTIONALITY
This section discusses the units of computational work and data flows involved in setting up the internal data store and
executing the scientific work-flows. Python syntax is used to specify names of logical data structures according to the

WP4000: System Specification and

Architectural Design

Page 28 of 50

Object they belong to in the user environment. The calculation of commission error variances and covariances is not
mentioned explicitly in any of the discussions concerning scientific work-flows. This is because the ability to handle
the error covariance matrix of the SH coefficients of gravity potential is not going to be in the first release of GUT, as
discussed in the Introduction to this report. For the first release of GUT, calculation of covariance error variances will
instead be provided by interpolation of the relevant GOCE L2 products, EGM_GER_2. This can be achieved by
importing the relevant products into "Input" logical data structures in the Spatial Object. The Import methods in GUT
deal with adapting data to the current, specified grid and reference system, as described in Section 6 ("Specification of
Input and Output").

8.1. Processing Units

The Processing Units described in this section are related to the Functional Algorithms described in the WP3000 report.
They are units of computational work involved in the pre-processing of data and the execution of the scientific work-
flows. They are large computational tasks involving one or more spatial or spectral fields. All Processing Units have
the following types of input and output.
Input:
- One or more attributes
- One or more data structures representing spatial and/or spectral fields
- Other large data structures such as a filter matrix
Output:
- One or more data structures representing spatial and/or spectral fields
- Other large data structures such as a filter matrix

The Processing Units represent computationally expensive tasks because they each involve a large amount of data.
Therefore, they are not likely to be implemented in Python. Instead, they will probably be implemented in C or Fortran
as described in Section 3 ("Toolbox Components"). They all exchange data with the internal data store independently
of the parent Python application. In the data-flow diagrams in the next section, the output of one Processing Unit is
often shown going directly into another Processing Unit. In most cases the output is also shown being directed to a
logical data structure corresponding to a scientifically interesting work-flow product. However, in some cases no
logical data structure is specified. All transfers of data take place via the internal data store, but logical data structures
are not shown unless they correspond to a scientifically interesting intermediate work-flow product.

Each Processing Unit is numbered according to the Functional Algorithm it relates to. The preference selection tasks
are not represented by Processing Units because they simply involve assigning values to attributes. That is why there is
no Processing Unit related to Functional Algorithm FA01, because selecting the required degree and order for SH
synthesis is not a computationally expensive task. However, Functional Algorithms FA02 and FA03, concerning the
reference ellipsoid and tide system, are associated with a Processing Unit because they are a mixture of preference
selection and data pre-processing. The preference selection part involves assigning values to the attributes defining the
ellipsoid and tide system, and the data pre-processing part involves adapting any existing data in the internal data store
to the new parameters. Preference selection methods are discussed in the Section 5.1 ("Command Interface") and in the
Appendix ("Using the Command Interface"). Processing Units PU15a, PU15b, PU16 and PU17 do not relate to any of
the Functional Algorithms.

The Processing Units are described below, with reference to the logical data structures, the Functional Algorithms from
WP3000 and the algorithms corresponding to the GUT Products from WP2000. In the Processing Unit definitions,
some inputs and outputs are not explicitly mentioned. Firstly, all Processing Units that deal with spatial field vectors
have the following attributes as input:
- Spatial Object grid or point list specification parameters

- Spatial.GridType
- Spatial.LatMin, Spatial.LatMax, Spatial.LatCell
- Spatial.Lat

WP4000: System Specification and

Architectural Design

Page 29 of 50

- Spatial.LonMin, Spatial.LonMax, Spatial.LonCell
- Spatial.Lon

Similarly, all Processing Units that deal with surface SH coefficient arrays in the Spectral Object have input from the
Spectral.MaxDegOrdSurface attribute, and all Processing Units that deal with SH coefficients of the gravity
potential have input from the Spectral.MaxDegOrdPotential attribute.

All Processing Units take input from the Main Object reference system parameters, defined by the following attributes:

o Main.Ellips_GM
o Main.Ellips_a
o Main.Ellips_gamma_a
o Main.Ellips_f
o Main.Ellips_J2
o Main.Ellips_omega
o Main.TideSys

Pre-processing Units

PU02: Reference ellipsoid adaptation
Adapts one spatial field vector to a new reference ellipsoid specification, using one of the GUT Product algorithms in
the range GUT_104 to GUT_105.
Input:
- One Spatial Object vector
- Reference ellipsoid parameters for the vector
- Current Main Object reference ellipsoid parameters

o Main.Ellips_GM
o Main.Ellips_a
o Main.Ellips_gamma_a
o Main.Ellips_f
o Main.Ellips_J2
o Main.Ellips_omega

Output:
- One Spatial Object vector

PU03a: Tide system adaptation in geographical space
Adapts one spatial field vector to a new tide system, using one of the GUT Product algorithms in the range GUT_106 to
GUT_107.
Input:
- One Spatial Object vector
- Tide system specifier for the vector
- Current Main Object tide system specifier

o Main.TideSys
Output:
- One Spatial Object vector

PU03b: Tide system adaptation in spectral space

WP4000: System Specification and

Architectural Design

Page 30 of 50

Adapts one set of gravity field potential SH coefficients to a new tide system, using the algorithms described in the
definition of FA03. There is no GUT Product algorithm corresponding to this Processing Unit.
Input:
- One Spectral Object array

o Spectral.InputPotential
- Tide system specifier for those coefficients
- Current Main Object tide system specifier

o Main.TideSys
- Maximum degree and order of SH coefficients

o Spectral.MaxDegOrdPotential
Output:
- One Spectral Object array

o Spectral.InputPotential

PU07: Time series averaging
Calculates the average value of one spatial field for a period of a time-series, using the algorithm described in the
definition of FA07. There is no GUT Product algorithm corresponding to this Processing Unit.
Input:
- Time-series of a spatial field, on a grid or point list
- Spatial field identifier
- Grid or point list specification parameters describing time series
- Start and end dates for calculation of averages
Output:
- A spatial field on a grid or point list

PU08: Grid adaptation
Adapts one gridded spatial field to a new grid or point list specification, using the algorithm for GUT Product
GUT_110.
Input:
- A spatial field on a grid
- Spatial field identifier
- Grid specification parameters describing spatial field
- Spatial Object grid or point list specification parameters

- Spatial.GridType
- Spatial.LatMin, Spatial.LatMax, Spatial.LatCell
- Spatial.Lat
- Spatial.LonMin, Spatial.LonMax, Spatial.LonCell
- Spatial.Lon

Output:
- One Spatial Object vector

Work-flow Processing Units

PU04a: SH synthesis from SH coefficients gravity potential
Computes one geodetic field on a grid or point list, starting from the SH coefficients of the gravity field potential. The
geodetic field is either geoid height, gravity anomaly or deflection from the vertical. This Processing Unit corresponds
to FA04 with either geoid height, gravity anomaly or geoid deflection specified as an option. One GUT Product
algorithm in the range GUT_005 to GUT_012 is used during the execution of this Processing Unit.

WP4000: System Specification and

Architectural Design

Page 31 of 50

Input:
- Geodetic output field specifier

o Main.GeodeticCalc
- SH Coefficients of gravity potential

o Spectral.InputPotential
- Maximum degree and order of potential SH coefficients to be used in the synthesis

o Spatial.MaxDegOrdPotential
- Calculation type

o Spatial.GridCalc
- Grid or point list specification

o Spatial.GridType
o Spatial.LatMin, Spatial.LatMax, Spatial.LatCell
o Spatial.Lat
o Spatial.LonMin, Spatial.LonMax, Spatial.LonCell
o Spatial.Lon

Output:
- One Spatial Object vector, or pair of vectors in the case of gravity field deflection

PU4b: SH synthesis from surface SH coefficients
Converts one set of surface SH coefficients to geographical space. This Processing Unit corresponds to FA04 with
Dynamic Topography specified as an option, but it is not restricted to SH synthesis of Dynamic Topography fields.
PU04b can be used for SH synthesis from any set of surface SH coefficients. An algorithm similar to those defined in
GUT_005 to GUT_012 could be used to perform the SH synthesis.

Input:
- Spectral Object array containing surface SH Coefficients
- Maximum degree and order of surface SH coefficients to be used in the synthesis

o Spatial.MaxDegOrdSurface
Output:
- One Spatial Object vector

PU05: Commission error determination
The first release of GUT will not include the ability to calculate commission error variances and covariances, as
discussed in the Introduction to this report. This Processing Unit is included for completeness, although it is not used in
any of the scientific work-flows described in this report. In the first release of GUT, commission error variance data for
the geoid height, deflection and gravity anomaly fields will be provided by allowing the user to import the relevant
gridded GOCE error products (EGM_GER_2).

This Processing Unit computes commission error variance and covariance for one geodetic output field. GUT Product
algorithms in the range GUT_016 to GUT_031 are used for each execution of this Processing Unit.
Input:
- Geodetic output field specifier

o Main.GeodeticCalc
- SH Coefficients of gravity potential

o Spectral.InputPotential
- Error covariance matrix of SH coefficients of gravity potential

o Covar.InputPotentialCovCom
- Maximum degree and order of potential SH coefficients in Spectral Object

o Spectral.MaxDegOrdPotential

WP4000: System Specification and

Architectural Design

Page 32 of 50

- Maximum degree and order for SH sythesis of potential SH coefficients
o Spatial.MaxDegOrdPotential

- Calculation type
o Spatial.GridCalc

- Grid or point list specification
o Spatial.GridType
o Spatial.LatMin, Spatial.LatMax, Spatial.LatCell
o Spatial.Lat
o Spatial.LonMin, Spatial.LonMax, Spatial.LonCell
o Spatial.Lon

- Specification of a pair of points
o Covar.Lat
o Covar.Lon

Output:
- One Spatial Object vector containing commission error variances
- One Covar Object array containing commission error covariances

PU06: Omission error determination
Computes omission error variance and covariance for one geodetic output field. One of the GUT Product algorithms in
the range GUT_032 to GUT_039 is used for this Processing Unit.
Input:
- Geodetic output field specifier

o Main.GeodeticCalc
- SH Coefficients of gravity potential

o Spectral.InputPotential
- Maximum degree and order of potential SH coefficients in Spectral Object

o Spectral.MaxDegOrdPotential
- Maximum degree and order for SH sythesis of potential SH coefficients

o Spatial.MaxDegOrdPotential
- Calculation type

o Spatial.GridCalc
- Grid or point list specification

o Spatial.GridType
o Spatial.LatMin, Spatial.LatMax, Spatial.LatCell
o Spatial.Lat
o Spatial.LonMin, Spatial.LonMax, Spatial.LonCell
o Spatial.Lon

- Specification of a pair of points
o Covar.Lat
o Covar.Lon

- Specification of function evaluation parameters
Output:
- One Spatial Object vector containing omission error variances
- One Covar Object array containing omission error covariances
- One Covar Object vector containing evaluation of omission error function

PU09: Linear filter (spatial)
Filters one spatial field, using one of five types of linear filter. Filtering algorithms are discussed in the WP3000 report.
Input:
- One spatial field vector in Spatial Object
- Filter identifier and scale parameter

WP4000: System Specification and

Architectural Design

Page 33 of 50

o Filter.Type
o Filter.Scale

- Filter matrix (if this filter has already been used for the current Spatial Object grid)
o Filter.Matrix

Output:
- One spatial field vector in Spatial Object
- Filter matrix

o Filter.Matrix

PU10: Linear filter (spectral)
Filters one array of surface SH coefficients, using either of two types of linear filter. Filtering algorithms are discussed
in the WP3000 report.
- One array of surface SH coefficients
- Filter identifier and scale parameter

o Filter.Type
o Filter.Scale

- Filter matrix (if this filter has already been used for the current value of Spectral.MaxDegOrdSurface)
o Filter.Matrix

Output:
- One array of surface SH coefficients
- Filter matrix

o Filter.Matrix

PU11a: Fill gaps on continent with another global field
Fills continental gaps in one spatial ocean field using values from global gridded field. This Processing Unit is
designed for filling continental gaps in MSSH. The appropriate algorithm for this processing unit is described in the
description of FA11 in the WP3000 report.
Input:
- One Spatial Object vector with gaps over continents
- One Spatial Object global gridded field for filling the continental gaps in the ocean field
Output:
- One Spatial Object vector

PU11b: Fill gaps on continent with zeros
Fills continental gaps in one spatial ocean field with zeros. This Processing Unit is designed for filling continental gaps
in MDT. The appropriate algorithm for this processing unit is described in the description of FA11 in WP3000.
Input:
- One Spatial Object vector with gaps over continents
Output:
- One Spatial Object vector

PU12: SH analysis
Calculates surface SH coefficients for one global, gridded field, using GUT Product algorithm GUT_103.
Input:
- One Spatial Object vector
- Maximum degree and order for surface SH coefficients

o Spectral.MaxDegOrdSurface
Output:
- One Spectral Object SH coefficient array

WP4000: System Specification and

Architectural Design

Page 34 of 50

PU13: Surface current determination
Calculates northward and eastward components of surface current for one Spatial Object MDT vector. One of two
GUT Product algorithms is used during the execution of this Processing Unit: GUT_013 if the Spatial Object data
structures specify a grid, and GUT_014 if the Spatial Object data structures specify a point list.
Input:
- Spatial Object MDT vector
Output:
- Spatial Object vector of Northwards component of velocity
- Spatial Object vector of Eastwards component of velocity

PU14a: Sum of two spatial fields
Adds two spatial fields using GUT Product algorithm GUT_100.
Input:
- Two Spatial Object fields
Output:
- One spatial Object field

PU14b: Difference of two spatial fields
Subtracts two spatial fields using GUT Product algorithm GUT_101.
Input:
- Two Spatial Object fields
Output:
- One spatial Object field

PU15a: Sum of two spectral fields
Adds two spectral fields. No algorithm for this Processing Unit is defined in the reports from WP2000 and WP3000.
Input:
- Two Spectral Object fields
Output:
- One Spectral Object field

PU15b: Difference of two spectral fields
Subtracts two spectral fields. No algorithm for this Processing Unit is defined in the reports from WP2000 and
WP3000.
Input:
- Two Spectral Object fields
Output:
- One Spectral Object field

PU16: Calculation of geoid height in spectral space
Calculates surface SH coefficients of the geoid height field. No algorithm for this Processing Unit is specified in the
reports from WP2000 and WP3000.
Input:
- SH Coefficients of gravity potential

o Spectral.InputPotential
- Maximum degree and order for SH synthesis of geoid height

o Spatial.MaxDegOrdPotential
- Maximum degree and order for SH analysis

o Spectral.MaxDegOrdSurface

WP4000: System Specification and

Architectural Design

Page 35 of 50

Output:
- One array of Surface SH coefficients in the Spectral Object

PU17: Calculation of mean from reference field and average SLA.
Calculates the mean value of a spatial field on a grid or list of points (M), from the reference mean field (REF) and the
average SLA for the time period of interest (MSLA). Algorithm: M = REF + MSLA
Input:
- Reference field vector in Spatial Object
- Mean SLA for time period of interest

o Spatial.InputAverageSLA
Output
- One Spatial Object vector

8.2. Scientific Data Flows

This section relates the work-flows from WP3000 to the Processing Units and the logical data structures defined in
Section 7 ("Specification of Logical Data Structures"), i.e. the attributes, vectors and arrays associated with the various
types of Object in the user environment. The figures in this section show a series of data-flow diagrams to accompany
the scientific work-flows from WP3000. There is a data-flow diagram for each scientific work-flow. Python notation is
used to describe the data structures, which are labelled according to the following convention.
ObjectName.DataStructureName

The main difference between the data-flow diagrams and the work-flow diagrams is that preference selection and data
pre-processing stages are not shown. The results of preference selection decisions taken by the user are stored in the
values of attributes. Similarly, the data pre-processing stages such as grid and reference system adaptation are not
shown in the data-flows, because data in the logical data structures has already been through those processes. One
advantage of this pre-processing approach is that time consuming processing steps such as grid adaptation do not need
to be repeated each time a work-flow calculation is performed. In the data-flow diagrams, all the possible end-points
are indicated by shaded boxes. To execute a work-flow up to one of the end points, the Calc method corresponding to
the desired intermediate or output data structure is used, as described in Section 5.1 ("Command Interface").

All Processing Units take input from, and send output to real data structures in the internal data store. Therefore, all
data transfer between processing units shown in the data-flow diagrams takes place via the internal data store. Logical
data structures corresponding to these transfers are not shown, except in cases where they correspond to scientifically
interesting work-flow products that were included in the work-flow diagrams in the WP3000 report. The scientifically
interesting products are directed to intermediate logical data structures, which are accessible to the user. Extra
scientifically interesting intermediate data structures can easily be added at a later time. Inputs to, and outputs from
Processing Units that come from fixed logical data structures are omitted from the data-flow diagrams. The Process
Unit definitions contain details of these fixed inputs and outputs. In cases where the output of one work-flow is to be
used as the input to another work-flow, the output from the first work-flow must be exported to an external file, and
then imported into the appropriate input logical data structure for the second work-flow.

WP4000: System Specification and

Architectural Design

Page 36 of 50

PU04a
SH synthesis

Spatial.
 GeoidHeight
or
Spatial.
 GravityAnomaly
or
Spatial.
 EWDeflection
Spatial.
 NSDeflection

 Input Processing Output

Geodetic field
specifier
Main.GeodeticCalc

Data-flow 1a: Geoid and gravity field computation.

 Input Processing Output

WP4000: System Specification and

Architectural Design

Page 37 of 50

PU06
Omission error
determination

Omission error products
Spatial.
 GeoidHeightVarOm
Covar.
 GeoidHeightCovOm
Covar.
 GeoidHeightCovOmFunction

Or, equivalent products for gravity
anomaly or deflection

 Input Processing Output

Geodetic field
specifier
Main.GeodeticCalc

Data-flow 1b. Omission error computation for geoid and gravity field.
 Note: Commission error variances for any grid or point list can be obtained by importing GOCE L2 error

variance products. The import procedure performs adaptation of the error fields to the desired grid and reference

WP4000: System Specification and

Architectural Design

Page 38 of 50

SLA time series in
external file

PU07
Calculate average for period of
interest, specified by user input

to Import method below.
Spatial.
 ImportInputAverageSLA()

Average SLA for period of
interest, specified by user as
Import method parameters
Spatial.
 InputAverageSLA

Reference MSSH
Spatial.InputMSSH

PU17
Calculation of mean from reference

field and average SLA

MSSH
Spatial.MSSH_Average

PU08
Adapt to Spatial Object

grid or point

ADT time series in
external file

PU07
Calculate average for period of
interest, specified by user input
to Import method below
Spatial.
 ImportInputAverageADT()

Average ADT for period of
interest, specified by user as
Import method parameters
Spatial.
 InputAverageADT

PU17
Calculation of mean from reference

field and average SLA

MDT
Spatial.MDT_Average

Reference MDT
Spatial.InputMDT

PU08
Adapt to Spatial Object

grid or point list

Data-flow 2. Sea surface height and a-priori MDT selection
This data-flow diagram corresponds to Work-flow 2, which covers calculating the average for a period of a time
series and also calculating a new mean field from the reference mean field and the average SLA in the period of

interest. The Import methods for average SLA and ADT perform averaging and grid adaptation

 Input Processing Output

WP4000: System Specification and

Architectural Design

Page 39 of 50

MSSH
Spatial.
 InputMSSH

PU14b
Difference:

MSSH – geoid

Unfiltered MDTS
Spatial.
 MDTS_Spatial-InterMDTS

PU09
Spatial Filter

MDTS
Spatial.
 MDTS_Spatial

 Input Processing Output

Geoid height
Spatial.
 InputGeoidHeight

Data-flow 3a. Satellite Dynamic Topography computation in geographical space

WP4000: System Specification and

Architectural Design

Page 40 of 50

MSSH
Spatial.
 InputMSSH

SH coefficients of gravity potential
Spectral.
 InputPotential

Filter matrix &
parameters
Filter.Matrix
Filter.Type
Filter.Scale

Geoid height
Spatial.
 InputGeoidHeight

PU11a
Fill gaps

PU12
Convert MSSH to SH

coefficients

SH coefficients for
MSSH
Spectral.
 MDTS_Spectral-
 InterMSSH

PU15b
Difference:

MSSH – geoid

SH coefficients for
unfiltered MDTS
Spectral.
 MDTS_Spectral-
 InterMDTS

PU10
Spectral

Filter

PU04b
SH synthesis of

MDTS

MDTS
Spatial.
 MDTS_Spectral

Unfiltered MDTS
Spatial.
 MDTS_Spectral-
 InterMDTS

 Input Processing Output

Spatial or
spectral
filter?

PU09
Spatial
Filter

PU04b
SH synthesis of

MDTS

spatial

spectral

PU16
Calculate

surface SH
coeffs. of geoid

height

SH coefficients for geoid
height
Spectral.
 MDTS_Spectral-
 InterGeoidHeight

Data-flow 3b. Satellite Dynamic Topography computation in spectral space

WP4000: System Specification and

Architectural Design

Page 41 of 50

A-priori MDT
Spatial.
 InputMDT

 Input Processing Output

PU09
Spatial Filter

Filtered a-priori MDT on MDTS grid
Spatial.
 MDTC_A-Spatial-
 InterAprioriMDT

PU14b
Difference:

A-priori MDT –
filtered a-priori

MDT

MDT correction
Spatial.
 MDTC_A-Spatial-
 InterMDTCorrection

PU14a
Sum:

MDTS + MDT
correction

MDTC
Spatial.
 MDTC_A-Spatial

Data-flow 4a: Remove-Restore combined technique A: spatial filtering

Satellite MDT (MDTS)
Spatial.
 InputMDTS

WP4000: System Specification and

Architectural Design

Page 42 of 50

A-priori MDT
Spatial.
 InputMDT

PU11b
Fill gaps with 0

SH Coefficients for a-priori MDT
Spectral.
 MDTC_A-Spectral-
 InterAprioriMDT

PU12
Convert MDT to SH

coefficients

PU10
Spectral

Filter

SH Coefficients for smooth a-priori MDT
Spectral.
 MDTC_A-Spectral-
 InterSmoothAprioriMDT

PU15b
Difference:

A-priori MDT –
 smooth a-priori MDT

PU15a
Sum:

MDTS + MDT
Correction

SH Coefficients for MDT Correction
Spectral.
 MDTC_A-Spectral-
 InterMDTCorrection

PU04b
SH synthesis of

MDTC

SH Coefficients for MDT C
Spectral.
 MDTC_A-Spectral

MDTC
Spatial.
 MDTC_A-Spectral

 Input Processing Output

Data-flow 4b: Remove-Restore combined technique A: spectral filtering

Satellite MDT (MDTS)
Spatial.
 InputMDTS

WP4000: System Specification and

Architectural Design

Page 43 of 50

A-priori MDT
Spatial.
 InputMDT

Geoid
Spatial.
 InputGeoidHeight

MSSH
Spatial.
 InputMSSH

PU14b
Difference:

{MSSH – geoid}
– a-priori MDT

Unfiltered MDT correction
Spatial.
 MDTC_B-Spatial-
 InterUnfilteredMDTCorrection

PU09
Spatial
Filter

MDT correction
Spatial.
 MDTC_B-Spatial-
 InterMDTCorrection

A-priori MDT
Spatial.
 InputMDT

PU14a
Sum:

A-priori MDT
Correction

MDTC
Spatial.
 MDTC_B-Spatial

 Input Processing Output

PU14b
Difference:

MSSH – geoid

Data-flow 4c: Remove-Restore combined technique B: spatial filtering

WP4000: System Specification and

Architectural Design

Page 44 of 50

A-priori MDT
Spatial.
 InputMDT

MSSH
Spatial.
 InputMSSH

PU14b
Difference:

MSSH – a-priori MDT

Geoid Height
Spatial.
 InputGeoidHeight

PU11a
Fill gaps

Piecewise a-priori geoid
Spatial.
 MDTC_B-Spectral-
 InterAprioriGeoidHeight

PU12
Convert to surface SH

coefficients

SH coefficients of piecewise a-
priori geoid
Spectral.
 MDTC_B-Spectral-
 InterAprioriGeoidHeight

PU16
Calculate surface

SH coeffs. of
geoid height

PU15b Difference:
Piecewise a-priori geoid -

geoid

SH coefficients of geoid height
Spectral.
 MDTC_B-Spectral-
 InterGeoidHeight

PU10
Spectral

Filter

SH coefficients of filtered
MDT correction
Spectral.
 MDTC_B-Spectral-
 InterMDTCorrection

SH coefficients of unfiltered MDT
correction
Spectral.
 MDTC_B-Spectral-
 InterUnfilteredMDTCorrection

A-priori MDT
Spatial.
 InputMDT

PU10
Spectral

Filter

SH coefficients of filtered a-priori
MDT
Spectral.
 MDTC_B-Spectral-
 InterAprioriMDT

PU15a Sum
Filtered a-priori MDT +
correction

SH coefficients of
MDTC
Spectral.
 MDTC_B-Spectral

PU04b
SH synthesis

MDTC
Spatial.
 MDTC_B-Spectral

Workflow 4d: Remove-Restore combined technique B: spectral filtering

SH coefficients of gravity potential
Spectral.
 InputPotential

PU11b
Fill
gaps

PU12
Convert to SH

WP4000: System Specification and

Architectural Design

Page 45 of 50

MDT
Spatial.
 InputMDT

PU13
Surface Current
Determination

Geostrophic current
Spatial.
 NVelocity
Spatial.
 EVelocity

 Input Processing Output

Data-flow 5: Dynamic Topography-derived quantities

9. LIST OF ABBREVIATIONS
API Application Program Interface
ASCII American Standard Code for

Information Interchange
BEAT Basic Envisat Atmospheric Toolbox
BRAT Basic Radar Altimetry Toolbox
CDAT Climate Data Analysis Tool
DT Dynamic Topography
ESA European Space Agency
FTP File Transfer Protocol
GDR Geophysical Data Record
GMT Generalised Mapping Tool
GOCE Gravity Ocean Circulation Explorer
GUI Graphical User Interface
GUT GOCE User Toolbox
GUTS GOCE User Toolbox Specification
HPF High level Processing Facility
ICGEM ?
IDE Integrated Development Environment
IDS Internal Data Store
MDT Mean Dynamic Topography
MDTC Combined MDT
MDTS Satellite MDT
MSSH Mean Sea Surface Height
NetCDF Network Common Data Form
RR Remove-Restore
SH Spherical Harmonic
SLA Sea Level Anomaly
SSH Sea Surface Height
VTK Visualisation Toolkit
WF Work-flow
WP Work-plan

10. REFERENCES
1. Knusden, P. et al, GUTS User Toolbox Requirements Document, 2006

WP4000: System Specification and

Architectural Design

Page 46 of 50

2. Siegismund, F. et al, GUTS Toolbox Functionality and Algorithm Specification Report
3. Bos, A., Cadot, S., Neimeijer, S., Envisat Atmospheric Toolbox – Software Specification Document Part B: VISAN,

Science [&] Technology Corporation, March 2002
4. Python.org - http://www.python.org/
5. Python.org - http://docs.python.org/ext/intro.html
6. SciPy.org - http://www.scipy.org/
7. Science [&] Technology bv - http://www.science-and-technology.nl/beat/documentation/visan.html
8. The MathWorks - http://www.mathworks.com/
9. Program for Climate Model Diagnosis and Intercomparison (PCMDI) - http://www-pcmdi.llnl.gov/software-

portal/cdat/
10. Unidata - http://ftp.unidata.ucar.edu/

software/netcdf/
11. wxWindows.org - http://www.wxwindows.org/
12. CLS - http://www.cls.fr/html/oceano/

general/applications/ccn_heracles_en.html
13. VTK.org - http://www.vtk.org/
14. School of Ocean and Earth Science Technology (SOEST), University of Hawaii -

http://www.soest.hawaii.edu/gmt/
15. Eclipse.org - http://www.eclipse.org/
16. NetBeans.org - http://www.netbeans.org/
17. ITT Visual Information Solutions - http://www.ittvis.com/idl/
18. GOCE Level 2 Product Handbook

11. Appendix: Using the Command Interface
The user interacts with GUT by entering commands to execute Python methods. We could also describe this as calling
Python methods, running Python methods or invoking Python methods. The idea is for the user to set up a Main Object
with one particular work-flow in mind, and then to execute a single method that performs calculations leading to the
output of the desired product. To allow the user to experiment with one particular part of a scientific work-flow,
methods for performing calculations up to intermediate stages are provided. After finishing with one particular work-
flow, the user can then turn his or her attention to another work-flow, making any necessary changes to the attributes
and data in the Main Object. Alternatively, it may be easier to start again from scratch with a new Main Object. As an
extension to the concept of the Main Object, it would be possible to design a user interface based on a set of Work-flow
Objects, one for each of the GUT work-flows. A Work-Flow Object would be the same as a Main Object, except that
only the attributes, data and methods relating to one particular work-flow would be present. This would simplify the
command interface and enable the names of the Python methods used in commands to be rationalized. This is because
many of the method names are derived from the names of the logical data structures they act on; a Work-flow Object
dealing with only one particular work-flow would need a much reduced set of logical data structures and corresponding
methods, which could, as a consequence have shorter names. For example, a Work-flow Object dealing with Work-
flow 3a would only need to have one type of output MDT. In the Main Object there are six types of MDT output, all of
which must have different names so that the user has a record of which work-flow was used to produce them. It would
be useful for two or more Work-flow Objects to be able to share the same internal data store in order to avoid
unnecessary duplication of data on disk. Work-flow Objects are not discussed further in this document, but this
approach should be considered for implementation in the first release of GUT.

The command interface includes methods for preference selection, data pre-processing and carrying out work-flow
calculations. Preference selection tasks are accomplished by assigning values to attributes. Most data pre-processing
occurs when data from external sources is imported into the internal data store using Import methods. Work-flow
calculations are initiated by executing the Calc method associated with the desired work-flow output data structure.
The main preference selection tasks involve grid parameters, the maximum degree and order of SH coefficients, the
reference ellipsoid and the tide system. These are discussed separately below.

http://www.python.org/
http://docs.python.org/ext/intro.html
http://www.scipy.org/
http://www.science-and-technology.nl/beat/documentation/visan.html
http://www.mathworks.com/
http://www-pcmdi.llnl.gov/software-portal/cdat/%20
http://www-pcmdi.llnl.gov/software-portal/cdat/%20
http://ftp.unidata.ucar.edu/software/netcdf/
http://ftp.unidata.ucar.edu/software/netcdf/
http://www.wxwindows.org/
http://www.cls.fr/html/oceano/general/applications/ccn_heracles_en.html
http://www.cls.fr/html/oceano/general/applications/ccn_heracles_en.html
http://www.vtk.org/
http://www.soest.hawaii.edu/gmt/
http://www.eclipse.org/
http://www.netbeans.org/
http://www.ittvis.com/idl/

WP4000: System Specification and

Architectural Design

Page 47 of 50

Grid specification
The Spatial Object attributes LatMin, LatMax, LonMin, LonMax, LatCell and LonCell are used to
define a regular grid. If all these values are defined then the Spatial Object represents a regular grid, and the value of
Spatial Object attribute GridType is REGULAR. If LatCell and LonCell are undefined (i.e. set to None,
Python's null value) then the Spatial Object represents an irregular or unstructured grid, and the value of the GridType
attribute is UNSTRUCTURED. If they are all undefined then the Spatial Object represents a set of positions, and the
value of the GridType attribute is LIST. There are three ways in which these attributes can be changed.

1. Creating a new Spatial Object from scratch using the Spatial Object New() method. The Spatial Object is
over-written with the default attributes and data (default MSSH and grid).

2. Importing gridded data into a blank Spatial Object. A blank Spatial Object has all its attributes and data set to
None, and can be created using the Spatial Object Blank() method. Data can be imported into any field. If
the file's metadata contains all seven grid specification parameters then these are used to define the values the
grid specification attributes. If one or more parameters are missing from the metadata then the Import
method prompts the user to enter the value.

3. Their values can be changed using the DefineGrid() method, which requires the user to specify all seven
values, any of which can be specified as None. If data are already present in the Spatial Object when these
attributes are changed, grid adaptation of that data takes place.

Maximum degree and order for SH synthesis
This task is referred to as Functional Algorithm FA01 in the WP3000 report. The maximum degree and order for SH
synthesis is governed by the value of Spatial Object attributes MaxDegOrdPotential and
MaxDegOrdSurface. The former refers to the SH coefficients representing the gravity potential, and the latter refers
to surface SH coefficients. There are three Spatial Object methods that can be used to change the value of
Spatial.MaxDegOrdPotential.

o MaxDegOrdPotential, for specifying the maximum degree and order directly
o MaxResKMPotential, for specifying a resolution in kilometres.
o MaxResDegreesPotential, for specifying a resolution in degrees latitude.

Three similar methods are provided for changing the value of Spatial.MaxDegOrdSurface.

Maximum degree and order for SH analysis
When converting a global, gridded field from geographical space to SH coefficients, the maximum degree and order of
the resulting coefficients is governed by the value of Spectral Object attribute MaxDegOrdSurface. There are three
Spectral Object methods that can be used to change the value of Spectral.MaxDegOrdSurface.

o MaxDegOrdSurface, for specifying the maximum degree and order directly
o MaxResKMSurface, for specifying a resolution in kilometres.
o MaxResDegreesSurface, for specifying a resolution in degrees latitude.

Three similar Spectral Object methods are provided for changing the value of Spectral.MaxDegOrdPotential.
This parameter would not normally be changed manually because it is a property of the SH coefficients of gravity
potential. It is not used for SH analysis.

Reference ellipsoid specification
This task is part of Functional Algorithm FA02 in the WP3000 report. The parameters used to specify the reference
ellipsoid are stored by the following Main Object attributes:
Ellips_GM, Ellips_a, Ellips_gamma-a, Ellips_J2, Ellips_omega and Ellips_f. These
attributes are located in the Main Object because they apply to both the spatial domain (represented by the Spatial
Object) and the spectral domain (represented by the Spectral Object). The attributes do not all have to be defined in
order to specify the ellipsoid. Undefined ellipsoid parameters have the value None. There are two ways in which the
reference ellipsoid can be changed.

WP4000: System Specification and

Architectural Design

Page 48 of 50

1. A single Main Object method for changing all the ellipsoid attributes is provided. This is called Ellips(),
and takes six parameters, some of which can be given as None. Unlike most attributes in GUT, the ellipsoid
attributes can not be changed individually using methods with the same names as the attributes. This is
because the attributes must be consistent with the data at all times, and changing a single “Ellipse” attribute
could result in an invalid ellipsoid specification.

2. When creating a new Spatial Object by importing data from a file, the reference ellipsoid of the Main Object
becomes that of the data being imported. The ellipsoid parameters are obtained from the file’s metadata if
possible, and if not the user is prompted to enter the missing parameters. Subsequent Import operations will
result, if necessary, in the imported data being adapted to the reference system specified by the Main Object.

Tide System Specification
This task is part of Functional Algorithm FA03 in the WP3000 report. The tide system is specified by Main Object
attribute TideSys. As with the reference ellipsoid, the TideSys attribute can be changed in either of two ways.

1. Using the TideSys() method in the Main Object
2. Creating a new Spatial Object by importing spatial data in to a blank Spatial Object. The tide system becomes

that of the first field to be imported. Subsequent imports result in data being adapted to the existing tide
system.

Many powerful features of the Python language will be available to the GUT user, but it is important to emphasise that
it will be easy for novice users to access the GUT work-flows. The best way to illustrate this point is by giving an
example sequence of commands. The following three commands, issued at the start of a GUT session, are all that are
required in order to calculate geoid heights on the default grid using the default parameters, and to export those results
to a file.

MyOb = GUT.New()
MyOb.CalcGeoidHeight()
MyOb.Spatial.ExportGeoidHeight("heights.dat", "height_field", GRAVSOFT)

Below are some examples of Python command sequences for carrying out some of the work-flows described in the
WP3000 report. These examples are intended to give the reader an indication of how the command interface will look,
but the exact commands are likely to change during the implementation phase of GUT.

Examples from work-flow 1a: Geoid and gravity field computation.

- Create default Main object with default data

MyOb = GUT.New()
- Load a saved Main Object from directory old_ob

MyOb = GUT.Load("old_ob")

- Geoid heights

MyOb.CalcGeoidHeight()
- Gravity deflections (E-W and N-S deflections are both calculated)

MyOb.CalcDeflection()

- Create new Spatial Object with default grid and data (overwriting existing object)

MyOb.Spatial.New()
- Create a new blank Spatial Object (overwriting existing Object) and specify grid parameters manually

MyOb.Spatial.Blank()
MyOb.Spatial.DefineGrid(min_lat, max_lat,…)

- Import grid or list of points from a file containing data for one of the input fields. Must start with blank Spatial
Object, otherwise imported data will be adapted to existing grid and reference system.
MyOb.Spatial.Blank()

WP4000: System Specification and

Architectural Design

Page 49 of 50

Myob.Spatial.ImportInputMSSH("mssh.cdf", "mssh_field", NETCDF)

- Create default 2-D plot of geoid heights

MyOb.Spatial.ViewGeoidHeight()
- Export heights to a NetCDF file

MyOb.Spatial.ExportGeoidHeight("heights.cdf", "height_field", NETCDF)

Examples from Workflow 1b: Error computation for geoid and gravity field

- Calculation of geoid height omission error variances

MyOb.CalcGeoidHeightVarOm()
- Define pair of positions in Covar Object

MyOb.Covar.AddPos(lat1, lon1)
MyOb.Covar.AddPos(lat2, lon2)

- Calculate geoid height omission error covariances
MyOb.CalcGeoidHeightCovOm()

- Export geoid height omission error variances
MyOb.Spatial.ExportGeoidHeightVarOm("heightOmErr.cdf", "err_field", NETCDF)

Examples from Workflow 2: Sea surface height and a-priori MDT selection

- Import average SLA and ADT for specified period from time-series.

MyOb. Spatial.ImportInputAverageSLA("monthly_sla_timeseries.cdf", start_date,
end_date)
MyOb. Spatial.ImportInputAverageADT("daily_adt_timeseries.cdf", start_date,
end_date)

- Calculate MSSH as average SLA + Reference MSSH
MyOb.CalcMSSH_Average()

- Calculate MDT as average SLA + Reference MDT
MyOb.CalcMDT_Average()

Examples from Workflow 3a: Satellite Dynamic Topography computation in geographical space

- Calculate MDTS using spatial domain method using default MSSH field and default filter.

MyOb.Spatial.ImportInputGeoidHeight("geoid.cdf", "height_field", NETCDF)
MyOb.CalcMDTS_Spatial()

Examples from Workflow 4b: Remove-Restore combined technique A: spectral filtering

- Calculate the Satellite MDT using work-flow 3b, then export the output

MyOb.CalcMDTS_Spectral()
MyOb.Spatial.ExportMDTS_Spectral("temp_mdts.cdf", "mdt_field", NETCDF)

- Import the MDTS calculated above
MyOb.Spatial.ImportInputMDTS("temp_mdts.cdf", "mdt_field", NETCDF)

- Calculate MDTC by Spectral RR A and spatial filtering, using the output of work-flow 3b as the input MDTS
MyOb.CalcMDTC_A-Spectral()

After reviewing the example commands above, the reader may observe that many of the commands are rather long,
giving the mistaken impression that a lot of typing will be required in order to use GUT. Method names such as
"ImportInputLandHeight" and "CalcGeoidHeightVarCom" may seem excessively long, but there are
good reasons for having names of this form. The names will be designed specifically for use with a command
completion facility in Python, which behaves in the same way as file and directory name completion in Linux and Unix

WP4000: System Specification and

Architectural Design

Page 50 of 50

shell environments. This is implemented using the rlcompleter package in Python. Command completion ensures
that GUT users do not need to type out long commands in their entirety. Furthermore, the command completion facility
allows the user to select from a list of appropriate methods available for a particular object. The design of the method
names allows the user to find and enter the desired command in the minimum number of steps with the minimum
amount of typing. For users who prefer a more traditional console application, the following methods launch a
command based wizard that allows the user to select from numbered lists of possible actions.
- Calc()
- Convert()
- Filter()
- Import() and Export()
- Delete()
- View()

Not all the types of object have all these methods.

Another advantage of longer method names is that they make Python scripts more readable. Python scripts can be
written using a conventional text editor or with an integrated development environment (IDE) such as Eclipse [15] or
NetBeans [16], many of which allow the programmer to select an appropriate method or variable name from a list.
However, IDEs are sophisticated, powerful programmers' tools that may not appropriate for all GUT users.

	1. INTRODUCTION
	2. OVERVIEW OF GUT DESIGN
	3. TOOLBOX COMPONENTS
	3.1. Computationally Expensive Tasks
	3.2. Management of Internal data store
	3.3. Management of High Level Workflows
	3.4. Command Interface
	3.5. Graphical Components

	4. RE-USE OF EXISTING SOFTWARE
	5. USER INTERFACES
	5.1. Command Interface
	5.1.1. Introduction
	5.1.2. Python language elements used in GUT
	5.1.3. Full specification of command interface
	GUT Package
	Main Object
	Spatial Object
	Spectral Object
	Covar Object
	Filter Object

	5.2. Graphical User Interface (GUI)
	5.3. Application Program Interface (API)

	6. SPECIFICATION OF INPUT AND OUTPUT
	6.1. Introduction
	6.2. Data exports
	6.3. Data imports
	6.4. Reports and logs

	7. SPECIFICATION OF LOGICAL DATA STRUCTURES
	Main Object
	Spatial Object
	Spectral Object
	Covar Object
	Filter Object

	8. LOGICAL MODEL OF SYSTEM FUNCTIONALITY
	8.1. Processing Units
	8.2. Scientific Data Flows

	9. LIST OF ABBREVIATIONS
	10. REFERENCES
	11. Appendix: Using the Command Interface

