イロト 不得下 不足下 不足下

Analysis of the C-band spaceborne scatterometers thermal noise

Anis Elyouncha and Xavier Neyt

Communication, Information, Systems and Sensors Departement

Royal Military Academy

September 20, 2014

Introduction

2 Signal characterization

- Spatial distribution
- Incidence angle dependence

3 Comparison with AMSR-E radiometer

Noise subtraction

- Noise Equivalent Sigma Zero
- Antenna footprint effect
- Along-track averaging effect

5 Conclusion

・ロト ・ 同ト ・ モト ・ モト

Outline	Introduction	Signal characterization	Comparison with AMSR-E radiometer	Noise subtraction	Conclusion
Intro	duction				

- Scatterometer is a real aperture radar designed to determine the normalized radar cross section (σ₀) of the surface
- The scatterometer receives backscattered power + noise power
 - $\bullet~$ Noise power = receiver noise + thermal Earth radiance + RFI
 - Noise power measured separately in a transmit-free window in which the scatterometer works as a microwave radiometer
- Noise power is subtracted from the total received power to compute $\sigma \mathbf{0}$
 - Relevance of noise subtraction for $\sigma {\rm 0},$ wind speed and the variance processing
 - The impact of the noise power misestimate (mis-subtraction) on σ_0

(日) (間) (日) (日) (日)

• ERS-2 and Metop-A scatterometers operating in C-band frequency (5.3/5.255 GHz) and VV polarization

Outline Signal characterization Introduction Comparison with AMSR-E radiometer Noise subtraction Conclusion 000

Metop/ASCAT noise power map

- Geophysical signature: signal power depends on surface type
- Noise power proportional to brightness temperature T_{h}
 - T_b depends on emissivity and physical temperature
 - Relatively good radiometric resolution
 - Coarse spatial resolution (antenna footprint)

Data: 1-6 January 2011 (NH winter / SH summer)

Introduction

Signal characterization 000

Comparison with AMSR-E radiometer

Noise subtraction

Conclusion

ERS-2/AMI noise power map

- AMI data:
 - December 2008
- ASCAT data:
 - January 2011
- ERS-2/AMI (1995-2011) only distinguishes between land and sea
- Metop-A/ASCAT (2006-) higher radiometric resolution

Viewing geometry effect

- Scatterometer employs 3 antennas (Fore/Mid/Aft)
 - Mid antenna illuminates the swath with lower incidence angles than side antennas (Fore/Aft)
- Mid antenna noise is lower than side antennas over ocean
 - T_b depends on emissivity which depends on incidence angle (θ)

Noise power difference due to incidence angle difference

Comparison with AMSR-E radiometer

Noise subtraction

Conclusion

Comparison with AMSR-E radiometer

AMSR-E microwave radiometer brightness temperature

Introduction

Signal characterization

Outline

- 6.9 GHz channel
- V-polarization
- Three main clusters: Sea. land and ice
- Other sub-clusters: polar waters, tropical waters, sea ice, land ice, SH continents etc.

Very good correlation ($\rho \approx 0.9$)

Noise Equivalent Sigma Zero - over ocean

• NESZ: sensitivity of the radar instrument

$$NESZ = \frac{(4\pi)^3 R^3 P_n}{P_t G_a^2(\theta) G_r \lambda^2 \rho \phi_0}$$

NESZ depends on the instrument parameters, mainly G_a(θ)
Hence the shape of the antenna gain pattern across-swath

ASCAT NESZ/SNR lower/higher than AMI

Noise subtraction

< 17 ▶

< ∃ >

-

Conclusion

Noise subtraction effect on σ 0 and wind speed

Outline

Introduction

- Comparison of σ_0 processed with noise subtraction against σ_0 processed without noise subtraction
 - Difference increases with decreasing σ_0 (max:1.4 dB/1.2 m/s)
 - Confirms the necessity and importance of noise subtraction

Lower backscatter more sensitive to noise

 \Rightarrow noise subtraction more important

• Noise subtraction \Rightarrow variance addition:

$$var[P_{s+n} - P_n] = var[P_{s+n}] + var[P_n]$$

- Difference increases slightly across-swath: [0.45, 1.25] %
- Similar trend observed in σ_0 and wind speed

Noise subtraction increases the variance

- - ASCAT and AMI are fixed fan beam scatterometers
 - Antenna footprint: narrow in azimuth (\approx 30 km) and wide in range (\approx 500 km)
 - σ_0 measurement (range gated): spatial resolution depends on the PSF
 - Noise power measurement (not range gated): spatial resolution depends on the antenna footprint
 - Land contamination depends on the orientation of the antenna footprint

(ロ) (同) (E) (E) (E) (O)(O)

 Measurements near the transition between two different surfaces (e.g., land/sea or sea-ice/sea) are probably processed with over/under estimated noise power

- Nominal σ 0 (25 km): range gated and spatially filtered
- PSF dominated by Hamming spatial filter (width pprox 86 km)
- Step slope is inversely proportional to the width of the PSF
 - σ_0 small PSF \Rightarrow sharp transition

Spatial resolution independent of footprint orientation

Land-sea transition - noise - mid antenna

- Noise signal not range gated (averaged along-track)
- PSF dominated by antenna footprint, orientation and along-track averaging
 - $\bullet\,$ Antenna footprint parallel to the coast \Rightarrow sharp transition

Spatial resolution depends on footprint orientation

Figure: Land-sea transition, Fore antenna

イロト 不得下 イヨト イヨト

(日) (部) (E) (E) (E)

Impact of along-track averaging on noise subtraction

Metop-A/ASCAT

Signal characterization

Outline

Introduction

- σ_0 signal averaged over 8 along-track samples using trapezoidal filter
- noise signal averaged over 40 along-track samples using rectangular filter
- ERS-2/AMI
 - σ_0 signal averaged on-ground over 32 along-track samples
 - noise signal averaged on-board over 28 along-track samples and on-ground over 21 along-track samples using Gaussian filter
- Noise signal varies spatially
 - different averaging between σ_0 and noise signal \Rightarrow impact on noise subtraction
 - this impact is more important at the coastline because of the high contrast in noise level

Impact of along-track averaging on noise subtraction

- $\sigma_0 \operatorname{error}(\operatorname{red/green/blue}) = \operatorname{ideal subtraction}(\operatorname{black solid}) \operatorname{biased subtraction}(\operatorname{black dashed})$
- Nominal resolution product (blue): bias negligible (< 0.1 dB)
- Higher resolution products (Green and red): the bias might reach 0.2 and 0.4 dB.

This affects few measurements close to the coast

Outline	Introduction	Signal characterization	Comparison with AMSR-E radiometer	Noise subtraction	Conclusion
Conclusion					

- Noise signal carries useful geophysical signature (proportional to brightness temperature)
 - Relatively good radiometric resolution, but coarse spatial resolution (particularly in range)
- Noise subtraction is important for σ 0 and wind speed processing, more important over ocean than over land
 - The effect of under/over subtraction of the noise power near the coast was assessed using land-sea transitions
 - The error on coastal σ_0 is probably negligible (< 0.1 dB) for nominal resolution products, for high resolution products the noise power misesimate could reach 0.4 dB

(日) (間) (日) (日) (日)

• This affects only few measurements close to the coast