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ABSTRACT

We present a new method for separating ground defor-
mation from atmospheric phase screen (APS) based on
PSInSAR. By stochastic modeling of ground deformation
and APS via their variance-covariance functions we can
not only estimate the signals with the best accuracy but
also assess the estimation accuracy using least-squares
collocation [5]. We evaluate the APS estimated by our
method and the APS obtained from a commonly used
window-based filtering method [6] by comparing them to
repeat-pass interferograms over ground surfaces outside
the subsiding region of Mexico City. The comparison
shows that our method results in a better estimation of
APS than the filtering method which ignores the temporal
variability of APS variance. Our method is desired when
there are temporal gaps in a SAR time series. In such a
case, the filtering method needs a large temporal window
to suppress APS, which may lead to leakage from ground
deformation to APS.

Key words: InSAR, atmospheric delay, least-squares col-
location.

1. INTRODUCTION

Tropospheric delay, usually referred to as atmospheric
phase screen (APS), imposes a serious practical limita-
tion on accurate ground deformation analysis using In-
SAR. Methods which have been proposed to mitigate
this nuisance can generally be grouped into two cate-
gories. The first category requires some ancillary data
to estimate the APS independently. This estimation is
subsequently subtracted from the interferometric phase.
The ancillary data may originate from regional GPS net-
works [1], space-borne spectroradiometers such MERIS
and MODIS [2], or numerical weather forecasting [3].
This category of mitigation methods is usually ham-
pered by the measurement availability and spatial density,
weather conditions (e.g., cloud and sunlight) or predic-
tion reliability which prevent these methods from being
generic solutions for APS mitigation.

The second, SAR-based, category attempts to estimate
the APS directly, based on assumptions on its stochastic
behavior and a time series of SAR images. Stochastically,
two APSs are uncorrelated when their temporal baseline
is larger than one day [4]. In general, these methods re-
quire a complete modeling of signals (e.g., ground defor-
mation, APS, orbit errors, etc.,) embedded in the InSAR
time series.

In this paper we introduce a new SAR based algorithm
to estimate APS and ground deformation with the pos-
sible optimal accuracy from a time series of SAR im-
ages. Based on a-priori assumptions which are falsifi-
able in practice about the signals of interest, the optimal
accuracy is proven by the least-squares collocation prin-
ciple [5]. Although the algorithm is implemented for Per-
sistent Scatterers InSAR (PSInSAR) [6], it can be adapted
to other time series based approaches as well.

2. LEAST-SQUARES COLLOCATION AND
VARIANCE-COVARIANCE ESTIMATION

In this section we elaborate on the developed algorithm
which consists of two parts: least-squares collocation
(LSC) and variance-covariance estimation. The basic ob-
servation model for LSC is a well knowntrend-signal-
noisemodel used in many geoscience related studies [9].
A successful application of LSC requires a good mod-
eling of the stochastic variates in the trend-signal-noise
model. This topic is however beyond the framework of
LSC in which the stochastic properties, e.g., variance-
covariance functions, of the variates are assumed already
known. Variance-covariance function estimation is dis-
cussed in section 2.2.

2.1. Least-squares collocation (LSC)

2.1.1. LSC applied to a time series per arc

SupposeN+1 SAR images from whichN interferograms
sharing a common master are formed andM+1 pix-
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els which have a low amplitude dispersion index [6] are
selected from theN interferogramsas Persistent Scat-
terer Candidates (PSC) [7]. These PSCs form a so-called
first-ordernetwork in which their interferometric phases
are unwrapped and tested for correcting unwrapping er-
rors [8]. The unwrapped interferometric phase between a
PSCp and a reference PSCr forms a spatial arc of the
first-order network and can be modeled as:

φobs
p, r

= φdefo
p, r

+ φtopo
p, r + φm,aps

p, r + φm,orb
p, r

−φs,aps
p, r

− φs,orb
p, r

+ φnoise
p, r

, (1)

whereφobs
p, r

is the unwrapped and tested interferometric

phase serving as an observation,φdefo
p, r

is thephase caused

by ground deformation,φtopo
p, r is the phase due to unmod-

eled topographic contribution,φm,aps
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APS of the master and a slave respectively,φ
m,orb
p, r and

φs,orb
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are the results of orbit uncertainties of the mas-

ter and a slave respectively,φnoise
p, r

accounts fora phase
noise due to phase decorrelation and thermal noise. Here,
we denote stochastic variables by underlines to distin-
guish them from deterministic variables. The deforma-
tion phaseφdefo

p, r
is denotedas a stochastic variable be-

cause we model the total deformation as the sum of a
deterministic term which can be modeled by a linear
function (e.g., a linear, quadratic or periodic trend) and
a stochastic term which has a zero-mean and is second-
order stationary in time, i.e.,φdefo

p, r
= φdefo, det

p, r + φdefo, sth
p, r

.

Moreover, φ
m,aps
p, r andφ

m,orb
p, r are also denoted as deter-

ministic variables since they appear in every interfero-
gram sharing a common master.

Following the discussion above, we model the time series
of the arcs formed by PSCsp and r by a trend-signal-
noisemodel which can be written in a matrix form as:

Φobs
p, r = Axp,r + sp,r + np,r, (2)

whereΦobs
p, r is anN×1 vector which contains the interfer-

ometric phases.Axp,r is the temporal trend component in
which xp,r is ann×1 vector that contains unknown de-
terministic parameters, including coefficients of the lin-
ear function used to model the deterministic part of the
deformationφdefo, det

p, r , the topographic contributionφtopo
p, r

and a componentt which is the sum ofφm, aps
p, r , φm, orb

p, r , i.e.,
t = φ

m, aps
p, r + φm, orb

p, r . The choice of the linear function to
modelφdefo, det

p, r is arbitrary but usually depends on a pri-
ori assumptions/knowledge about the area under investi-
gation. Assumptions which can be explicit or implicit are
often inevitable in parameter estimation because many in-
verse problems such as the one described in Eq. (2) are
inherently under-determined and ill-posed. MatrixA is a
design matrix withN rows andn columns. Ifφdet, defo

p, r can
be modeled as a linear function of time (i.e., a constant

velocity), then A is anN×3 matrix and has the form:
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whereB⊥ and BT are the perpendicularand temporal
baselines of an interferogram,λ is the radar wavelength,
rm
x is the range from the master sensor to the PSCp and

θm
x is the local incidence angle. The first column ofA

relatesφdem
p, r with the DEM error∆hp and− 4π

λ
is a range

to phase converter.

The signal componentsp,r is anN×1 vector which con-
tains the stochastic part of ground deformation which is
not modeled by the function model inAxp,r. We assume
sp,r is second orderstationary in time with a zero mean.
The noise componentnp,r is anN×1 vector which con-
tains the phases due to slave APS, slave orbit errors and
decorrelation and thermal noises. We assumenp,r is sec-
ond orderstationary and uncorrelated in time with a zero
mean.

The best linear unbiased estimation (BLUE) ofxp,r

is [9]:

x̂p,r = (AT Q−1

ΦΦ
A)−1AT Q−1

ΦΦ
Φobs

p, r, (4)

and the best linear unbiased prediction (BLUP) ofsp,r

is [9]:
ŝp,r = Qp,r

ss Q−1

ΦΦ
(Φobs

p, r − Ax̂p,r), (5)

whereQΦΦ andQp,r
ss are the variance-covariance matri-

ces ofΦobs
p, r andsp,r respectively. The BLUP of the noise

componentnp,r is:

n̂p,r = Qp,r
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ΦΦ
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p, r − Ax̂p,r), (6)

whereQp,r
nn is the variance-covariance ofnp,r. The pre-

diction errorǫs (i.e., ŝp,r - sp,r) of ŝp,r can be evaluated
by [9]:
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whereQ
p,r
x̂x̂ = AQ−1

ΦΦ
AT .

2.1.2. LSC applied to spatial arcs per SAR acquistion

Till now, we have obtained the best prediction ofn̂p,r

per slave for each arc time series ( formed by a PSCp
and the reference PSCr). Next, we are going to separate
APS (φaps

p,r
), orbit errors(φorb

p,r
) per slave and phase noises

(φnoise
p,r

) based ontheir spatial characteristics. Taking one

slave acquisition as an example, then
k (k denotes thekth



slave acquisition) in space can be written as:
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For the APS componentφk, aps, we modelit in space
as a spatial trend plus a spatial variation (signal) and if
applicable a height-dependent component usually known
as the atmospheric vertical stratification [4]. The spatial
trend usually manifests itself as a long wavelength sur-
face trend which has been observed from many ERS-1/2
tandem interferograms and it is the result of the large spa-
tial extent of high and low pressure zones [4]. The spatial
variation component is mainly caused by the high spatial
variation of water vapor in the lower troposphere, i.e., tur-
bulent mixing [4]. It is usually modeled as a zero mean
stochastic process and its spatial characteristics are of-
ten modeled via a structural analysis [4]. The height de-
pendent component is applicable when the variation of
the land topography in the area of interest is significant
(e.g.,≥1000 m)[3], it can often be modeled as a linear
function of height [3]. The orbital phase termφk,orb usu-
ally presents ininterferograms as surface phase ramps
and can be sufficiently modeled as a surface trend over
a typical spatial extent of 100 by 100 km [4]. Since
φk,apsandφk,orb share the commonspatial characteristic
(i.e., a long wavelength trend) it is not possible to sepa-
rate them in practice without any external data. Finally,
the phase noise termφk,noise is modeled asa white noise,
i.e., uncorrelated in space and time, a norm distribution
with a zero mean.

Based on the spatial characteristics of the signals and in
analogue to Eq. (2) in time domain, we modeln

k per
slavein space by atrend-signal-noisemodel as:

n
k = Ry

k + νk + µk, (9)

whereR is the spatialdesign matrix which has M rows
and 4 columns,yk is a 4 by 1 parameter vector which
contains three coefficients for determining a surface trend
caused by troposphere and orbit errors and one coefficient
taking into account the vertical stratification as a linear
function of height.νk is aM×1 vector which contains
the phase component due to the turbulent mixing andµk

is the noisecomponent. The BLUE ofyk is given as:

ŷ
k = (RT (Qk

nn)−1R)−1RT (Qk
nn)−1

n
k, (10)

whereQk
nn is the spatialVCM of n

k. Therefore, the
BLUE of the spatial trend (due to troposphere and orbit
errors) and the vertical stratification can be obtained as:
Rŷ

k. To separatethe turbulent mixing component from
the phase noise, we use BLUP:

ν̂k = Qk
νν(Qk

nn)−1
n

k, (11)

whereQk
νν is theVCM of νk for thekth slave APS.

2.2. Variance-covariance function estimation

The method elaborated in section 2.1 requires a number
of VCMs, namelyQp,r

ss in Eq. 5, Qp,r
nn in Eq. 6, Qk

nn

in Eq. 10 andQk
νν in Eq. 11, to be known in advance.

However, they are rarely known a priori in practice and
therefore have to be estimated first from the the observa-
tions (i.e., unwrapped interferometric phases on PSCs).
The stochastic ground deformation components usually
shows anautocorrelation between SAR acquisitions over
areas undertaking a progressive deformation. Therefore,
Qp,r

ss is a full square matrix (NbyN ) which describes
the temporal covariance of the deformation time series
between the PSCsp andr and with respect to the mas-
ter acquisition. To modelQp,r

ss we use a parametric ap-
proach which guarantees the estimatedQ̂p,r

ss is positive-
definite and invertible [10]. The parametric approach re-
gardsQp,r

ss as a realization of its variance covariance
function (VCF). Typically used VCF models in practice
are spheric, exponential and gaussian models [11], etc.
Moreover, assuming that APS (including turbulent mix-
ing, vertical stratification and spatial trend components),
orbit errors and phase noise do not have an autocorrela-
tion in time, thenQp,r

nn is a diagonal matrix and the ele-
ments in its main diagonal represent the sum of the vari-
ance of APS, orbit errors and phase noise. For APS, the
variance depends on weather conditions, the spatial dis-
tance betweenp and r as well as the height difference
betweenp and r. The more turbulent the weather, the
longer distance betweenp andr and the larger height dif-
ference betweenp andr, the larger the APS variance will
be and vice versa. For the orbit errors, its variance only
depends on the distance betweenp andr. We estimate
Qp,r

ss andQp,r
nn by restricted maximum likelihood estima-

tor (RMLE) given in [10]. When the input data for the
estimator has a normal distribution its estimates will have
the minimum estimation error variance [10].

In space domain, applying the error propagation law [9]
to Eq. (9) we have:

Qk
nn = Qk

νν + Qk
µµ, (12)

whereQk
µµ is the spatial VCM of the phase noiseµk in

thekth interferogram, assumingν is uncorrelated withµ
in space. Sinceν is spatially correlated butµ is not,Qk

νν

is therefore afull square matrix (MbyM ) andQk
µµ is a

diagonal matrix with the same size. Same as the mod-
eling of Qp,r

ss we use the parametric approach to model
Qk

νν . Analyses based on ERS1/2 tandem interferograms
suggest that VCFs from the Matérn-family [12] are ap-
propriate [4]. To estimateQk

µµ, we use the method de-
scribed in [7].

3. LEAST-SQUARES COLLOCATION APPLIED
TO MEXICO CITY

To evaluate the algorithm in section 2 we carry out a case
study over Mexico City using 45 ASAR images (track



255, frame 3216) acquired between 2002 and 2008. The
master image was acquired on 31-DEC-2004. In total
2576 pixels having an amplitude dispersion index lower
than 0.22 are selected as PSCs over a 40 by 40 km crop
centered at the urban area of the city and the PSC density
is about 1.6 PSC/km2. These PSCs form a so-calledfirst-
order network in which their interferometric phases are
unwrapped and tested for inconsistency [7]. To model the
ground deformation in time we use a quadratic function
model and a hole effect variance-covariance model for
its deterministic and stochastic components respectively.
We choose the hole effect model because we suspect the
area of interest may experience seasonal deformation due
to seasonal variations of underground water. Since the
urban area is relatively flat (∆hmax< 500 m), the possible
vertical stratification is therefore not taken into account in
our analysis.

Figure 1. APS RMS in delays (mm). Blue: estimated APS
RMS per acquisitionby the collocation method. Red:
RMS of the difference between APS estimates by the col-
location and window-based filtering (1-year Gaussian
window) methods. The black rectangles include the SAR
pairs used to form interferograms in Figs. 2 and 3. Note,
the RMS of the difference is relatively large at acquisi-
tions where there are acquisition gaps and when the APS
variances are relatively large during days having a more
turbulent weather.

Figure 1 shows the estimated APS RMS per acquisition
by our collocation method as well as the RMS of the dif-
ference between APS estimates per acquisition made by
the collocation method and a commonly used window-
based filtering method [6]. A large RMS of the difference
means a large discrepancy between the estimates from
the two methods. As we can see from the figure, the
RMS of the difference is relatively large at acquisitions
where there are acquisition gaps and when the APS vari-
ances are relatively large during days having a more tur-
bulent weather. To evaluate the two methods we compare
some of their results against several coherent repeat-pass
interferograms over ground surfaces outside the subsid-
ing region of the city. The APS estimates on 20-JUN-
2003 and 11-APR-2003 are shown in Fig. 2 and the esti-
mates on 7-SEP-2007 and 16-MAR-2007 are shown in
Fig. 3. Both figures show that atmospheric anomalies

visible in the repeat-pass interferograms are better esti-
mated by the collocation method than the filtering method
based on a 1-year Gaussian window. After increasing
the window length from 1-year to 3-year, the filtering
method gives more or less the same results as the collo-
cation method. This is because a large temporal window
will include more acquisitions into filtering and result in
more suppression of APS which is temporal uncorrelated.
The collocation method, however, suppress APS more ef-
fectively by weighted least-squares, i.e., low weights are
given to the acquisitions which have large APS variances
and vice versa.

Figure 2. Interferogram on 20-JUN-2003 and 11-APR-
2003. a) APSestimated by the collocation method on PS
pixels. b) unwrapped interferogram by repeat-pass in-
terferometry. c) APS estimated by the filtering method
using a 1-year Gaussian temporal window. d) APS es-
timated by the filtering method using a 3-year Gaussian
temporal window. Atmospheric anomalies visible in the
repeat-pass interferogram are better estimated by the col-
location method, see the sub-region highlighted by cir-
cles. The subsiding urban region is highlighted by black
circles. The color-bar unit is in mm. X-axis: longitude,
Y-axis: latitude.

Regarding deformation estimation, we do not have
ground truth for validation. Instead, we plot two PS de-
formation time series in Fig. 4. The two PSs are from
two sub-region highlighted in Figs. 2 and 3 respectively.
From Fig. 4 we can see that the influence of uncompen-
sated APS on the deformation time series as well as an
over-smoothing effect caused by using a filtering window
whose length is likely larger than the possible correla-
tion length of the deformation. The collocation method,
however, does not need to specify a window length and
it estimates the correlation length of the deformation via
its temporal variance-covariance function from the un-
wrapped phase time series. If the variance-covariance
matrix is estimated accurately, the estimated deformation
should have the best accuracy and the accuracy can be as-
sessed via the estimated variance-covariance matrix, see
error bars in Fig 4.



Figure 3. Interferogram on 7-SEP-2007 and 16-MAR-
2007. a) APSestimated by the collocation method on PS
pixels. b) unwrapped interferogram by repeat-pass inter-
ferometry. c) APS estimated by the filtering method using
a 1-year Gaussian temporal window. d) APS estimated
by the filtering method using a 3-year Gaussian tempo-
ral window. Atmospheric anomalies visible in the repeat-
pass interferogram are better estimated by the colloca-
tion method, see the sub-region highlighted by dashed
circles. The subsiding urban region is highlighted by
black circles. The color-bar unit is in mm.

4. CONCLUSION

In this paper, we introduce a new method for separat-
ing ground deformation from atmospheric phase screen
(APS) based on PSInSAR. We evaluate the APS es-
timated by our method and the APS obtained from a
commonly used filtering method by comparing them to
repeat-pass interferograms over ground surfaces outside
the subsiding region of Mexico City. By taking into ac-
count the temporal variability of APS variance per acqui-
sition our method is able to estimate APS more accurately
than the filtering method which ignores the variability
and requires a sufficient number of images to smooth out
APS. Moreover, when there are temporal gaps in a SAR
time series, a large temporal window is needed to sup-
press APS. However, it many over smooth the ground
deformation when the deformation has a temporal cor-
relation shorter than the window length.
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