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multispectral visible and infrared images from SPOT and
Landsat. However, it is not difficult to become more
optimistic once we see colour combinations of images
acquired on different dates through the crop growing
season, particularly after image filtering techniques are
applied to reduce image speckle and improve definition.
Further, when we take into account the fact that
ERS-1/2 provide stable calibrated measurements of
surface conditions which are unaffected by atmospheric
effects, one begins to appreciate some of the possible
advantages over visible/infrared imaging.

This document (ESA SP-1185) has been prepared by an
ESA Specialist Panel charged with the task of reviewing
research work and progress so far, and making
recommendations for future developments and
integration of satellite radar data into operational crop
monitoring systems. Chapter2 of the document
provides a general introduction to agricultural

information requirements and the potential role of
satellite  radar.  Chapter3 then develops an
understanding of the information content of ERS/SAR
images, concentrating on the presentation of results
concerning the temporal backscatter signatures of
agricultural crops. The different analysis techniques
being developed to extract agricultural information from
ERS images are then presented in Chapter 4. Chapter 5
contains case study results on temperate crops,
including examples of the classification of arable crops,
developments aimed specifically at early estimation of
crop area, and combined analysis of ERS-1 and optical

satellite data. Case studies for tropical crops are

presented in Chapter 6, concentrating on developments
for rice mapping. Chapter 7 contains information on
interesting future developments in analysis techniques,
and the potential of new multichannel satellite radar
systems. Finally, Chapter 8 provides overall conclusions,
and recommendations for future developments and
integration into operational systems.




2. Agricultural Information and Remote Sensing

2.1. Application Obijectives

Agricultural resources provide mankind with food and
have a substantial impact on the economic and
environmental welfare of a particular country. The main
objectives of the different parties interested in crop
production, are the efficient and sustainable manage-
ment and development of this renewable resource. At
European and national levels, knowledge of changes in
cropping and crop production is the basic information
necessary for the implementation of agricultural policy.
The Common Agricultural Policy (CAP) involves a
complex arrangement of subsidies and tariffs used to
control European agricultural production. At the local
level, decisions regarding crop types, varieties, planting
dates, irrigation procedures and fertilizers can benefit
further from accurate knowledge of production on a
field-by-field basis.

The monitoring of agricultural resources is time critical,
and encompasses the following:

® Crop condition assessment

Crop production forecasting

Mapping of crop area and monitoring changes
Surveillance of crop declarations for fraud control
Pollution detection and impact assessment (eg.
erosion risk)

Traditionally, crop production forecasts have been based
on crop inventories and yield surveys. Crop inventories
involve the identification of crops and measurement of
their area. This can be achieved using census and
ground survey techniques. However, over very large
areas, the application of such techniques becomes
costly and unreliable.

The use of satellite data to identify crops and measure
their area has now revolutionised crop production
forecasting. In the early 1970’s, the Large-Area Crop
Inventory Experiment (LACIE) in the United States
developed the concept of an agricultural information
system incorporating satellite remote sensing. Multi-
spectral satellite imagery are used to estimate crop area.
Meteorological data from ground stations and NOAA
satellites are used to forecast yield and evaluate crop
development stage.

2.2. The European MARS Programme

In 1988 the European Community initiated a ten year
research programme to build upon the US LACIE
experience. Monitoring Agriculture using Remote
Sensing (MARS) is a major activity aimed at improving
European production forecasts by the use of high-
resolution remotely sensed imagery. Its main ‘actions’
include quantitative estimation of crop acreages in a
given region or country, vegetation and crop state
monitoring, timely crop yield forecasting of the mean
crop vyields per country, and the rapid and timely
estimation of the total production of the most
important crops within the EU. Its main users are the
Directorate General for Agriculture, and the European
Statistical Office (Eurostat).

The first five-year project developed statistical methods
to estimate crop acreage and potential yield (called
MARS-STAT). The various activities of MARS-STAT,
presented in Table 2.1, were conceived, developed and
implemented on the basis of inputs from approximately
100 institutions from 17 European countries. These
institutions provided data, models, algorithms and
software, after having previously validated them for use
at the EU scale on the basis of country specific
information.

Separate from the MARS-STAT activity, the use of remote
sensing for verification and control of the area-based
subsidies within the EU has evolved quickly over the
last few years and is now used operationally in most
countries of the EU. This is known as MARS-PAC
(Politique Agricole Commune), and involves the use of
computer-assisted photo-interpretation and automatic
classification to check farmer's applications for
subsidies. Approximately 5% of all farmers’ returns
within each country are now checked using satellite
remote sensing.

In general it can be said that both the LACIE and the
MARS programmes were driven by economic motives,
which, in a market driven by price, is easily understan-
dable, and which can be seen as a very positive point
for the long-term and intensive use of remote sensing
data. Taking this into account, as well as the fact that




the major interest in agriculture consists of obtaining as regions outside Europe within programmes similar to
much timely information as possible on the crop area, =~ MARS-STAT. Major potential future customers could
condition and production, it can be seen that the use of ~ certainly be the Asian countries which have a require-
remote sensing can and will be extended to other =~ ment to monitor rice resources.
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which are strongly correlated with moisture conditions.
At the C-band wavelength of ERS there is very limited
penetration through surface layers, and radar
backscatter of crops is determined by the structure of
crop canopy (size, shapes and orientation of leaves,
stems and seed heads), crop cover and moisture
content. For soil surfaces, there is a strong sensitivity to
both the soil surface roughness and surface moisture
(see detail in Chapter 3: Scientific Basis). The information
content of radar images is thus very different to that of
optical satellite data, which record reflectance in visible
and infrared wavelengths.

Image geometry

Due to the highly stable orbit of the ERS-1/2 satellites,
images taken under the same orbital condition
(ascending or descending), can be easily superimposed
by a simple shift of the different images in relation to
the reference dataset. However, ERS SAR images are
subject to geometric terrain distortions related to the
sideways looking imaging geometry (see Figure 1.1),
which can impose some limitations on their use in hilly
areas. In flat areas standard polynomial geometric
correction techniques, can be used for geometric
correction of ERS images to levels of accuracy of about
15-30 m. However, in hilly areas it is necessary to use
a Digital Terrain Model (DTM) and specialised software to
remove the geometric terrain distortions, in order to
obtain accurate registration with topographic maps and
corrected optical images. Techniques for these types of
geometric corrections are commercially available.

Complementary with optical and other radar
satellites

Besides the possibilities described above, there is
potential for improving crop identification, by taking
advantage of the complementary information provided
by ERS and optical satellites. For instance, the use of ERS
SAR data could concentrate on those crop types, for
which SPOT or Landsat data do not provide clear
separability. Even with two to three dates of optical
images, there can be problems in separating some crop
types which have similar visible near- and middle-
infrared reflectance, and yet, these crop types may have
very different structural characteristics which are able
to be distinguished on ERS SAR images. The same
potential might become interesting when combining
ERS SAR with the Japanese JERS or the Canadian
Radarsat imagery. JERS operates at a different wave-
length (L-band). Radarsat will acquire imagery with
different polarisation (HH) and incidence angles
compared to ERS-1.

There may be potential for using ERS SAR data, together
with agrometeorological backscatter models, to provide
additional quantitative estimates of crop growth. The
potential for identifying soil moisture in ERS SAR images
might equally become an important information input
for future agricultural applications.

Products and costs
The present pricing policy and rapid delivery are both
important arguments for developing the use of ERS-1/2
SAR for operational applications. ESA is developing
various systems for rapid delivery of ERS data products.
The UK ERS-1 ground receiving station, for example,
operates a facility for near realtime supply of ERS-1
data using standard telephone lines. Latest information
about ERS and available data products is available from:

ERS Help Desk at ESRIN:

via Galiileo Galilei

00044 Frascati, Italy

Tel: +39-6-941 80 600; Fax: +39-6-94180 510
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3. Scientific Basis

3.1 Understanding Radar

The microwave radar carried by the ERS satellites has
the potential to provide us with information on
agricultural crops and the soil in which they grow. As
well as generating images when visible/IR sensors are
unavailable because of cloud, the information from
radars may be complementary to that from optical
systems. The reason for this is the difference in the
processes and scale sizes of features, with which radar
and optical wavelengths interact in an agricultural field.
The response of a field of crops to optical radiation is
determined by structures on micron scales and by
processes of chemical absorption. Microwave radiation,
by contrast, penetrates significant distances into a
vegetation canopy and interacts most strongly with
structures (leaves, stems etc.) on scales comparable
with the radiation’s wavelength (a few centimetres to a
few tens of centimetres). Thus, microwave radars may
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be thought of as probing in a very direct manner the
structural components of a plant canopy.

Owing to its penetrative power, significant amounts of
radar energy can, in certain circumstances, pass
completely through a crop canopy to reach the solil
below (Figure 3.1). When this happens, the radar image
will be influenced by the reflective properties of the soil.
Thus, in very broad terms, imaging crops with radar
raises the possibility of exploiting differences both in
plant structure and in soil properties for the purposes
of differentiating crop types, crop condition, or
agricultural management practices.

Below, we expand on our understanding of the nature
of the interaction between microwaves and plants, and
outline some of its complexities. We go on to indicate
how computer simulations are helping to develop our
understanding from the qualitative to the quantitative.

o et it

Figure 3.1. Incident microwaves from ERS are attenuated as they pass through the crop canopy. When a canopy is thin or dry,

significant energy can interact with the soil.
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The basis of interaction between radar and
agricultural fields

The properties of vegetation and the soil which
influence the amount of microwave power scattered
back towards the ERS SAR fall under the two principal
headings of Geometric Structure and Dielectric
Constant. By structure we include the major plant
constituents on scales greater than a few millimetres
(leaves, stems, flowers, fruits/seed heads). Their sizes,
shapes and orientations determine the interaction of
individual isolated components with the microwaves. A
flattened leaf, for example, scatters microwaves in a
different directional pattern to a vertical stem. Below the
plant canopy, the soil surface does not act as a simple
mirror — rather the scattering from it is influenced by
its roughness properties, especially on scales com-
parable to the radar wavelength. The moisture of the
soil influences, through local chemistry, its dielectric
constant. For different soil types, there is a different
relationship between moisture content and dielectric
constant, determined by the soil constituents.

The understanding of the interactions with individual
plant components or the soil is relatively straight-
forward. Electromagnetic modelling has at its disposal
a range of techniques and approximations to describe
the scattering by at least the more simple shapes which
may be encountered in a crop canopy or by a soil
surface with a known roughness profile. The real
situation, however, is rather more complex than that of
microwaves scattering off isolated plant structures or
the soil. The relative positions and spatial densities of
the plant constituents determine how they respond as
an ensemble to the radar, both through multiple
scattering events or coherent interactions. Similarly, the
soil cannot always be considered separately from the
crop above it. Rather, a radar wave may be scattered by
a leaf before being reflected off the ground and back to
the radar. Furthermore, the relative importance of
different interactions, whether single or multiple (some
involving reflecting off the ground and others not) is
believed to change significantly as a crop develops
during the growing season (Figure 3.2).

Radar penetration and probing of crop canopies

Different wavelengths of microwaves have different
powers of penetration into vegetation canopies -
generally the longer the wavelength the greater the
penetration. The degree of penetration sets bounds to
the kinds of information which a radar can provide.
Discrimination of crops based on their structures will
only be realised if the structures which differentiate
them occur within the volume probed by the radar. The
same comment applies for the use of radars to probe

Wheat Backscatter Mechanisms

—— Yot )
=+ = - Cancpy

=~ - = — Canopy-Ground
ERREEE Ground

Backscatter Cross Section (dB)

Bare Soi Low Crop Full Crop fipe Crop
Growth Stage

Figure 3.2. The changing contributions to the backscattered
radar intensity as a crop develops. Here, the example is a
field of wheat where the crop cover is initially nil, then
develops to a 10-cm deep canopy, followed in turn by a moist
full canopy and then a drier ripening canopy. Initially, simple
scattering off the soil dominates the total reflection. As the
crop increases in depth, the scattering from the soil becomes
weaker, and is largely replaced by volume scattering within
the canopy. As the crop ripens and becomes more
transparent to ERS's microwaves, the soil becomes visible
once again, and contributes to the total, together with more
complicated scattering events involving radar waves interac-
ting with both the canopy and the ground. (Source: R. Cordey,
MRC).

soil characteristics; only if the radar can actually
penetrate to the soil and back will there be any direct
information on soil moisture. The C-band radar of the
ERS satellites penetrates primarily only into the upper
layers of plant canopies when they are dense or moist.
This penetration may increase very significantly,
however, if the plant canopy becomes more transparent
to radar as it dries out. Similarly, with the soil, the depth
to which microwaves penetrate increases in drier soils.
Thus, the influence of soil moisture on microwave
backscatter comes only from that moisture present
within the layer which is actually sensed.

Radar polarisation and incidence angle

As well as a radar’s wavelength, the polarisation of the
microwaves and their angle of incidence relative to
nadir, affects the interaction with plants and soils.
Polarisation affects the way in which the microwaves
respond to different shapes and orientations of
scattering elements in a plant canopy. The vertically-
polarised electric field of the ERS SAR interacts more
strongly with the vertical stalks of a field of grains than
would, say, a horizontally-polarised radar. Such inter-
action leads to differences both in the power scattered




back in those different polarisations and in the degree
of penetration through to the soil. Penetration to the soil
is also influenced by the incidence angle of the micro-
waves because that angle determines the path length
within a crop canopy through which the radiation must
pass. A radar looking at a relatively steep angle, such as
ERS’s 23°, will tend to see the soil more readily than one
looking at a more oblique angle from nadir.

Towards a quantitative understanding
Developments in the modelling of microwave scattering
for agriculture have taken advantage of the increasing
availability of computing power, to create ever more
realistic and explicit models for the structures with
which the radiation interacts. The models aim to explain
or predict the brightnesses in radar images of different
crop types under changing environmental conditions, or
different stages of growth during @ season. Early
developments in the 1970s were based around
empirical or semi-empirical models for scattering at
particular wavelengths. These did not attempt to
represent crops as recognisable structures, but invoked
tuneable parameters and were limited in their
applicability over the wide range of radar and crop
parameters which may be encountered. Widespread
recent work has placed greater emphasis on realistic
descriptions of plant components, which can be related
very directly to measurable parameters (the shapes of
leaves, their thicknesses and moisture contents etc.). It
is conceivable that significant improvements in the
accuracy of predictions will entail even more explicit
models of plants ‘grown’ in the computer, which include
descriptions of the spatial interrelationships between
leaves, stems and fruits.

So how useful are computer models for understanding
and predicting radar backscatter? A limitation on their
use for quantitative predictions of image brightness is
often the lack of sufficiently detailed information on the
crop and soil itself. This has made experiments for the
validation of computer models expensive and time
consuming. Thus, models are probably of most current
use in generating plausible radar images of agricultural
areas (e.g. for predicting the relative benefits of radars of
different designs) or for investigating the likely
sensitivity of image brightness to changes in crop or soil
parameters. In that context, they support research
towards methods for the retrieval of bulk crop or soil
parameters (biomass, soil moisture for example),
especially in the context of multi-date imaging when
only a sub-set of possible parameters (e.g. moisture)
may be changing rapidly.

13

To summarise then, it is widely believed that a relatively
good understanding has been developed of the inter-
actions between microwaves and agricultural fields,
which are responsible for the appearances of those
fields in a satellite radar image. Although complex, the
wide range of interactions which microwaves may
undergo with plants and the soil - the sensitivity to
detailed structure, moisture and chemistry — encourage
us to believe that, given an appropriate set of radar
measurements, it will be possible to discriminate
effectively between different crops. In the case of the
ERS radar, we will see that it is through its sensitivity
to changes in crop structures through the growing
season that we have a tool for distinguishing different
crops.

3.2 Calibration

What kind of calibration?
For applications which demand more from a radar
image than just the detection or mapping of features,
there is a requirement on the calibration of that radar.
We need an understanding of how the radar image
brightness relates to the fraction of incident microwave
energy which a region reflects back towards the radar
antenna. The accuracy with which a radar can be
calibrated and the nature of that calibration influence
the range of information retrieval purposes to which the
radar can be applied. By the nature of the calibration,
we mean:

* Has the radar been calibrated on an absolute
universal scale (relative ultimately to the signal
reflected from a well-understood simple geometrical
shape)? This sort of calibration is a pre-requisite for
the eventual retrieval of quantitative parameters of
crops and soil from individual radar images.

¢ |s the radar calibration stable in time, albeit on a
possibly arbitrary scale? Temporal stability of
calibration permits us, in principal, to use multi-date
images to quantify changes in crop and soil
parameters.

® |s the radar calibration the same at different
locations across a single image? Some degree of
stability in calibration across an image is needed in
order to create stable crop classification algorithms.

ERS-1 has been successfully calibrated over its entire
period of operation against a scale defined by ground-
based transponders. The units conventionally used are
normalised backscatter cross sections (sigma-zero, ¢°),
and are usually represented in their logarithmic decibel
(dB) form. The dB value of sigma-zero is 10 log,, of the
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value in linear units. The intrinsic precision of the
transponders is believed to be better than 0.14 dB (ie.
an uncertainty of about 3% in the fraction of incident
energy which they reflect). The long-term calibration
accuracy of ERS-1 relative to this scale is 0.06 dB with
an rms error of 0.22 dB for a given image (Figure 3.3).
Across an individual image (100x100km?), the
estimated uncertainty in calibration is better than
0.2 dB. Compared to previous experience with aircraft
and satellite radars, these figures represent very
significant improvements, and are achieved without a
requirement for local calibration devices to be set out by
an operational user. The method by which standard ERS
image products can be calibrated by the user is
described in the Appendix.

Limitations due to speckle noise

Synthetic-aperture radars suffer from a form of noise in
their images called speckle. Speckle is a consequence of
the coherent nature of the SAR imaging process (it is
closely related to the phenomenon of laser speckle), and
can be a significant limitation on the measurability of
the mean brightness from an area of land. The problem
is that the brightness of a particular resolution cell,
depends not just on some form of average of the plant
and soil parameters in that area, but on the particular
phase relationships between the reflected waves from
different parts of that resolution cell. In the most basic
of images, speckle typically imposes an uncertainty on
the estimate of the brightness from any resolution cell
equal to the expected brightness. Only by some form of
incoherent averaging can a meaningful measurement of
image brightness be made. Routinely, this is done in
part by a process known as multi-looking taking not
one but two or more (3 in the case of standard ERS
scenes) independent images and averaging together the
radar brightnesses from each. Speckle can be further
reduced by filtering the image, but at the expense of
further sacrificing spatial resolution. The purpose of
introducing the concept of speckle here is to draw
attention to the lack of requirement for very high
calibration accuracies for local scales of quantitative
analysis. Figure 3.4 shows how, for ERS-1 imagery, the
estimate of the mean brightness improves with the area
over which averaging is performed. For an individual
field of size 5 hectares, an ERS image can provide at best
a speckle-limited accuracy of 6% (or 0.27dB) for the
averaged brightness over that field. This is reasonably
well-matched to the stability of ERS-1 - a higher

accuracy of measurement would be unnecessary for the
analysis of fields of this size in individual images.

Backscatter Cross-section (dB)
=)

ERS-1 SAR Stability
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Figure 3.3. The stability of the ERS-1 radar is demonstrated
here by the apparent brightness in its images of one of the
ESA’s transponders sited in Flevoland in The Netherlands.
These transponders transmit back to ERS-1 a very precise
fraction of the incident microwave energy and allow the
radar’s calibration to be checked independently. Following
the application of the ERS-1 calibration procedure (see
Appendix), the brightness of a transponder is plotted for the
entire duration of the ‘Multidisciplinary Phase’ of ERS-1
operation from April 1992 to December 1993. (Source: R.
Cordey, MRC).

Measurement Errors due to Speckie
(+ 1 standard daviation)

Expectation Brightness
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Figure 3.4. ERS-1 intensity estimates as a function of integra-
tion area. Due to speckle noise in SAR images, an individual
pixel gives a poor estimate of a field’s mean brightness. In
general the more pixels that are average the better the
estimate. The graph shows, for an actual ERS-1 standard ‘PRI’
image, how the mean brightness changes with the area of
image which is averaged. The integration path is taken as a
spiral out from a starting pixel, to mimic the averaging over
fields of larger and larger sizes, up to a maximum area shown
here of 5 ha. For small integration areas, the uncertainty is
clearly very significant, but the average settles down for fields
of a few hectares to an uncertainty which is a small fraction
of a dB. (Source: R. Cordey, MRC).
















Between-field variability

Figure 3.9 shows individual temporal curves for wheat
fields imaged by ERS-1 over the Netherlands test site.
The profiles show similar trends in backscatter
development as a function of time, but there is seen to
be a very significant variation in backscatter between
fields on each date. This is much greater than can be
accounted for in terms of variations in the calibration
factor across ERS-1 images. Accounting quantitatively
for this variability has proved difficult. In the early
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stages of development it may be most closely
associated with differences in the percentage crop cover.
Between-field variability in backscatter at the tillering
stage may perhaps be equated with variability in crop
growth in different fields at any one time or with field
orientation effects. Large variations in backscatter at the
end of the season may be attributed to lodging (ie.
flattening of the crop by wind). Lodged fields have been
observed to have higher backscatter than unlodged
fields (Wooding et al. 1993).
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Figure 3.9. Between-field variability in winter wheat backscatter, The Netherlands 1993.

(Courtesy of M. Borgeaud, ESA/ESTEC).

Other cereal crops

The UK, German and Dutch studies have also examined
barley fields. Barley was seen to exhibit patterns of
change similar to those of wheat with the notable
exception that the backscatter minimum associated
with the attainment of the heading stage occurs earlier
than for winter wheat. Figure 3.70 shows comparisons
of wheat and barley signatures from the UK and Dutch
test sites. The period of maximum separation occurs
during days 150 to 190. During this period wheat is at
maximum productivity (heading and anthesis) while
barley crops are maturing (grain filling stage).
Backscatter is at a minimum for wheat and is increasing
as a function of time for barley. Therefore critical time
windows appear to exist during which different cereal
crops can be separated on the basis of their backscatter
temporal signatures.

3.3.2 Other arable crops

A composite of temporal profiles for a mixture of arable
crops studied with ERS-1 at the German, Dutch and UK
test site is shown in Figure 3.11. The curves illustrate
clearly the varying potential for inter-crop discrimina-
tion which ERS-1 may provide as a function of time in
the growing season. Below, we pick out certain im-
portant crops and summarise briefly their backscatter
characteristics and their perceived potential for
identification.

Sugar beet

Temporal profiles of sugar beet (Figure 3.12) tend not to
show the large changes through the season which are
characteristic of cereals. Rather, it appears that after
canopy closure, backscatter remains at a uniformly high
level. Variations in backscatter between different fields
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Figure 3.12. Between-field variability in sugarbeet backscatter, Flevoland, The Netherlands 1993.

(Source: M. Borgeaud, ESA/ESTEC).

is greatest during the early part of the season at some
sites while others show greater consistency; possibly
reflecting differences in management practices in the
different countries. In particular, sites in the Netherlands
have exhibited a deep dip in backscatter before the
emergence of the crop.

Oilseed rape

Oilseed rape does show significant features in its
temporal profiles although, again, not nearly as
pronounced as for cereals (Figure 3.13). During and after
anthesis (May and June), backscatter increases followed
by a decline during senescence and seed ripening until
harvest in mid August. The backscatter of the rough
bare soil after harvest may be several dB brighter than
pre-harvest levels. Compared to winter wheat, oilseed
rape profiles display higher backscatter at all stages of
development up to late July. Maximum backscatter for
rape seed occurs at the seed development stage in June.
At this time winter wheat backscatter is at a minimum.
Following ploughing at the end of the growing season,
similarly high backscatter values are associated with
rough bare soil fields which had previously held either
rape or wheat.

Potatoes
Potatoes, and indeed other root crops which have been
investigated, tend to show less variations in backscatter

through the season than either winter sown cereals or
oilseed rape. Some differences between different sites
are seen, especially in terms of the variation in
backscatter about the mean. Scatter is greatest during
the early part of the season which may be attributable
to differences in the height and orientation of soil ridges,
and to variability in above ground vegetation cover in
different fields.

3.3.3 Rice

ERS-1 radar backscatter from rice fields exhibits a very
characteristic and pronounced temporal signature
during the growing season. This is associated with very
significant changes in the nature of the crop, and of the
growing medium during each growth cycle, which are
more dramatic than those previously described for
temperate arable crops.

Rice fields are flooded during the early growing stage
with the soil surface almost completely covered by
water. Plants emerge above the water surface, and
increase in height up to a maximum level after which
the ripening phase starts. Plant moisture content is high
at the early growing stage, and drastically decreases
during ripening. In most cases water is drained out from
the field at the beginning of the ripening phase, leaving
the soil surface moist. Before harvest the soil becomes
drier and rougher due to cracks in the surface. It is these
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on the temporal backscatter signatures of crops. As
identified in temporal signatures of wheat in §3.3.1,
extreme wind disruption of the canopy late in the
season (ie. crop flattening or ‘lodging’) does lead to
significant and irrecoverable changes in backscatter
levels, leading to populations of outliers in distributions
of crop signatures.

In the case of rice, the wind also influences the surface
conditions; in this case the water surface present for at
least part of the growing cycle. Wind during the early
growing stage increases the roughness of the water
surface, resulting in enhanced radar backscattering.
Such effects are, indeed, seen in ERS-1 imagery of rice
fields, and an example will be presented as part of the
case study of Chapter 6.

3.4.2 The effect of rainfall events

ERS images are potentially sensitive to moisture, both
within crops and, under some circumstances, within the
upper layers of the soil. Rainfall, therefore, may
constitute an additional ‘noise’ source affecting
temporal radar profiles otherwise related to crop
development. Significant enhancements to ERS-1 image
brightness are, indeed, seen to be associated with
rainfall events over agricultural areas. Evidence comes
from a small subset of temporal radar profiles, including
some of those obtained in 1993 from the UK test sites.
Figure 3.15 provides an illustration of rainfall effects on
radar backscatter across an ERS-1 scene of the Seville
area. In this example alternate light and dark zoning is
seen in a part of the image where the similarly timed
AVHRR image shows the presence of rain bearing cloud
formations. In quantitative terms, rain events in the UK
were observed to result in enhanced backscatter on
particular days of up to 4 dB (ie. a factor of 2.5 increase
in reflected energy).

The effect of rainfall may have a significant effect on the
comparison of radar observations both between
different sites and different seasons. As a result, crop
classifications to the highest potential accuracies
achievable with ERS or other future satellite radars may
need to be based primarily on local training of
algorithms. However, with a sufficient number of
measurements over a number of seasons, it may be
possible to isolate accurate meaningful profiles
characteristic solely of crop development.
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4. Analysis Techniques

4.1 Pixel-based Approach

Computer-based crop classification using radar imagery
is complicated by image speckle, which is a noise
phenomenon of the radar imaging process (see § 3.3).
There is a linear increase of noise level (expressed as the
standard deviation of pixel values within a uniform
land-cover area) with the average grey value.

Image speckle hampers the application of standard
pixel-based classification techniques normally used to
classify optical imagery. If one adopts a pixel-based
approach it is first necessary to apply some form of
image filtering or segmentation to reduce image speckle
before image classification. Figure 4.7 illustrates the
effect of the Gamma-Gamma MAP filter (Lopes et al.,
1993) applied on a multi-temporal ERS-1 composite of
Zuid Flevoland in the Netherlands. Both unfiltered and
filtered images are shown, and one can see how the
within field variability has been reduced considerably in
the filtered image, while edges of linear features have
been preserved. Speckle reduction filters aim to reduce
speckle while preserving spatial resolution and linear
features.

Paudyal & Aschbacher (1993 a,b) have systematically
investigated the performance of different filters, using a
study area in Thailand. The speckle-specific filters tested
included the Lee Local Statistics, Lee Sigma, Frost, Li,

MAP and Gamma MAP filters (Lee, 1986.; Frost et al.
1982.; Li, 1988.; Nezry et al, 1991). The investigation
included a number of non-speckle-specific filters, such
as mean and median filters,

Filter performance has been assessed in terms of the
improvement of the signal-to-noise ratio SNR (mean/
standard deviation) for different land cover types (Table
4.1). These results demonstrate a significant improve-
ment of SNR for both agricultural and non-agricultural
cover types. Overall, the Lee and MAP filters show the
highest SNR for agricultural land cover types.

The improvement in the SNR should not be the only
means of judging the performance of a filter. SAR
images also consist of heterogeneous areas, linear
features and small scatters. These may need to be
preserved and it is difficult to assess this quantitatively.
Therefore a visual inspection often gives the best
impression on a particular filter's performance.

Speckle filtering is a pre-requisite if pixel-based digital
classification of SAR imagery is carried out. Speckle
filtering also improves visual interpretation of SAR
images. The choice of filter may depend on the image
characteristics. For the work in Thailand, the best overall
performance was observed using the Gamma MAP filter,

Aschbachar, 1993a)

Filter Window

type size Bush

Passesb : Water

Slgnal to Nmse Ratio, SNR {u
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Table 4.1 The effect of speckle reduction filtering on szgnal to noise ratzo for dxfferent land-cover categones
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noise. A GIS has been used to capture field boundaries
on screen using ERS-1 imagery as a ‘backdrop’ As the
ERS-1 imagery is georeferenced to the UK national grid,
field boundaries can be linked to the radar image.
However, edge effects have to be removed and this is
achieved by creating a buffer zone around the
boundaries. Field means can then be extracted and
stored in the database of the GIS. Mean field backscatter
colour composites can be produced by seed filling the
fields with the mean values, as shown in Figure 4.3b.

Optical satellite images usually provide a better
definition of linear features, and can be used as the
source of field boundaries to be used for field-based
analysis of satellite radar images. Harms et al. (1993)
have performed an automated segmentation of a SPOT
image as a basis for classifying multi-date ERS-1
imagery. The = technique produced classification
accuracies very close to those achieved by visual
interpretation of field boundaries on optical images.
Following georeferencing of the SPOT and ERS-1 imagery,
segmentation of the SPOT image was performed using
the principal of local contrasts. The segmentation
performed over a large variety of agricultural crops has
indicated the high quality and robustness of the
algorithm. Comparisons with cadastral maps show over
95% accuracy for the segmentation. Having segmented
the optical dataset, multitemporal ERS images were
classified by a field-based algorithm using mean and
standard deviation. The results obtained using this
analysis process are shown in Figure 4.4.

A number of automated segmentation techniques are
now being developed to identify parcel boundaries, and
undertake field-based classification, directly using radar
images. Techniques developed by White (1994) and
Quegan et al. (1993) involve operations such as merging
of an initial ‘fine segmentation’ based on calculated
probability, edge detection and region growing, and the
estimation of background radar cross section. Results
obtained within different studies show the usefulness of
such algorithms for segmenting imagery and classifying
crops. Example images are shown in Figure 4.5.

4.3 Integration of Optical and Radar Data

One example of the integrated use of optical and radar
data has been presented in the previous section, where
a SPOT image has been used as the source of field
boundaries for subsequent multitemporal classification
of ERS-1 images. Improving crop classification by

combined analysis of the reflectance and backscatter

data, respectively from optical and radar images, takes
this one step further.

As yet, techniques for fully integrated analysis of optical
and radar data are poorly developed. However, as far as
visualisation of combined data sets are concerned,
some interesting results have been obtained using the
IHS technique (ie. Intensity-Hue-Saturation). Normally,
colour composites are produced using the red (R), green
(G) and blue (B) colour guns to display different spectral
or temporal channels. However an alternate colour
space can be defined which uses Intensity, Hue and
Saturation:
* Intensity is the overall brightness of a scene
® Saturation represents the purity of colour
® Hue represents the colour or dominant wavelength
of the pixel.

The intensity, hue and saturation components can also

be displayed as a colour composite or they can be

contrast stretched before being transformed back into

RGB space. One of the main advantage of the technique

is that it enables the information content of more than

3 channels to be visualised. The steps involved in

combining optical and radar imagery using this

technique are as follows:

1. register SAR and optical images,

2. convert a 3-band optical image from RGB to IHS
coordinates,

3. substitute the SAR image for the intensity coordinate,
and

4. convert back to RGB space.

Figure 4.6 provides an example of this data integration
technique, using Landsat TM and ERS-1 images for an
area in Johor State, Malaysia. The resulting colour
composite seems to provide enhanced discrimination of
land cover types in comparison with what is possible
using either just the Landsat or ERS-1 data. However,
note that the mountains in the top of the composite
contain terrain distortion from the ERS-1 image.

4.4 SAR Interferometry

A promising new technique is being developed using
SAR interferometry. Interferometric processing of SAR
data combines complex valued images for two passes
to derive precise measurements of the difference in path
lengths for the two sensor positions. Either airborne or
spaceborne SAR can be used to create interferograms.
ERS-1 operated during several phases with repeat orbits
of 3 and 35 days. These repeat orbits are useful for
performing SAR interferometry. Thanks to the excellent




























37

Table 5.3 Crop classification accuracy using multitemporal ERS-1 SAR imagery (set A: 1 date; set B: 3 dates; set C:
5 dates; set D: 8 dates). Accuracy is percentage of the total number of fields. Training statistics for this classification
are based on a random selection of 25 fields per crop type (Source: Schotten et al. 1995).

Crop Type
Image W. _ S. Fr.
set Pots S. Beet . Wheat  Grass Maize,. Rape Barley . trees Onions Beans . Peas Lucerne Overall
A 92 0 37.. 0 0 92 87 76 60 0 38 0 37
B 91 27 81 57 44 92 87 76 59 58 42 67 64
c 65 44 86 .. 73 50 100 91 74 68 68 63 75 73
D 88 70 85 85 62 100 91 88 64 81 100 80

74

Taking into account the large number of crops this is an
encouraging result. Only for maize are the results very
disappointing.

5.2 Early Estimates

For agricultural applications there is a need to provide
information at the earliest possible stage in the growing
season. For agricultural control applications it is
important to distinguish crops early, so that fieldchecks
can be performed before harvest. The main objective of
the MARS project is to provide early estimates of crop
production for economical planning purposes.

The systems presently being used for both agricultural
control and crop production forecasting, rely on crop
types and areas being derived from time series of
optical imagery. For instance, the optimum requirement
for classifying a full range of arable crops in northern/
central Europe is a time series of three optical images
including an optical image taken in early/mid July.
Besides potential acquisition problems related to
persistent cloudy weather conditions, the fact that an
image taken relatively late in the growing season is
needed for accurate classification of some crops is a
limitation. The potential role of ERS-1 in providing early
estimates is therefore a topic of some interest.

Part of the Dutch crop classification study reported
above in § 5.1 has specifically addressed the issue of
early detection of crops. Crop classification has been
carried out starting with just the first ERS-1 image dated
12 May 1992, and then progressively adding images
one by one as they are acquired through the crop
growing season (Table 5.4). Early classification results
are best for cereal crops; with just two images taken by
the end of May, both winter wheat and spring barley
have classification accuracies of around 80%. By mid-

June results for potatoes and winter rape are also
around 80%. Classification accuracies for crops such as
onions, beans, peas and lucerne improve significantly
when images taken from August are included in the
analysis.

Examples presented above (Figures 5.1 and 5.3), have
shown that a multitemporal composite of ERS-1 images
acquired before the end of June provide good discrimi-
nation of cereals, oilseed rape and grass fields.

Monitoring autumn cultivations

One approach being investigated to improve early
season crop classification, involves ERS-1 monitoring of
land cultivation practices in the autumn and winter
months (Lemoine & De Groof, 1994). Different crops
often require different field preparations, and as the ERS
SAR is sensitive to the soil surface roughness and
moisture content, it may be possible to identify tillage
classes relating to particular crops. If tillage classes can
be classified and mapped, this could provide very early
determination of some crop types.

The ERS-1 backcattering coefficient of bare soil is known
to be sensitive to soil moisture variation and changes in
surface roughness. Many research efforts have been
directed to the determination of soil moisture, while the
backscattering variation due to surface roughness has
often been treated as an undesired disturbance. For
agricultural mapping and monitoring purposes, though,
valuable information is contained in surface roughness
parameters. Especially in the period between the crop
seasons, the surface roughness state reflects the on-
going tillage preparations, which can directly be linked
with previous and subsequent cropping practices.
Backscattering models can be used in combination with
a priori knowledge on various ancillary resources, such
as meteorological recordings, soil data and crop rotation
practices, in a contextual classification scheme to detect
tillage sequences and relate these to future crop types.
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Phenological stages of rice plant growth

A typical rice growth cycle lasts between 120-180 days
from planting to harvest, depending on crop variety.
There are three major plant growth phases: the
vegetative, reproductive and ripening phase. After soil
preparation rice fields are flooded. The vegetative phase
starts either with direct sowing or transplanting of
nursery plants. During this phase young plants emerge
from the water surface.

During the reproductive phase, plants continue to grow
until they reach a maximum height of about one metre.
During the ripening phase, the grains develop. Water is
normally drained out and the plants become drier and
turn yellow. The reproductive and ripening phases are
constant for most varieties and last about 35 and 30
days, respectively. The length of the vegetative phase
differs with variety. After harvest a bare soil condition
remains, sometimes with patches of standing water left.
A typical phenological development of the rice plant
during its growth cycle is shown in Figure 6.1.

There are glutinous and non-glutinous, photo sensitive
and non-photo sensitive, as well as resistant and less
resistant crop varieties. In recent years short-cycled
varieties are favoured, which allow an increased pro-
duction through more frequent harvests. In intensive
rice producing areas such as in Thailand the typical
growth cycle lasts 120 days. Crop yield depends on crop
variety and water availability. A typical crop yield for a
well irrigated field is approx. 5 tons/ha. The availability
of water during the early growth stage is crucial, which
has led to the development of sophisticated irrigation
networks in most of the intense rice growing areas
(Aschbacher & Paudyal, 1993).

Radar remote sensing studies for rice crop mapping
and monitoring

From an agro-economic point of view there are two
main parameters of interest, namely (i) rice acreage, and
(ii) rice yield. Rice production of a given area can be
obtained as the product of acreage and yield (per unit
area). As will be shown later in this Chapter, it is easier
to retrieve acreage from radar imagery than yield.

The investigations of ERS-1 SAR data for rice monitoring
include studies carried out in Thailand (Aschbacher &
Paudyal, 1993; Paudyal, 1994), in Indonesia (Asch-
bacher et al., 1995; Harms, 1993), in Spain (Kohl et al.,
1993) and in Japan (Kurosu et al., 1993). Earlier studies
carried out before the launch of ERS-1 are from Le Toan
(1989) based on X-band scatterometer measurements,
and Aschbacher & Lichtenegger (1990) based on SIR-A
L-band data.

The Thailand and Indonesia studies are described in
detail in this Chapter, while the studies carried out in
Spain and Japan are also included for comparison with
those of the tropical countries.

Multitemporal radar backscattering signatures

With reference to §3.3, the radar backscattering
coefficient ¢° [dB] of rice fields undergoes a very
characteristic temporal sighature during the growing
season. Compared to other agricultural crops, the
temporal signature of rice fields is probably the most
significant one showing the largest changes in radar
backscattering values during the growing period. This is
caused by the changing influence of macroscopic radar
backscattering interactions between standing water and
plant canopy. A schematic temporal backscattering
profile has previously been shown (§3.3.), and real
values as observed with ERS-1 SAR data are shown in
§ 6.1.2 and 6.1.4, respectively.

6.1.2 Case studies in Thailand

Some of the most detailed case studies on the use of
ERS-1 SAR data were carried out in Thailand (Paudyal,
1994; Aschbacher et al., 1994, 1995a). Two main study
areas were used, both of which are located east of the
town of Kanchanaburi, Thailand. Although both areas
are only about 30 km apart the characteristics of the
rice fields are quite different. The northern area shows
slightly undulating terrain, with small individual rice
fields and a heterogeneous growing pattern between
neighbouring fields, The southern study area is flat with
large individual fields and a generally homogeneous
growing pattern. In both areas a well developed irriga-
tion network provides sufficient water for rice growth.
The southern site is part of the EC-ASEAN ERS-1 project,
described in Aschbacher (1992).

For both studies, multitemporal ERS-1 SAR data were
available from nine acquisition dates, namely 22 Nov
91,7 Oct 92, 11 Nov 92, 24 Feb 93, 7 May 93, 11 Jun 93,
20 Aug 93, 29 Oct 93 and 3 Dec 93. The 1991/92 dates
are mostly used for the northern study area, while all
dates are used for the southern study area.

Detailed ground measurements were carried out for
both study areas. During the rice growth period
{lune —~December 1993), the ground measurements
described in Table 6.2 were taken in parallel with ERS-1
acquisitions. Ten different sample areas were selected
for detailed investigations, each of them approximately
1-2 hectares in size.
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Table 6.2 Ground measurements taken in parallel with ERS-1 SAR data acquisitions during June-December 1993 at
the southern study area in Kanchanaburi, Thailand (Aschbacher et al, 1995).

Parameter Details

.- Method :

Location deg lat/long-
Site photograph

General information

Weather at acquisition.

State of plant growth
harvesting stage .

Plant parameters .

Field information
plants,.etc.

state & geometry of rice plants and surface

Site acreage, planting method (seeding/transplanting), variety name;
date of planting, date of harvest, yield, irrigation (rainfed/irrigated)

wind (heavy/medium/light/no), plant orientation (vertical/bended-in
time * which direction), rainfall (heavy/light/no), surface & plant condition

soil preparation/vegetative stage/tillering/booting/flowering/panicle/
plant density, plant height, plant moisture content {weight before &
after drying), no. of leaves, leaf width, leaf length, stalk diameter

héight of stéhding water, geheral state of surface, general state of

+ GP& and: topographic map
square grid behind plant

" measurements and:farmer in-
terviews

measured, visual inspection
visuial inspection
measured, average of 10 samples

within 50x 50 cm frame

measurements, visual inspection

Estimate of rice acreage

Rice acreage can be retrieved from multitemporal radar
imagery, making use of the characteristic backscatter-
ing signature of rice fields. The temporal ¢° [dB| profile
of rice is unique, and thus quite easily distinguishable
from that of other crops. The fact that rice fields are
flooded during a certain period of time creates a clear
signature, namely that of a water surface during the
early growth period. Later, when plants are increasing in
height, backscatter increases to values which are
typically higher than those of other agricultural crops.
The large dynamic range of o° |dB| between the early
(flooded) and late (pre-harvest) growing period is an
important factor for rice mapping. It is, however, crucial
to select optimum dates within this cycle. These are
during the early growing period when the surface is
flooded, during the flowering phase and shortly before
harvest. This corresponds to the minimum (approx.
-16 dB), maximum (approx. —8dB) and (slightly de-
creased) pre-harvest values of ¢°.

The growing cycle for the main rice harvest in the Kan-
chanaburi study area lasts from August to December,
and for a secondary harvest from April to July. A three-
date multitemporal image combination is displayed in
Figure 6.2, in which rice fields {in green/bluish colours)
can easily be discriminated by visual interpretation
from other land-use categories. A digital classification
was carried out based on four acquisition dates in order
to produce a ‘rice map. All images were co-registered

and Gamma MAP filtered (Nezry et al., 1995) before a
simple clustering algorithm was applied.

The result is shown in Figure 6.3 for the three classes:
‘rice fields’, ‘non-rice fields, and ‘water. This clearly
indicates that the rice growing area is generally well
classified. There is, however, some confusion with water
areas and the backslopes of mountains. Both effects can
be removed if GIS-type information is included in the
final classification process (Aschbacher et al., 1995a).

Rice growth parameters

The ultimate goal in the use of radar imagery for rice
studies is to retrieve yield figures from satellite imagery.
Currently, there are only two studies known which point
in this direction, one carried out in Japan (Kurosu et al.,
1993) and one in Thailand (Aschbacher et al., 1995a).
Both aim at yield-related parameters such as plant
height rather than yield itself. An example from the Thai
studies is shown in Figure 6.4, where measured plant
height is compared with radar backscattering values.
Because the timing of rice planting is almost identical
for different years, two more dates from previous years
have been included, namely 22 Nov 91 and 7 Oct 92, in
order to complement some of the missing acquisitions
during the 1993 growth cycle or the ‘wind-disturbed’
image of 20 Aug 93. As can be seen from Figure 6.4a
there is a clear increase of radar backscattering values
with increasing plant height. The mean o0 values is
-10.6 dB two months before harvest (with a spread
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among all agricultural crops, ranging from approx.
~16 dB during the flooded and early growing stage, to
approx. —8 dB during the pre-harvest stage. The selec-
tion of appropriate acquisition times is crucial for
mapping purposes. As regards vyield estimates or
parameters that lead to yield estimates, there is a clear
correlation between radar backscattering signals and
plant height. This allows the approximate age of rice
plants to be determined, and thus a prediction of the
approximate harvesting time.

The results available from several case studies allow the

following conclusions to be drawn on the use of ERS-1

SAR data for rice mapping and monitoring (Aschbacher

et al, 1995a,b):

1. Multitemporal ERS-1 SAR data can be used in an
operational or quasi-operational mode for mapping
of rice fields, both for irrigated and rain-fed fields.

2. Multitemporal ERS-1 SAR data can be used in a pre-
operational manner for the retrieval of yield-related
parameters.

3. A priori knowledge about the rice crop calendar and
growing practices as well as parallel in-situ
measurements largely facilitate the interpretation of
radar images. However, reliable results can be
obtained without or with a very limited set of in-situ
measurements. This is of particular interest in view
of large-scale operational rice monitoring systems.

4. For mapping purposes, at least three dates should be
available during the growing cycle. The optimum
acquisition times are during the early flooded stage,
the flowering stage and shortly before harvest. An
additional post-harvest image is useful if the time of
rice harvest is different from that of other agricultural
crops on the same scene.

5. For the retrieval of yield-related parameters the use of
4 -8 acquisitions during the growth cycle is recom-
mended. The image dates should be equally spread
throughout the growth period. An acquisition shortly
before harvest is mandatory.

6. Multitemporal ERS-1 SAR data can be used to
determine field management practices; such as the
timing of irrigation, time of harvest, method of water
supply (irrigated or rain-fed), and the length of the
growth cycle. This information can be retrieved
largely without in-situ measurements.

7. As regards the optimum analysis technique applied
to radar imagery for rice mapping, it is recommend-
ed to speckle filter the images and apply texture
and/or segmentation based algorithms, before
classifying the images. Depending on the scene
characteristics, special measures may have to be
applied if field management differs within one scene.

8. If an operational rice monitoring system is
developed, it is strongly recommended to include
multitemporal radar imagery as a prime data source.

Figure 6.8. ERS-1 image of part of Johor state, Malaysia, 24
August 1993, coverage 100x100 km. (Source: M. Wooding,
RSAC).

Figure 6.9. ERS-1 PRI extract of Costa Rican coast, 18 May
1992; banana plantations show the brightest returns,
Gamma MAP filtered. (Source: M. Wooding, RSAC).




6.2 Plantations

ERS-1 images are potentially valuable for mapping some
types of plantation crops, which form an important part
of the economy of many tropical countries. Oil palm
and bananas, in particular, tend to have very bright
image tones in comparison with other types of tropical
vegetation because of the large leaf sizes and the overall
structure of the vegetation.

Figure 6.8 is an ERS-1 image covering parts of southern
Malaysia and Singapore Island. Large oil palm
plantations are seen as the lighter toned patches in the
zone between the coastal plain and the mountains to
the north-east. The coastal plain itself is an area of
mixed smallholder agriculture without clear field
patterns, which has darker image tones. Besides the
potential for mapping new areas of oil palm, there is
also some interest for monitoring the replanting of oil
palm, which happens approximately every 30 years.
Replanted oil palm appears dark on ERS-1 images
because the signal is dominated by the low herbaceous
ground cover between young trees.

Banana plantations are readily seen on ERS-1 images,
Beaulieu et al. (1994). Figure 6.9 shows large planta-
tions in Costa Rica located on flat land near the coast
and on large alluvial fans within the mountains. Banana
plantations are identified both by their brightness and
geometric shape. Although the extent of areas
cultivated with banana are relatively well known in
Costa Rica, there is potential for monitoring changes in
the extent of plantations, which can be quite rapid in
some areas.
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6.3 Other Crops

There is a great variety of tropical agricultural crops,
examples of which are rice, sugarcane, maize, tapioca,
coffee, tea, rubber and fruit tree plantations. Rice and
tree plantations have been discussed in § 6.1 and 6.2,
respectively. Paudyal (1994) has investigated also other
land cover categories at the Thailand study area
(described in § 6.1), where, apart from rice fields, large
plots of sugarcane are present, intermixed with bushes,
shrubs, water and urban areas.

Various classification methods were compared such as
maximum likelihood with knowledge-based classifica-
tion methods, or unfiltered versus speckle filtered
and/or texture analysed images. The latter method was
developed making use of pre-assumptions about the
rice growth cycle based on temporal profiles of ¢° [dB].
These results were compared with a Landsat TM image
and ground measurements for accuracy assessment.
An overview of the classification results is given in Table
6.3.

The results of the supervised classification based on five
dates (MAPiltered) has given an overall classification
accuracy of 70%, while the knowledge-based method
gave 80%, which is a clear improvement. The same
accuracy was obtained when combining speckle and
texture analysed images as input for a maximum
likelihood classification. As an example, the classifica-
tion accuracy matrix was extracted for the agricultural
crops, rice and sugarcane only, and compared with the
overall accuracy including all six land cover categories.
It is worth noting that the accuracy of rice alone has
increased from 72 % for the MAP-filtered classification to
92% for the knowledge-based segmentation method.

Overall . Rice Sugarcane

: Accuracy
N %)
1 Max. likelihood unfiltered 71
2 Max. likelihood MAP-speckle filtered 73
3 Max. likelihood 88
4 Max likelihood 73
5 Max. likelihc .88
6 * Knowledge-based - MAP filtered 7

segmentation
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For sugarcane, however, the combined speckle filtered
and texture analysed images are the best input source
for further classification. The accuracy reaches 88% in
this case.

As can be seen from Table 6.3, there is no general
method superior to another if all land-use categories are
considered. However, the more sophisticated methods
which combine speckle filtered and texture analysed
data are clearly superior to a classification using only
unfiltered or speckle filtered images. The knowledge-
based method was adapted to discriminate rice fields
from other categories and performs best for the
category of ricee A further description of the
methodology can be obtained from Paudyal et al.
(1994).
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(b)

Figure 7.1 Comparison of (a) ERS-1 and (b) JERS-1/SAR images over the Dutch test site, Flevoland. (Source: M. Borgeaud,

ESA/ESTEC).

Radar frequency is a tool for varying the penetration of
microwaves into the canopy of a crop. While, in some
circumstances, the Cband radiation of ERS-1 can
penetrate completely through a canopy, it is not
generally as penetrative as longer wavelengths such as
L- band. Longer wavelengths react with structures
through a greater volume of a canopy, and more
regularly interact with the soil below. Higher
frequencies, such as X-band radars, are more sensitive
to the small-scale properties of the upper layers of
vegetation or the canopy boundary layer.

The selection of horizontal and vertical polarisation
varies the response of a radar to different shapes or
scattering elements within a canopy. Selecting crossed
polarisations between the radar transmitter and
receiver, tends to detect backscatter from within the
volume of a crop canopy rather than from the soil, and
as such may be an indication of the amount of biomass.
We might conceivably select different single radar
channels or particular frequency and polarisation
combination to optimise the discrimination of certain
crops at some point in the growing season. Of far
greater potential, however, is the use of multiple
frequencies and/or polarisations simultaneously to
provide a multi-dimensional set of measurements, akin
to moving from monochrome optical imagery to colour.

Airborne radar experiments over the last two decades
have supplied the remote sensing user community with

high-quality multi-frequency and/or multi-polarization
data (eg. AGRISTARS, ROVE, AGRISCATT, AGRISAR,
MAESTRO 1, Mac Europe 91, EMAC-1994). The recent
SIR-C/X-SAR 1 and 2 experiments during April and
October 1994 offered, for the first time, an opportunity
to acquire multi-parameter SAR data from space within
the 10-day mission time frame.

The application of multi-frequency SAR data for crop
identification is demonstrated in Figure 7.2, which is a
colour composite of X-band, C-band and L-band images
covering the same 2.5 x 6 km area as the multitemporal
ERS-1 composite shown in Figure 5.2. On the imaging
date in July, all crops are fully developed and cause
characteristic backscatter intensities, which simplifies
the digital landuse classification. The brightest fields
belong to oilseed rape (yellow-white) and sugar beet
(light orange), since they have the highest backscatter
in all three wavelengths. Dark blue fields are winter
wheat (higher L-band returns), green fields are summer
barley (higher C-band returns), making discrimination
between cereals possible (compare the C- VV temporal
signatures in Figure 3.10).

Figure 7.3 shows a multi-frequency composite acquired
from the space borne SIR-C/X-SAR. The image was
acquired at 04:00 GMT at night, as a thick cloud layer
covered Germany, and shortly after a heavy storm
covered the area with 20 cm of snow. The quality of the
image demonstrates the capabilities of radar remote
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end of June and early July. At this time barley ripens
relative to wheat and this is reflected in the temporal
profiles. Grass can only be distinguished using
additional images acquired after the more seasonal
crops are harvested.

Results from Holland indicate that surface roughness in
autumn is an indicator of site specific tillage and
cropping practices in the following growing season.
Although crop development is insignificant in Autumn,
experimental results have shown that information could
be obtained which was relevant to crop type discrimina-
tion much later in the growing season. There seems to
be potential to use a combination of autumn and spring
images to map crops earlier than would be possible
using optical imagery.

Mapping of rice fields is also possible at a very early
stage when fields are flooded, which coincides with
sowing or transplanting.

The potential for crop classification may be limited in
areas where field sizes are very small. The accuracy of
averaged field backscatter measurements is reduced for
field sizes less than 1ha, and it becomes difficult to
resolve individual fields of this size. However, this has
not been a significant problem for rice mapping because
of the common management of groups of fields related
to water availability. Another important consideration is
the effect of geometric distortion in hilly areas. Much of
the preliminary work has been carried out in areas
where terrain distortion is not a problem (ie. East Anglia
in the UK, Lechfeld in Germany, the Dutch Polders and
Kanchanaburi in Thailand).

Recommendation

Further research studies are required to investigate crop
classification accuracies for a wide range of crops in
different environmental situations. New work is required
to assess the effect of local incidence angle correction
on crop classification performance in hilly terrain. There
should be an emphasis on the potential for early crop
forecasts.

8.3 Strategies for Operational Use of
Satellite Radar Data

The main weakness of current crop monitoring systems
based on the use of optical satellite data is the un-
reliability of image acquisitions in parts of the world
with frequent cloud cover. However, even when opti-
mally timed images are available, there still appears to

be problems with the identification of some crops. The
SPOT satellite for instance still lacks a spectral channel
in the middle infrared which provides much approved
crop discrimination (a situation that will change with
the launch of SPOT-4).

Although it is attractive to contemplate the use of
satellite radar data for operational crop monitoring
simply on the basis of reliable cloud-free data acquisi-
tion, the major issue is the value of the data for crop
classification in comparison, or used in conjunction
with optical data. The research results on ERS-1 crop
classification presented in this document are viewed as
being highly encouraging in this respect, and two alter-
native approaches are suggested depending on the
difficulties encountered in obtaining optical satellite
images.

Firstly, in cloudy parts of the world, such as the humid
tropics and northern Europe, multitemporal satellite
radar data should increasingly fulfil a primary role,
supplemented by occasional optical images. In this
case, optical images would be used for field area
measurement and to aid in the classification of crops
which are poorly discriminated on radar images.

Secondly, in parts of the world with generally clear
weather conditions, optical satellite images should
continue to be the main data source, although
supplemented by satellite radar images if these can be
shown to be useful for early crop identification, or for
dealing with particular crops which are difficult to
classify using optical images. Examples have been
presented which show that classification performance
can be improved by the combined use of optical and
ERS-1 imagery.

Experience with ERS-1 has established the potential of
satellite radar for agricultural applications. With ERS-2,
JERS-1, Radarsat (launch in 1995), and ASAR (launch in
1998) providing continuity of data into the next century,
there are excellent opportunities for exploiting the
potential of satellite radar for operational crop
monitoring in Europe and the rest of the world.
Operational multi-frequency, multi-polarisation radars
now being planned for early next century will extend
the capabilities even further. The potential for crop
growth monitoring is likely to be improved both by the
availability of multifrequency and multi-polarisation
data, and by the further development of interferometry
techniques. For rice there are already very positive yield
prediction results.



Recommendations

A programme of pilot projects should be initiated to
develop methodologies and to evaluate crop classifica-
tion accuracies using ERS-1/2 data in different agricul-
tural situations. There is also a need for more detailed
analyses of radar backscatter time series linked to crop
growth models. These should be carried out within the
framework of present remote sensing control and
statistics projects within Europe and elsewhere.

Furthermore, the complementarity of optical and radar
data should be studied in more detail as well as the
possibility of combining ERS and JERS data.

Finally, after four years of research and encouraging
results, operational users should be encouraged to
integrate ERS-1 imagery into their programmes.
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APPENDIX
- User Calibration of ERS Image Products |

i
]

Users can generate accurately calibrated ERS/SAR
images using information contained in the header files
supplied by ESA's Processing and Archiving Facilities
(PAFs) with the datasets.

For standard precision products (ERS.SAR.PRI), image
values are supplied which are proportional to the
amplitude of the normalised backscattered signal. The
square of these numbers (J) is related to the normalised
radar cross section o, by the expression:

<I> sin ap
0g = —— ——
K sin o
where o, = normalised radar cross section of
region
<I> = average pixel intensity of region
K = calibration constant
op = radar incidence angle at the region
lyef = reference incidence angle (23°)

The PAFs apply the necessary corrections for any
variations of calibration associated with the antenna
pattern of the radar before they are distributed to the
user.

In a large proportion of cases where ERS-1 images
agricultural regions, the calibration equation can be
simplified to:

<I> sin «p
Oy = ;
K SIN o

For work to the very highest levels of accuracy, and to
achieve the calibration performance described in
Chapter 5, additional corrections for ‘replica pulse
power’ and ‘ADC power loss’ are recommended.
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———

The replica pulses, which are copies of the pulses
transmitted by the radar, are used in the generation of
image products from the raw radar signals in the PAFs.
The power of the replica pulses is not perfectly constant
and for accurate measurements of radar backscatter
this variation in power should be corrected (Laur et al.
1993). The replica pulse power for each product is
stored in its header.

In cases were ERS-1 images bright areas of land or sea,
extending over areas of a few tens of km?, a loss of
power can result from saturation of the analogue-to-
digital converter (ADC) in the receiver on-board the
satellite. When imaging regions darker than g,= -7 dB,
the power loss amounts to less than 0.5 dB. The details
of how to calculate the ADC power loss are given in
Meadows & Wright (1994). For ERS-2, it is intended that
the impact of ADC power loss will be considerably
reduced by a reduction in the gain setting of the on-
board radar receiver.
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