Short-term ice velocity fluctuations at Jacobshavn Isbrae from ERS-2 3-day SAR imagery

Aud Sundal & Andrew Shepherd
University of Leeds, UK

Outline

- Processes that can affect glacier speed
- ERS-2 3-day campaign
- Recent velocity observations at Jakobshavn glacier, West Greenland
- Conclusions

Melt-induced basal lubrication

Lakes fill and cause fracture, allowing water to reach ice base and lubricate flow

Zwally et al., Science (2002)

Land-terminating sector: Melt induced speedup of ~ 100%

35-day ERS image pairs (intensity tracking)

Sundal et al., Nature (2011)

3. Ocean melting

But.....

- (i) Models used to date do not include ... the full effects of changes in ice sheet flow, because a basis in published literature is lacking.
- (ii) Dynamical processes related to ice flow ... suggested by recent observations could increase the vulnerability of the ice sheets to warming, increasing future sea level rise.
- (iii) Understanding of these processes is limited and there is no consensus on their magnitude.

Jakobshavn glacier, West Greenland

- Greenland largest glacier, draining 6.5% of ice sheet
- Non-linear changes in ice front position and speed
- 1998-2003: Thinning and doubling in speed from ~ 6 km/y to ~12 km/y

Jakobshavn glacier: Seasonal variations in flow

 Seasonal cycle in ice flow correlated with variations in ice front position

Joughin et al., JGR (2008)

Data from Radarsat (24-day velocity averages)

ERS-2 3 day campaign

- ERS-2 moved from 35- to 3-day repeat orbit
- Acquired SAR image every 3 days from 12th
 March to 1st July 2011 at Jakobshavn glacier
- The dataset provides an idea of the information we can obtain from Sentinel data

Jakobshavn glacier 15th March 2011

Jakobshavn glacier 18th March

Jakobshavn glacier 21st March

Jakobshavn glacier 24th March

Jakobshavn glacier 27th March

Jakobshavn glacier 30th March

Jakobshavn glacier 2nd April

Jakobshavn glacier 5th April

Jakobshavn glacier 8th April

Jakobshavn glacier 11th April

Jakobshavn glacier 14th April

Jakobshavn glacier 17th April

Jakobshavn glacier 20th April

Jakobshavn glacier 23rd April

Jakobshavn glacier 26th April

Jakobshavn glacier 29th April

Jakobshavn glacier 2nd May

Jakobshavn glacier 5th May

Jakobshavn glacier 8th May

Jakobshavn glacier 11th May

Jakobshavn glacier 14th May

Jakobshavn glacier 17th May

Jakobshavn glacier 20th May

Jakobshavn glacier 23rd May

Jakobshavn glacier 26th May

Jakobshavn glacier 29th May

Jakobshavn glacier 1st June

Jakobshavn glacier 4th June

Jakobshavn glacier 7th June

Jakobshavn glacier 10th June

Jakobshavn glacier 13th June

Jakobshavn glacier 16th June

Jakobshavn glacier 19th June

Jakobshavn glacier 22nd June

Jakobshavn glacier 25th June

Jakobshavn glacier 28th June

Jakobshavn glacier 1st July

Conclusion

- Systematic observations of glacier motion at high temporal resolution is important to understand glacier dynamics
- The 6 days repeat cycle of Sentinel-1 will significantly improve our ability to study glacier dynamics and thereby changes in ice discharge