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1. Introduction

The 1990's have seen major developments in the use of
satellite remote sensing for agricultural monitoring and
production forecasting. Within Europe the majority of
European Union Member States now use satellite
remote sensing to control arable and forage areas which
benefit from hectare-based subsidies as part of the
Common Agricultural Policy (CAP}.The 'Monitoring
Agriculture by Remote Sensing' (MARS)project of the
European Union, is another major initiative using
satellite-based techniques for the collection of crop
statistical information. At regional and local levels, there
is increasing use of remote sensing as a source of
information on changes in agricultural cropping and for
production forecasting.

Agricultural applications of remote sensing are time
critical. The accurate identification of crop types
depends on the availability of images acquired within
specific time windows through the crop growing season,
when there are marked differences in the appearance of
particular crop types on remote sensing images.
Equally, there is a need for images acquired at particular
key times for yield prediction purposes. Despite the
progress which has been made towards operational
applications, experience shows that high-resolution
visible and infrared satellite sensors cannot always
provide the desired information due to constraints
related to cloud cover and revisit schedules.

Radar satellites like ERS-1 and ERS-2 overcome the
problem of cloud cover. Synthetic Aperture Radar (SAR}
systems transmit microwave energy down to the Earth's
surface and record the variable strength and phase of
the 'backscattered' return signal. Images are obtained
independently of cloud coverage or daylight conditions
(Figure 1.1), and contain information on roughness and
dielectric properties of the surface. Radar is sensitive to
the structure and moisture content of vegetation
canopies, and to soil roughness and moisture content.

When ERS-1was launched in July 1991 it was intended
primarily as an experimental oceanographic satellite,
but there have been very significant research efforts
directed towards land applications. At first sight the
single-channel black-and-white SAR images from
ERS-1/2 appear to have limited value for agricultural
uses in comparison with the higher resolution

Figure 1.1. Sideways looking imaging geometry of the ERS-1
SAR. The instrument operates at C-band, W polarisation,
with an incidence angle of 23° from the vertical. Image
swath width is 100 km.
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multispectral visible and infrared images from SPOTand
Landsat. However, it is not difficult to become more
optimistic once we see colour combinations of images
acquired on different dates through the crop growing
season, particularly after image filtering techniques are
applied to reduce image speckle and improve definition.
Further, when we take into account the fact that
ERS-1/2 provide stable calibrated measurements of
surface conditions which are unaffected by atmospheric
effects, one begins to appreciate some of the possible
advantages over visible/infrared imaging.

This document (ESASP-1185)has been prepared by an
ESASpecialist Panel charged with the task of reviewing
research work and progress so far, and making
recommendations for future developments and
integration of satellite radar data into operational crop
monitoring systems. Chapter 2 of the document
provides a general introduction to agricultural

information requirements and the potential role of
satellite radar. Chapter 3 then develops an
understanding of the information content of ERS/SAR
images, concentrating on the presentation of results
concerning the temporal backscatter signatures of
agricultural crops. The different analysis techniques
being developed to extract agricultural information from
ERS images are then presented in Chapter 4. Chapter 5
contains case study results on temperate crops,
including examples of the classification of arable crops,
developments aimed specifically at early estimation of
crop area, and combined analysis of ERS-1and optical
satellite data. Case studies for tropical crops are
presented in Chapter 6, concentrating on developments
for rice mapping. Chapter 7 contains information on
interesting future developments in analysis techniques,
and the potential of new multichannel satellite radar
systems. Finally,Chapter 8 provides overall conclusions,
and recommendations for future developments and
integration into operational systems.
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2. Agricultural Information and Remote Sensing

2.1. Application Objectives

Agricultural resources provide mankind with food and
have a substantial impact on the economic and
environmental welfare of a particular country. The main
objectives of the different parties interested in crop
production, are the efficient and sustainable manage­
ment and development of this renewable resource. At
European and national levels, knowledge of changes in
cropping and crop production is the basic information
necessary for the implementation of agricultural policy.
The Common Agricultural Policy (CAP) involves a
complex arrangement of subsidies and tariffs used to
control European agricultural production. At the local
level, decisions regarding crop types, varieties, planting
dates, irrigation procedures and fertilizers can benefit
further from accurate knowledge of production on a
field-by-field basis.

The monitoring of agricultural resources is time critical,
and encompasses the following:
• Crop condition assessment
• Crop production forecasting
• Mapping of crop area and monitoring changes
• Surveillance of crop declarations for fraud control
• Pollution detection and impact assessment (e.g.

erosion risk)

Traditionally, crop production forecasts have been based
on crop inventories and yield surveys. Crop inventories
involve the identification of crops and measurement of
their area. This can be achieved using census and
ground survey techniques. However, over very large
areas, the application of such techniques becomes
costly and unreliable.

The use of satellite data to identify crops and measure
their area has now revolutionised crop production
forecasting. In the early 1970's, the Large-Area Crop
Inventory Experiment (LACIE)in the United States
developed the concept of an agricultural information
system incorporating satellite remote sensing. Multi­
spectral satellite imagery are used to estimate crop area.
Meteorological data from ground stations and NOAA
satellites are used to forecast yield and evaluate crop
development stage.

2.2. The European MARS Programme

In 1988 the European Community initiated a ten year
research programme to build upon the US LACIE
experience. Monitoring Agriculture using Remote
Sensing (MARS) is a major activity aimed at improving
European production forecasts by the use of high­
resolution remotely sensed imagery. Its main 'actions'
include quantitative estimation of crop acreages in a
given region or country, vegetation and crop state
monitoring, timely crop yield forecasting of the mean
crop yields per country, and the rapid and timely
estimation of the total production of the most
important crops within the EU. Its main users are the
Directorate General for Agriculture, and the European
Statistical Office (Eurostat).

The first five-year project developed statistical methods
to estimate crop acreage and potential yield (called
MARS-STAT).The various activities of MARS-STAT,
presented in Table 2.1, were conceived, developed and
implemented on the basis of inputs from approximately
100 institutions from 17 European countries. These
institutions provided data, models, algorithms and
software, after having previously validated them for use
at the EU scale on the basis of country specific
information.

Separate from the MARS-STATactivity, the use of remote
sensing for verification and control of the area-based
subsidies within the EU has evolved quickly over the
last few years and is now used operationally in most
countries of the EU. This is known as MARS-PAC
(Politique Agricole Commune), and involves the use of
computer-assisted photo-interpretation and automatic
classification to check farmer's applications for
subsidies. Approximately 5% of all farmers' returns
within each country are now checked using satellite
remote sensing.

In general it can be said that both the LACIEand the
MARS programmes were driven by economic motives,
which, in a market driven by price, is easily understan­
dable, and which can be seen as a very positive point
for the long-term and intensive use of remote sensing
data. Taking this into account, as well as the fact that



the major interest in agriculture consists of obtaining as
much timely information as possible on the crop area,
condition and production, it can be seen that the use of
remote sensing can and will be extended to other

regions outside Europe within programmes similar to
MARS-STAT.Major potential future customers could
certainly be the Asian countries which have a require­
ment to monitor rice resources.
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2.3. Potential of Satellite Radar

All-weather acquisition
The capability of satellite radar to provide reliable and
frequent imaging, independently of cloud coverage, is a
key factor in the context of agricultural applications.
Current European operational projects such as MARS­
STATand MARS-PAC,are dependent on the acquisition
of multi-date optical satellite imagery acquired over the
main crop growing season. Although the SPOTsatellite
has a variable viewing geometry which can be pro­
grammed to increase the opportunities for image
acquisition, the ability to collect optical satellite
imagery within relatively narrow time windows can still
be problematical in Northern Europe, where there are a
small number of cloud-free days. At least 17 of the 53
current Action IV test sites lie above 50° North, with
new sites in Sweden and Finland being added in .1996.
In the 1993 season, for example, only one or two SPOT
or Landsat images were obtained for UK sites, which
hampered the provision of reliable crop determinations.
The capabilities of ERS-1/2 are of even greater
importance in tropical regions, where cloud cover is
persistent throughout the year.

High revisit frequency
The ERS-1/2 satellites are able to acquire images for any
location of the Earth's surface, at a repeat interval of at
least every 17 days, with the coverage frequency
increasing in middle and high latitudes (Figure 2.1).
Figure 2.2 provides an example of the data coverage of
of one of the MARS Action IV test sites; a total of 18
images were acquired during the period 1 April to 31
August 1993 for the Kings Lynn site in the UK.The all­
weather day and night imaging capability guarantees
good multitemporal coverage over the main growing
season.

Early data acquisition
Closely related to the cloud cover penetration
capabilities is the potential of the ERSSARfor early crop
identification. Cloud cover and low light levels tend to
particularly hamper the acquisition of optical satellite
images in the spring, and thus during the early part of
the crop growing season. The use of radar for classifying
soil surfaces being prepared for different crop types in
the autumn/winter period is a possible approach to
early crop identification.

Sensitivity to surface roughness and moisture
The ERS/SAR is sensitive to the geometrical character­
istics of the ground surface, or the 'surface roughness',
and the dielectric properties of the surface materials,

9

Figure 2.1.Coveragemap of ERS-1!SARfor the 35-day repeat
cycle (nominal cycle of ERS-2)showing mid-image line and
frame centres (dots).Descending orbits (day time passes)are
shown in magenta, ascending orbits (night time passes) in
green. At these latitudes, a frame (100x100km) has a large
overlap with frames from adjacent passes, allowing more
frequent revisits for areas of interest.

lorbit frarte date trk
8942 2547 9304Klt 280
9092 1053 93<Mtt 430
9214 2547 930-4.20 51
9321 1053 930'427 158
9...43 2547 930506 280
9593 1053 930516 430
9715 25-47930525 St
9822 1053 930601 158
99-4"' 25-47 930610 280
1009-41053 930620 430
10216 2547 930629 51
10a2a ross eacvcease
t 0""45 2547 9307t 5 280
tOSSS 1053 930725 430
10717 254'7 9:30803 51
1002'41053930810158
109"'6 25"'17930019 280
t 1096 1053 930829 430

Figure 2.2. Typicalprint from the off-line catalogue user tool
provided by ERSUserServices,ESA!ESRIN,Frascati. It shows
the ERSframes covering an area of interest (shaded). The
frames are for the MARSsite Kings Lynn, UK.Between 1April
and 31August1993, eighteen images were acquired, three of
them during night time passes.
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which are strongly correlated with moisture conditions.
At the C-band wavelength of ERS there is very limited
penetration through surface layers, and radar
backscatter of crops is determined by the structure of
crop canopy (size, shapes and orientation of leaves,
stems and seed heads), crop cover and moisture
content. For soil surfaces, there is a strong sensitivity to
both the soil surface roughness and surface moisture
(see detail in Chapter 3: Scientific Basis). The information
content of radar images is thus very different to that of
optical satellite data, which record reflectance in visible
and infrared wavelengths.

Image geometry
Due to the highly stable orbit of the ERS-1/2 satellites,
images taken under the same orbital condition
(ascending or descending), can be easily superimposed
by a simple shift of the different images in relation to
the reference dataset. However, ERS SAR images are
subject to geometric terrain distortions related to the
sideways looking imaging geometry (see Figure 1.1),
which can impose some limitations on their use in hilly
areas. In flat areas standard polynomial geometric
correction techniques, can be used for geometric
correction of ERSimages to levels of accuracy of about
15 - 30 m. However, in hilly areas it is necessary to use
a Digital Terrain Model (DTM)and specialised software to
remove the geometric terrain distortions, in order to
obtain accurate registration with topographic maps and
corrected optical images. Techniques for these types of
geometric corrections are commercially available.

Complementary with optical and other radar
satellites
Besides the possibilities described above, there is
potential for improving crop identification, by taking
advantage of the complementary information provided
by ERSand optical satellites. For instance, the use of ERS
SAR data could concentrate on those crop types, for
which SPOT or Landsat data do not provide clear
separability. Even with two to three dates of optical
images, there can be problems in separating some crop
types which have similar visible near· and middle­
infrared reflectance, and yet, these crop types may have
very different structural characteristics which are able
to be distinguished on ERS SAR images. The same
potential might become interesting when combining
ERS SAR with the Japanese JERS or the Canadian
Radarsat imagery. JERS operates at a different wave·
length (Lband). Radarsat will acquire imagery with
different polarisation (HH) and incidence angles
compared to ERS-1.

There may be potential for using ERSSARdata, together
with agrometeorological backscatter models, to provide
additional quantitative estimates of crop growth. The
potential for identifying soil moisture in ERSSARimages
might equally become an important information input
for future agricultural applications.

Products and costs
The present pricing policy and rapid delivery are both
important arguments for developing the use of ERS-1/2
SAR for operational applications. ESA is developing
various systems for rapid delivery of ERSdata products.
The UK ERS-1 ground receiving station, for example,
operates a facility for near real-time supply of ERS-1
data using standard telephone lines. Latest information
about ERSand available data products is available from:

ERS Help Desk at ESRIN:
via Galiileo Galilei
00044 Frascati, Italy
Tel: + 39-6-941 80 600; Fax: + 39-6-941 80 510
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3. Scientific Basis

3.1 Understanding Radar

The microwave radar carried by the ERS satellites has
the potential to provide us with information on
agricultural crops and the soil in which they grow. As
well as generating images when visible/IR sensors are
unavailable because of cloud, the information from
radars may be complementary to that from optical
systems. The reason for this is the difference in the
processes and scale sizes of features, with which radar
and optical wavelengths interact in an agricultural field.
The response of a field of crops to optical radiation is
determined by structures on micron scales and by
processes of chemical absorption. Microwave radiation,
by contrast, penetrates significant distances into a
vegetation canopy and interacts most strongly with
structures (leaves, stems etc.) on scales comparable
with the radiation's wavelength (a few centimetres to a
few tens of centimetres). Thus, microwave radars may

be thought of as probing in a very direct manner the
structural components of a plant canopy.

Owing to its penetrative power, significant amounts of
radar energy can, in certain circumstances, pass
completely through a crop canopy to reach the soil
below (Figure 3.1). When this happens, the radar image
will be influenced by the reflective properties of the soil.
Thus, in very broad terms, imaging crops with radar
raises the possibility of exploiting differences both in
plant structure and in soil properties for the purposes
of differentiating crop types, crop condition, or
agricultural management practices.

Below, we expand on our understanding of the nature
of the interaction between microwaves and plants, and
outline some of its complexities. We go on to indicate
how computer simulations are helping to develop our
understanding from the qualitative to the quantitative.

Figure 3. 1. Incident microwaves from ERS are attenuated as they pass through the crop canopy When a canopy is thin or dry,
significant energy can interact with the soil.
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The basis of interaction between radar and
agricultural fields
The properties of vegetation and the soil which
influence the amount of microwave power scattered
back towards the ERSSAR fall under the two principal
headings of Geometric Structure and Dielectric
Constant. By structure we include the major plant
constituents on scales greater than a few millimetres
(leaves, stems, flowers, fruits/seed heads). Their sizes,
shapes and orientations determine the interaction of
individual isolated components with the microwaves. A
flattened leaf, for example, scatters microwaves in a
different directional pattern to a vertical stem. Below the
plant canopy, the soil surface does not act as a simple
mirror - rather the scattering from it is influenced by
its roughness properties, especially on scales com·
parable to the radar wavelength. The moisture of the
soil influences, through local chemistry, its dielectric
constant. For different soil types, there is a different
relationship between moisture content and dielectric
constant, determined by the soil constituents.

The understanding of the interactions with individual
plant components or the soil is relatively straight­
forward. Electromagnetic modelling has at its disposal
a range of techniques and approximations to describe
the scattering by at least the more simple shapes which
may be encountered in a crop canopy or by a soil
surface with a known roughness profile. The real
situation, however, is rather more complex than that of
microwaves scattering off isolated plant structures or
the soil. The relative positions and spatial densities of
the plant constituents determine how they respond as
an ensemble to the radar, both through multiple
scattering events or coherent interactions. Similarly, the
soil cannot always be considered separately from the
crop above it. Rather, a radar wave may be scattered by
a leaf before being reflected off the ground and back to
the radar. Furthermore, the relative importance of
different interactions, whether single or multiple (some
involving reflecting off the ground and others not) is
believed to change significantly as a crop develops
during the growing season (Figure 3.2).

Radar penetration and probing of crop canopies
Different wavelengths of microwaves have different
powers of penetration into vegetation canopies -
generally the longer the wavelength the greater the
penetration. The degree of penetration sets bounds to
the kinds of information which a radar can provide.
Discrimination of crops based on their structures will
only be realised if the structures which differentiate
them occur within the volume probed by the radar. The
same comment applies for the use of radars to probe

Wheat Backscatter Mechanisms
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Figure 3.2. The changing contributions to the backscattered
radar intensity as a crop develops. Here, the example is a
field of wheat where the crop cover is initially nil, then
develops to a 10-cm deep canopy, followed in turn by a moist
full canopy and then a drier ripening canopy Initially, simple
scattering off the soil dominates the total reflection. As the
crop increases in depth, the scattering from the soil becomes
weaker, and is largely replaced by volume scattering within
the canopy As the crop ripens and becomes more
transparent to ERS's microwaves, the soil becomes visible
once again, and contributes to the total. together with more
complicated scattering events involving radar waves interac­
ting with both the canopy and the ground. (Source: R. Cordey,
MRC).

soil characteristics; only if the radar can actually
penetrate to the soil and back will there be any direct
information on soil moisture. The C-band radar of the
ERS satellites penetrates primarily only into the upper
layers of plant canopies when they are dense or moist.
This penetration may increase very significantly,
however, if the plant canopy becomes more transparent
to radar as it dries out. Similarly, with the soil, the depth
to which microwaves penetrate increases in drier soils.
Thus, the influence of soil moisture on microwave
backscatter comes only from that moisture present
within the layer which is actually sensed.

Radar polarisation and incidence angle
As well as a radar's wavelength, the polarisation of the
microwaves and their angle of incidence relative to
nadir, affects the interaction with plants and soils.
Polarisation affects the way in which the microwaves
respond to different shapes and orientations of
scattering elements in a plant canopy. The vertically­
polarised electric field of the ERS SAR interacts more
strongly with the vertical stalks of a field of grains than
would, say, a horizontally-polarised radar. Such inter­
action leads to differences both in the power scattered



back in those different polarisations and in the degree
of penetration through to the soil. Penetration to the soil
is also influenced by the incidence angle of the micro­
waves because that angle determines the path length
within a crop canopy through which the radiation must
pass. A radar looking at a relatively steep angle, such as
ERS's 23 °, will tend to see the soil more readily than one
looking at a more oblique angle from nadir.

Towards a quantitative understanding
Developments in the modelling of microwave scattering
for agriculture have taken advantage of the increasing
availability of computing power, to create ever more
realistic and explicit models for the structures with
which the radiation interacts. The models aim to explain
or predict the brightnesses in radar images of different
crop types under changing environmental conditions, or
different stages of growth during ~ season. Early
developments in the 1970s were based around
empirical or semi-empirical models for scattering at
particular wavelengths. These did not attempt to
represent crops as recognisable structures, but invoked
tuneable parameters and were limited in their
applicability over the wide range of radar and crop
parameters which may be encountered. Widespread
recent work has placed greater emphasis on realistic
descriptions of plant components, which can be related
very directly to measurable parameters (the shapes of
leaves, their thicknesses and moisture contents etc.). It
is conceivable that significant improvements in the
accuracy of predictions will entail even more explicit
models of plants 'grown' in the computer, which include
descriptions of the spatial interrelationships between
leaves, stems and fruits.

So how useful are computer models for understanding
and predicting radar backscatter? A limitation on their
use for quantitative predictions of image brightness is
often the lack of sufficiently detailed information on the
crop and soil itself. This has made experiments for the
validation of computer models expensive and time
consuming. Thus, models are probably of most current
use in generating plausible radar images of agricultural
areas (e.g.for predicting the relative benefits of radars of
different designs) or for investigating the likely
sensitivity of image brightness to changes in crop or soil
parameters. In that context, they support research
towards methods for the retrieval of bulk crop or soil
parameters (biomass, soil moisture for example),
especially in the context of multi-date imaging when
only a sub-set of possible parameters (e.g. moisture)
may be changing rapidly.

13

Tosummarise then, it is widely believed that a relatively
good understanding has been developed of the inter­
actions between microwaves and agricultural fields,
which are responsible for the appearances of those
fields in a satellite radar image. Although complex, the
wide range of interactions which microwaves may
undergo with plants and the soil - the sensitivity to
detailed structure, moisture and chemistry - encourage
us to believe that, given an appropriate set of radar
measurements, it will be possible to discriminate
effectively between different crops. In the case of the
ERS radar, we will see that it is through its sensitivity
to changes in crop structures through the growing
season that we have a tool for distinguishing different
crops.

3.2 Calibration

What kind of calibration?
For applications which demand more from a radar
image than just the detection or mapping of features,
there is a requirement on the calibration of that radar.
We need an understanding of how the radar image
brightness relates to the fraction of incident microwave
energy which a region reflects back towards the radar
antenna. The accuracy with which a radar can be
calibrated and the nature of that calibration influence
the range of information retrieval purposes to which the
radar can be applied. By the nature of the calibration,
we mean:
• Has the radar been calibrated on an absolute

universal scale (relative ultimately to the signal
reflected from a well-understood simple geometrical
shape)? This sort of calibration is a pre-requisite for
the eventual retrieval of quantitative parameters of
crops and soil from individual radar images.

• Is the radar calibration stable in time, albeit on a
possibly arbitrary scale? Temporal stability of
calibration permits us, in principal, to use multi-date
images to quantify changes in crop and soil
parameters.

• Is the radar calibration the same at different
locations across a single image? Some degree of
stability in calibration across an image is needed in
order to create stable crop classification algorithms.

ERS-1 has been successfully calibrated over its entire
period of operation against a scale defined by ground­
based transponders. The units conventionally used are
normalised backscatter cross sections (sigma-zero, a0),

and are usually represented in their logarithmic decibel
(dB) form. The dB value of sigma-zero is 10 log., of the
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value in linear units. The intrinsic precision of the
transponders is believed to be better than 0.14 dB (i.e.
an uncertainty of about 3% in the fraction of incident
energy which they reflect). The long-term calibration
accuracy of ERS-1relative to this scale is 0.06 dB with
an rms error of 0.22 dB for a given image (Figure 3.3).
Across an individual image (100 x 100 km 2), the
estimated uncertainty in calibration is better than
0.2 dB. Compared to previous experience with aircraft
and satellite radars, these figures represent very
significant improvements, and are achieved without a
requirement for local calibration devices to be set out by
an operational user. The method by which standard ERS
image products can be calibrated by the user is
described in the Appendix.

Limitations due to speckle noise
Synthetic-aperture radars suffer from a form of noise in
their images called speckle. Speckle is a consequence of
the coherent nature of the SAR imaging process (it is
closely related to the phenomenon of laser speckle), and
can be a significant limitation on the measurability of
the mean brightness from an area of land. The problem
is that the brightness of a particular resolution cell,
depends not just on some form of average of the plant
and soil parameters in that area, but on the particular
phase relationships between the reflected waves from
different parts of that resolution cell. In the most basic
of images, speckle typically imposes an uncertainty on
the estimate of the brightness from any resolution cell
equal to the expected brightness. Only by some form of
incoherent averaging can a meaningful measurement of
image brightness be made. Routinely, this is done in
part by a process known as multi-looking taking not
one but two or more (3 in the case of standard ERS
scenes) independent images and averaging together the
radar brightnesses from each. Speckle can be further
reduced by filtering the image, but at the expense of
further sacrificing spatial resolution. The purpose of
introducing the concept of speckle here is to draw
attention to the lack of requirement for very high
calibration accuracies for local scales of quantitative
analysis. Figure 3.4 shows how, for ERS-1 imagery, the
estimate of the mean brightness improves with the area
over which averaging is performed. For an individual
field of size 5 hectares, an ERSimage can provide at best
a speckle-limited accuracy of 6% (or 0.27dB) for the
averaged brightness over that field. This is reasonably
well-matched to the stability of ERS-1 - a higher
accuracy of measurement would be unnecessary for the
analysis of fields of this size in individual images.

ERS-1SARStability
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Figure 3.3. The stability of the ERS-1 radar is demonstrated
here by the apparent brightness in its images of one of the
ESA's transponders sited in Flevoland in The Netherlands.
These transponders transmit back to ERS-1 a very precise
fraction of the incident microwave energy and allow the
radar's calibration to be checked independently. Following
the application of the ERS-1 calibration procedure (see
Appendix), the brightness of a transponder is plotted for the
entire duration of the 'Multidisciplinary Phase' of ERS-1
operation from April 1992 to December 1993. (Source: R.
Cordey, MRC).

-9
Measurement Errors due to Speckle

(± 1 standard deviation)

-11

Field Area (Hectares)

Figure 3.4. ERS·1 intensity estimates as a function of integra­
tion area. Due to speckle noise in SAR images, an individual
pixel gives a poor estimate of a field's mean brightness. In
general the more pixels that are average the better the
estimate. The graph shows, for an actual ERS-1 standard 'PR!'
image, how the mean brightness changes with the area of
image which is averaged. The integration path is taken as a
spiral out from a starting pixel, to mimic the averaging over
fields of larger and larger sizes, up to a maximum area shown
here of 5 ha. For small integration areas, the uncertainty is
clearly very significant, but the average settles down for fields
of a few hectares to an uncertainty which is a small fraction
of a dB. (Source: R. Cordey, MRC).



3.3 Temporal Signatures

The radar backscatter of a crop will vary over the
growing season from early crop establishment through
to maturity and harvest. For the ERS radar, it is these
temporal changes which may hold out the strongest
prospect for establishing a routine means of
distinguishing one crop from another. While we have
confidence that the changes in radar backscatter of a
crop during its development can be understood in terms
of changes in the moisture and geometry of the crop or
soil, the problem facing potential operational users, is to
be sure that the profiles are sufficiently characteristic of
the crop's development, and not of very localised
environmental conditions, to be of use in identifying
that crop either regionally or globally.

For this reason, the nature of changes of backscatter
with time and the extent to which different crop types
have distinctive temporal signatures, have been at the
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focus of ERS-1 research studies undertaken in the UK,
Germany and The Netherlands. In the following
sections, some of the principal results of these studies
are reviewed, with a view to identifying the extent to
which distinctive temporal signatures exist, and can be
used as a tool for crop discrimination.

3.3.1 Cereal crops
A study carried out in the UK during the 1992 crop
growing season, established that fields of winter wheat
have temporal profiles in their ERS-1backscatter which
were distinctive from other crops in the region (Wooding
et al. 1993, Wright et al. 1993). The profiles showed a
clear decline in early-season backscatter, followed by an
increase at the time of grain fill and ripening, and then
a further major increase following harvest (Figure 3.5).

Repeating the study in 1993, revealed similar trends at
four sites across eastern England (Zmuda et al. 1994).
Figure 3.6 shows the averaged temporal profiles at

Cultivation

13th September 1992

18th August 1992

14th July 1992

June SeptemberJuly August

Figure 3.5. Changes in winter wheat backscatter for a wheat field, development stages are also shown, Boxworth, UK, 1992.
(Source: Wooding et al. 1993).

May



Figure 3.6. Mean ERS-1 backscatter temporal profiles for winter wheat, 1992 and 1993 growing seasons,
for four sites in the UK. (Source: Zmuda et al. 1994).
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these sites over the two years; as before, we see a set
of declining responses in the early season followed by
increases through to harvest at around day 220. Despite
the overall broad consistency between sites and
seasons, however, there are some notable differences
between the temporal profiles. The trough and inflexion
points are possibly more marked in 1992, while
backscatter is higher on day 167 in 1993 for Boxworth
and the two Feltwell sites than would have been
expected by the annual and inter-annual trends. Such
deviations away from the overall trend can most likely
be explained as disturbances to the profile caused by
meteorological events (see § 3.4).
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But how do these profiles from UKwheat fields compare
against those from elsewhere in Europe? In Figure 3.7,
the UK trends are shown alongside profiles of winter
wheat from the Dutch and German test sites. All the
temporal profiles do indeed show very similar patterns
of change.

Changes in wheat backscatter with development stage
Ground data exist which give a clear visual impression
of the relationship between phases of the ERS-1
backscatter curves and the development stages of
wheat crops. Figure 3.8 illustrates the crop development
stages for one spring-sown and two winter-sown wheat



fields at Boxworth, UK, during 1993. These ground
photographs show the crop condition on four dates at
the time of ERS-1 SAR acquisitions, and may be used to
provide a more detailed interpretation of the processes
responsible for the changing response of the ERS-1
radar:

On 19 April (day 109) the spring crop is only just
emerging, in contrast with conditions in the winter
wheat fields where tillering is well advanced and there
is over 90 % crop cover. Crop growth in the two winter
wheat fields appears very similar, yet there is a
difference of 1.7 dB in their backscatter. The backscatter
of the spring wheat field is more than 2dB higher than
the highest of the winter wheat fields.

By 24 May (day 144) the two winter wheat fields have
well developed flag leaves, and backscatter has
decreased by 1.7 dB in the case of field no. 1.03, and
3.5 dB in the case of field no. 1.05. Comparing the two
fields, field no. 1.05 is seen to have a more vertical
structure than field no. 1.03 in which the flag leaves are
seen to bend over. This structural difference seems to be
a possible explanation of the difference in backscatter
between the fields. In the spring wheat field, tillering has
reached a similar stage to that seen in the winter wheat
fields on 19 April, and the backscatter has declined by
3.5 dB to -12.14 dB, which is similar to the values of
the winter wheat on 19 April.

On 28 June (day 179) all three crops were at the heading
stage and appear quite similar in terms of structure,
which is dominated by vertical components.
Backscatter values for all fields reach a minimum at this
time (around -14 to - 16 dB), with only about 2 dB
difference between them.

Finally, on 2 August (day 214), grain fill and crop
senescence had occurred in all fields, and backscatter
values show increases of 1.5 - 2 dB for all fields. In
addition to the obvious drying out of the crop by 2
August, one can see that the senescence of the leaf
vegetation, with just the stalks and ears remaining, has
resulted in a less dense crop canopy.

The observed changes in winter wheat backscatter with
crop growth stage might be interpreted as follows. At
the early stage of growth, as the crop emerges,
backscatter is essentially determined by the condition
of bare soil, and in most cases backscatter values are
relatively high. As tillering takes place and crop cover
develops, a decrease in backscatter is experienced, with
volume scattering within the crop reducing the overall
return from the soil's surface. This reduction in
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Figure 3.7. Comparison of winter wheat backscatter profiles
for the European test sites. (Source: M. Borgeaud, ESA/ESTEC,
C. Schmullius, DLR and M. Wooding, RSAC).

backscatter seems to continue until flag leaves develop
and start to bend over and produce a more pronounced
horizontal structural component to the crop. From the
comparison of different fields carried out above, it then
seems that a small increase in backscatter may actually
occur at this time, related perhaps to surface
backscatter from the flag leaves. As heading takes place
and the flag .leaves become less dominant within the
canopy, the crop develops a more open vertical
structure which produces very low backscatter returns
from within the volume of the crop canopy. Then as the
crop begins to ripen, thin and dry out there is an
increase in backscatter which seems best explained by
radar penetration through the crop to give some
backscatter contribution from interaction with the soil
surface.

Broadly, then, there is strong evidence to suggest that
winter wheat backscatter shows consistent patterns of
change as a function of time, namely that:
• high backscatter is associated with the early stages

of crop development
• backscatter then declines and reaches a minimum

by lune (ie the period of maximum crop productivity)
• after anthesis backscatter increases during the grain

filling stage.
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Figure3.8. Changes in winter wheat backscatter with development stage, Boxworth, UK 1993, growing season.
(Source: Zmuda et al. 1994)



Between-field variability
Figure 3.9 shows individual temporal curves for wheat
fields imaged by ERS-1 over the Netherlands test site.
The profiles show similar trends in backscatter
development as a function of time, but there is seen to
be a very significant variation in backscatter between
fields on each date. This is much greater than can be
accounted for in terms of variations in the calibration
factor across ERS-1 images. Accounting quantitatively
for this variability has proved difficult. In the early

stages of development it may be most closely
associated with differences in the percentage crop cover.
Between-field variability in backscatter at the tillering
stage may perhaps be equated with variability in crop
growth in different fields at any one time or with field
orientation effects. Large variations in backscatter at the
end of the season may be attributed to lodging (i.e.
flattening of the crop by wind). Lodged fields have been
observed to have higher backscatter than unlodged
fields (Wooding et al. 1993).
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Figure 3.9. Between-field variability in winter wheat backscatter, The Netherlands 1993.
(Courtesy of M. Borgeaud, ESA/ESTEC)

Other cereal crops
The UK,German and Dutch studies have also examined
barley fields. Barley was seen to exhibit patterns of
change similar to those of wheat with the notable
exception that the backscatter minimum associated
with the attainment of the heading stage occurs earlier
than for winter wheat. Figure 3. 10 shows comparisons
of wheat and barley signatures from the UKand Dutch
test sites. The period of maximum separation occurs
during days 150 to 190. During this period wheat is at
maximum productivity (heading and anthesis) while
barley crops are maturing (grain filling stage).
Backscatter is at a minimum for wheat and is increasing
as a function of time for barley. Therefore critical time
windows appear to exist during which different cereal
crops can be separated on the basis of their backscatter
temporal signatures.

3.3.2 Other arable crops
A composite of temporal profiles for a mixture of arable
crops studied with ERS·1 at the German, Dutch and UK
test site is shown in Figure 3.11. The curves illustrate
clearly the varying potential for inter-crop discrirnina­
tion which ERS-1may provide as a function of time in
the growing season. Below, we pick out certain im­
portant crops and summarise briefly their backscatter
characteristics and their perceived potential for
identification.

Sugar beet
Temporal profiles of sugar beet (Figure 3. 12) tend not to
show the large changes through the season which are
characteristic of cereals. Rather, it appears that after
canopy closure, backscatter remains at a uniformly high
level. Variations in backscatter between different fields

19
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Figure 3.10. Changes in mean winter barley and wheat backscatter as a function of time (a) 1993 growing season, The
Netherlands (Courtesy of M. Borgeaud, ESA/ESTEC);(b) 1993 growing season, Feltwell, UK. (Source:Zmuda et al. 1994).
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Figure 3.11. Changes in wheat, sugar beet and potato backscatter with time for the European test sites.
(Source:M. Borgeaud, ESA/ESTEC,C. Schmullius, DLR and M. Wooding, RSAC).
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Figure 3.12. Between-field variability in sugarbeet backscatter, Flevoland, The Netherlands 1993.
(Source: M. Borgeaud, ESA/ESTEC).

is greatest during the early part of the season at some
sites while others show greater consistency; possibly
reflecting differences in management practices in the
different countries. In particular, sites in the Netherlands
have exhibited a deep dip in backscatter before the
emergence of the crop.

Oilseed rape
Oilseed rape does show significant features in its
temporal profiles although, again, not nearly as
pronounced as for cereals (Figure 3.13). During and after
anthesis (May and June), backscatter increases followed
by a decline during senescence and seed ripening until
harvest in mid August. The backscatter of the rough
bare soil after harvest may be several dB brighter than
pre-harvest levels. Compared to winter wheat, oilseed
rape profiles display higher backscatter at all stages of
development up to late July. Maximum backscatter for
rape seed occurs at the seed development stage in June.
At this time winter wheat backscatter is at a minimum.
Following ploughing at the end of the growing season,
similarly high backscatter values are associated with
rough bare soil fields which had previously held either
rape or wheat.

Potatoes
Potatoes, and indeed other root crops which have been
investigated, tend to show less variations in backscatter

through the season than either winter sown cereals or
oilseed rape. Some differences between different sites
are seen, especially in terms of the variation in
backscatter about the mean. Scatter is greatest during
the early part of the season which may be attributable
to differences in the height and orientation of soil ridges,
and to variability in above ground vegetation cover in
different fields.

3.3.3 Rice
ERS-1radar backscatter from rice fields exhibits a very
characteristic and pronounced temporal signature
during the growing season. This is associated with very
significant changes in the nature of the crop, and of the
growing medium during each growth cycle, which are
more dramatic than those previously described for
temperate arable crops.

Rice fields are flooded during the early growing stage
with the soil surface almost completely covered by
water. Plants emerge above the water surface, and
increase in height up to a maximum level after which
the ripening phase starts. Plant moisture content is high
at the early growing stage, and drastically decreases
during ripening. In most cases water is drained out from
the field at the beginning of the ripening phase, leaving
the soil surface moist. Before harvest the soil becomes
drier and rougher due to cracks in the surface. It is these
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Figure 3.13. Changes in oilseed rape backscatter with time, development stages also shown, UK 1992.
(Source: Wooding et al. 1993).

structural and moisture changes which are believed to
be the main cause of changes in the nature of the radar
interaction and consequently of the ERS image
brightness.

In ERS-1 images, rice fields appear dark during the
flooded and early growing stage and turn brighter
during the later growing stage (Figure 3.14). Radar
backscattering reaches a maximum before the ripening
phase. This maximum may plausibly be attributed to
multiple radar reflections between vertical plant
structures and the horizontal water surface at a growth
stage when penetration of the microwaves to the water
surface is still possible. Later, during the ripening phase,
the scattering from the volume of the canopy increases,
but penetration to the water decreases, leading to an
overall darkening of the radar image. After rice is
harvested, radar backscatter decreases to that of either
water or bare soil, depending on the surface condition
remaining after harvest (Aschbacher & Paudyal, 1993).

In Chapter 6, there are examples using the distinctive
temporal signature of rice for the classification of
growing areas.
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Figure 3.14. ERS-1temporal backscatter signature of rice.
(Source: j. Aschbacher, jRC).



Figure 3.15. Moisture pattern in AVHRR and ERS-1 images of 27 May 1992. (Source: H. De Groof, )RC).

3.4 Environmental Effects 3.4.1 Influence of wind
To the casual observer the wind can often be seen to
exert a very significant effect on the geometry of a plant
canopy; particularly for smaller plants or those with
thin stalks. In circumstances where the radar backscat­
ter is influenced significantly by the vertical geometry of
cereal crops, we may expect that temporary disruption
or randomisation of that geometry will act to change
the amount of backscattered energy. Wind is therefore
seen to provide a contribution to regional 'noise' effects

In addition to steady changes in crop structures during
a season, there exist other influences on ERS temporal
radar signatures which have been observed in
experimental datasets and which may impact on the
ability to discriminate different crops. Here, we discuss
those associated with meteorological effects through
their temporary or permanent influence on crop
structure or moisture.
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on the temporal backscatter signatures of crops. As
identified in temporal signatures of wheat in § 3.3.1,
extreme wind disruption of the canopy late in the
season (i.e. crop flattening or 'lodging') does lead to
significant and irrecoverable changes in backscatter
levels, leading to populations of outliers in distributions
of crop signatures.

In the case of rice, the wind also influences the surface
conditions; in this case the water surface present for at
least part of the growing cycle. Wind during the early
growing stage increases the roughness of the water
surface, resulting in enhanced radar backscattering.
Such effects are, indeed, seen in ERS-1 imagery of rice
fields, and an example will be presented as part of the
case study of Chapter 6.

3.4.2 The effect of rainfall events
ERS images are potentially sensitive to moisture, both
within crops and, under some circumstances, within the
upper layers of the soil. Rainfall, therefore, may
constitute an additional 'noise' source affecting
temporal radar profiles otherwise related to crop
development. Significant enhancements to ERS-1image
brightness are, indeed, seen to be associated with
rainfall events over agricultural areas. Evidence comes
from a small subset of temporal radar profiles, including
some of those obtained in 1993 from the UKtest sites.
Figure 3. 15 provides an illustration of rainfall effects on
radar backscatter across an ERS-1 scene of the Seville
area. In this example alternate light and dark zoning is
seen in a part of the image where the similarly timed
AVHRRimage shows the presence of rain bearing cloud
formations. In quantitative terms, rain events in the UK
were observed to result in enhanced backscatter on
particular days of up to 4 dB (i.e.a factor of 2.5 increase
in reflected energy).

The effect of rainfall may have a significant effect on the
comparison of radar observations both between
different sites and different seasons. As a result, crop
classifications to the highest potential accuracies
achievable with ERSor other future satellite radars may
need to be based primarily on local training of
algorithms. However, with a sufficient number of
measurements over a number of seasons, it may be
possible to isolate accurate meaningful profiles
characteristic solely of crop development.



4. Analysis Techniques

4. 1 Pixel-based Approach

Computer-based crop classification using radar imagery
is complicated by image speckle, which is a noise
phenomenon of the radar imaging process (see § 3.3).
There is a linear increase of noise level (expressed as the
standard deviation of pixel values within a uniform
land-cover area) with the average grey value.

Image speckle hampers the application of standard
pixel-based classification techniques normally used to
classify optical imagery. If one adopts a pixel-based
approach it is first necessary to apply some form of
image filtering or segmentation to reduce image speckle
before image classification. Figure 4. 1 illustrates the
effect of the Gamma-Gamma MAP filter (Lopes et al.,
1993) applied on a multi-temporal ERS-1 composite of
Zuid Flevoland in the Netherlands. Both unfiltered and
filtered images are shown, and one can see how the
within field variability has been reduced considerably in
the filtered image, while edges of linear features have
been preserved. Speckle reduction filters aim to reduce
speckle while preserving spatial resolution and linear
features.

Paudyal & Aschbacher (1993 a.b} have systematically
investigated the performance of different filters, using a
study area in Thailand. The speckle-specific filters tested
included the Lee Local Statistics, Lee Sigma, Frost, Li,

MAP and Gamma MAP filters (Lee, 1986.; Frost et al.
1982.; Li, 1988.; Nezry et al., 1991). The investigation
included a number of non-speckle-specific filters, such
as mean and median filters.

Filter performance has been assessed in terms of the
improvement of the signal-to-noise ratio SNR (mean/
standard deviation) for different land cover types (Table
4.1). These results demonstrate a significant improve­
ment of SNR for both agricultural and non-agricultural
cover types. Overall, the Lee and MAP filters show the
highest SNR for agricultural land cover types.

The improvement in the SNR should not be the only
means of judging the performance of a filter. SAR
images also consist of heterogeneous areas, linear
features and small scatters. These may need to be
preserved and it is difficult to assess this quantitatively.
Therefore a visual inspection often gives the best
impression on a particular filter's performance.

Speckle filtering is a pre-requisite if pixel-based digital
classification of SAR imagery is carried out. Speckle
filtering also improves visual interpretation of SAR
images. The choice of filter may depend on the image
characteristics. For the work in Thailand, the best overall
performance was observed using the Gamma MAP filter,
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Figure 4.1. ERS-1 multitemporal composite, Zuid Flevoland 1992; (a) unfiltered composite,
(b) filtered composite: red 7 June, green 12 July, blue 16 August. (Source:G. Nieuwenhuis, Staring Centre).



which was found to give the best combination of
smoothing image speckle within homogeneous areas
and edge preservation. Application of the Gamma MAP
filter also improved visual interpretation. The Lee filter
performed well for digital analysis when class
separation was critical. However, edges and linear
features tended to be degraded.

The application of speckle filters in the Thailand
agricultural study areas has shown that land cover
discrimination can be significantly improved.
Classification performance also shows improvement.
This is further developed in Chapter 6.

4.2 Field-based Approach

A field-based approach involving the use of digital field
boundaries to extract image statistics, such as the
mean field backscatter, effectively overcomes the
problem of speckle. Clearly such an approach assumes
that fields can be treated as individual objects and one
can disregard the within field spatial variability. In
general, only the mean field values are used for
classification, but within-field variance and texture can
be used as additional information for crop classification.
At the spatial resolution of satellite radar, agricultural
fields are relatively smooth uniform surfaces, lacking
the grainy texture which can be associated with urban
or forest areas.

An example of a field-based classification methodology
using ERS-1 images integrated with digital field
boundaries derived from a SPOTXS image is presented
as a flow chart in Figure 4.2. In this example, digital field
boundary information is stored in a GIS.A selection of
ERS-1 acquisition dates is made, and the mean
backscatter value (gamma) per field is calculated using
the digitized field boundaries. These mean values are
used to create signatures for each crop type, and to
carry out a maximum-likelihood classification. The
classification result is then added to the GISto produce
a land cover map.

Field boundaries can be obtained from cadastral maps,
and then adjusted over an image backdrop, or
alternatively can be obtained directly from radar or
optical satellite images using visual interpretation or
automated techniques.

When only ERS images are used to extract field boun­
daries, multitemporal composites aid the interpretation
of field boundaries. Figure 4.3a shows field boundaries
mapped over a multitemporal ERS-1image of Terrington
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Figure 4.2. Flow chart of a field-based classification proce­
dure of ERS-1images using additional information from topo­
graphical maps, field work and optical data.
(Source: Schotten et al. 1994).

(a) ~~J:-1M~~~-~~~~~~~9~ackscatterComposite
Green: 16thMay1993
Blue: 11thAprll 1993

(b) ~~J,"1M~~~:~~~eB1a9c:3scatterComposite
Green: 16thMay1993
Blue: 11thApril 1993

Figure 4.3. ERS-1 multitempora/ backscatter composites,
Terrington Marsh UK; (a) PR! imagery (b) mean field
backscatter composite. Field boundaries are superimposed.
(Source: M. Wooding, RSAC).

Marsh in the UK.The speckle effects are very evident in
the backscatter composite as fields appear to contain
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noise. A GIShas been used to capture field boundaries
on screen using ERS-1 imagery as a 'backdrop'. As the
ERS-1imagery is georeferenced to the UKnational grid,
field boundaries can be linked to the radar image.
However, edge effects have to be removed and this is
achieved by creating a buffer zone around the
boundaries. Field means can then be extracted and
stored in the database of the GIS.Mean field backscatter
colour composites can be produced by seed filling the
fields with the mean values, as shown in Figure 4.3b.

Optical satellite images usually provide a better
definition of linear features, and can be used as the
source of field boundaries to be used for field-based
analysis of satellite radar images. Harms et al. (1993)
have performed an automated segmentation of a SPOT
image as a basis for classifying multi-date ERS-1
imagery. The technique produced classification
accuracies very close to those achieved by visual
interpretation of field boundaries on optical images.
Following georeferencing of the SPOTand ERS-1imagery,
segmentation of the SPOTimage was performed using
the principal of local contrasts. The segmentation
performed over a large variety of agricultural crops has
indicated the high quality and robustness of the
algorithm. Comparisons with cadastral maps show over
95 % accuracy for the segmentation. Having segmented
the optical dataset, multitemporal ERS images were
classified by a field-based algorithm using mean and
standard deviation. The results obtained using this
analysis process are shown in Figure 4.4.

A number of automated segmentation techniques are
now being developed to identify parcel boundaries, and
undertake field-based classification, directly using radar
images. Techniques developed by White (1994) and
Quegan et al. (1993) involve operations such as merging
of an initial 'fine segmentation' based on calculated
probability, edge detection and region growing, and the
estimation of background radar cross section. Results
obtained within different studies show the usefulness of
such algorithms for segmenting imagery and classifying
crops. Example images are shown in Figure 4.5.

4.3 Integration of Optical and Radar Data

One example of the integrated use of optical and radar
data has been presented in the previous section, where
a SPOT image has been used as the source of field
boundaries for subsequent multi-temporal classification
of ERS-1 images. Improving crop classification by
combined analysis of the reflectance and backscatter

data, respectively from optical and radar images, takes
this one step further.

As yet, techniques for fully integrated analysis of optical
and radar data are poorly developed. However, as far as
visualisation of combined data sets are concerned,
some interesting results have been obtained using the
!HS technique (i.e. Intensity-Hue-Saturation). Normally,
colour composites are produced using the red (R),green
(G)and blue (B)colour guns to display different spectral
or temporal channels. However an alternate colour
space can be defined which uses Intensity, Hue and
Saturation:
• Intensity is the overall brightness of a scene
• Saturation represents the purity of colour
• Hue represents the colour or dominant wavelength

of the pixel.

The intensity, hue and saturation components can also
be displayed as a colour composite or they can be
contrast stretched before being transformed back into
RGBspace. One of the main advantage of the technique
is that it enables the information content of more than
3 channels to be visualised. The steps involved in
combining optical and radar imagery using this
technique are as follows:
1. register SAR and optical images,
2. convert a 3-band optical image from RGB to !HS

coordinates,
3. substitute the SARimage for the intensity coordinate,

and
4. convert back to RGBspace.

Figure 4.6 provides an example of this data integration
technique, using Landsat TM and ERS-1images for an
area in Johar State, Malaysia. The resulting colour
composite seems to provide enhanced discrimination of
land cover types in comparison with what is possible
using either just the Landsat or ERS-1data. However,
note that the mountains in the top of the composite
contain terrain distortion from the ERS-1image.

4.4 SAR Interferometry

A promising new technique is being developed using
SAR interferometry. Interferometric processing of SAR
data combines complex valued images for two passes
to derive precise measurements of the difference in path
lengths for the two sensor positions. Either airborne or
spaceborne SARcan be used to create interferograms.
ERS-1operated during several phases with repeat orbits
of 3 and 35 days. These repeat orbits are useful for
performing SARinterferometry. Thanks to the excellent



Figure 4.4. Field-based classification procedure by combining optical with ERS-1 imagery
(a) SPOT image of July 1992
(b) Segmentation of SPOT image based on ARKEMIE software
(c) ERS-1 multitemporal composite (red: May; green: July; blue: August;
td) Segmentation based per field classification of multitemporal ERS-1 imagery;
classification results: yellow = rice, white = other crops, brown = misclassified.
(Courtesy of 1. Harms, Scot Conseil).

(a)

(c)
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Figure 4.5. Multitemporal ERS-1SARcomposite of Feltwell UK. (a)before speckle reduction; (b)after speckle reduction using edge
detection and region growing; red: 11 April 93, green: 20 June93, blue: 29 August 93; (c) parcel boundaries derived from
segmentation. (Courtesy of the Centre for Earth Observation, University of Sheffield, UK).
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(a)

(c)

orbit and attitude control and the reliability of the SAR
system, interferograms may be produced. Mainly as a
result of high quality ERS-1 SAR data and extensive
coverage, the development and application of repeat­
pass SARinterferometry has become one of the prime
research activities within the radar remote sensing
community. The primary SAR interferometry applica­
tions are the preparation of height and differential
displacement maps.

Figure4.6 /HScombination of Landsat TMand ERS-1images,
Johar.Malaysia. (Source:M. Wooding, RSACJ.



A significant amount of research is being undertaken to
further refine the image processing steps required for
the estimation of the interferometric phase, with the
goal of an optimization of interferometrically derived
height (Zebker et al. 1994) and displacement maps
(Massanet et al. 1993). However, it has been shown
recently that SAR interferometry has also a large
potential for forest and agricultural applications (Askne
& Hagberg 1993, Werner & Wegmiiller 1994, Wegmiiller
et al. 1995a), particularly in providing a means for
separating agricultural fields from forests in SARimages ..

Using SAR interferometry, forest mapping with ERS-1
becomes almost straightforward (Wegmilller et al.
1995b). The interferometric correlation observed over
forest is low due to the dominance of volume scattering

and the geometric changes occurring between the
repeat pass data acquisitions. The low interferometric
correlation of forest can easily be distinguished from the
much higher correlation shown by low vegetation
canopies and bare soil surfaces.

In Figure 4.7, differences in land cover classes are
shown by displaying the interferometric correlation, the
backscatter intensity from one of the passes and the
backscatter intensity change as a colour composite.
This SAR interferogram was derived using ERS-1 SLC
data measured on 24 and 27 November 1991. The
region shown covers agricultural, urban, and forested
areas, as well as a number of lakes near Bern in central
Switzerland. The image covers an area of approximately
45x45 km.
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Figure 4.7. Interferometric signatures derived from an ERS-1SAR image pair over Bern, Switzerland (red: interferometric
correlation; green: backscatter intensity on 24 Nov.; blue: backscatter intensity change between 24 and 27 November). Water
(blue), forest (green),sparse vegetation (orange/yellow), and urban areas (yellow/green), as well as certain farming activities
(green/blue) and frost (magenta) can be identified. (Source: RSL, Zurich, Switzerland).
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5. Temperate Crops

5. 1 Classification of Arable Crops

UK example
Examination of backscatter time series (§ 3.3, UKsites)
reveals that there are critical periods or windows in the
crop calendar, in which certain crops can be separated
on the basis of their backscatter profiles. By selecting
different date images and combining them as colour
composites, one is able to show this discrimination over
an agricultural area. Research studies carried out in the
UKhave shown that images acquired from late May to
late July can be used to discriminate wheat, barley,
oilseed rape, sugar beet and grass.

Figure 5.1 shows a multi-date colour composite of ERS-1
images acquired in late May and June 1993. This colour
combination has been chosen to highlight discrimina­
tion of winter wheat and oilseed rape. In this composite,
winter wheat fields have the darkest signatures in
contrast to oilseed rape fields which have the brightest
signatures. This is because wheat backscatter is at a
minimum, and rape backscatter is at a maximum for all
three dates (compare also the temporal profiles in§ 3.3).
Two large winter barley fields in the top right hand of
the composite have purple signatures, others show
some purple colour. This is because winter barley
backscatter has increased on the 13 and 29 June
relative to wheat fields, which have low backscatter on
all three dates. Other crops exhibit similar signatures at
this time, because these fields contain bare soil
undergoing management operations for the establish­
ment of root crops (sugar beet and potatoes) and peas.
Colour composites such as that described reveal that
across the UK test sites:
• winter wheat has the darkest signatures because of

low backscatter during this time period, and can be
easily discriminated from all other crops;

• oil seed rape has the brightest signatures associated
with very high backscatter in this period, and is
therefore well discriminated from all other agricul­
tural crops;

• winter and spring barley have purple signatures
associated with increases in backscatter due to
relatively early crop senescence;

• root crops have different colour signatures compared
to rape and cereals, which is associated with bare
soil conditions early in the crop growing season.

In the UK study, backscatter response for fields is
represented by the field averages calculated by
integration with digital field boundary information held
in a GIS.Therefore the use of mean field backscatter for
crop classification is investigated. Using mean
backscatter on · critical dates and differences in
backscatter between dates, threshold values are
explored as a way of classifying crops using
discriminant analysis within the GIS database.

The 1993 UK database includes the cropping
information for a total of 783 fields spread across 4 test
sites. This dataset was divided into two, after assigning
a random number to each field and sorting the
database on that number. Backscatter differences were
taken from 11 April to 29 June, and from 29 June to 3
August. One half of the dataset was used to generate
training statistics for thresholds. The rest of the data
were used to test the thresholds for crop classification.

Patterns of change were found to be unique for oilseed
rape, compared to other agricultural crops. The
April/June backscatter difference shows a negative
change compared to other crops, whilst the June/August
difference is positive. This was used to threshold fields
not included in the training set. A threshold for
backscatter on a single date (13 June) was also included
in the classification. Oilseed rape fields can be
discriminated with 100 % accuracy using such a
classification strategy.

The use of the methodology for classifying winter wheat
was then investigated. Again, backscatter differences
and single date backscatter thresholds were applied to
the data not included in the training data. The
backscatter difference thresholds were obtained from
the training set. It was found that very high orders of
classification accuracy could be obtained by using
backscatter on two dates instead of one. The two dates
corresponded with the period of minimum wheat
backscatter (late May and late June). Table 5.1 shows the
breakdown in classification performance by test site,
with accuracy being at least 90 % in all three cases. This
change detection thresholding approach is seen to have
considerable potential for classifying crops using multi­
temporal ERS-1SARdata.
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Table 5. 1 Classification accuracy assessment for wheat by site, UK (Source: Zmuda et al. 1994)

Figure 5.1. ERS·1multitemporal composite, Boxworth UK (red: 25 May; green: 13June,blue: 29 June 1993).Field boundaries and
cropping are superimposed. W wheat; R: oilseed rape; L: linseed; G:grass. (Source: Zmuda et al. 1994).

Total No.No. Classified % CorrectSite

Boxworth
Terrington

40
41

95
97.5

38
40

Feltwell 69 9061

Omission Fields CommissionedCommission

2 7
2

grass (7)
linseed (1)
potatoes (1)
grass (2)
oats (1)
spring barley (1)

Classifications for winter barley using the threshold
approach have been attempted. However, initial results
indicate that barley is confused with other crops.
Therefore the use of multivariate statistical analysis may
be more appropriate for separating the cereals. The use
of backscatter profile models and first and second order
turning moments is under investigation for the UKdata.

German examples
Three ERS·1 SAR images have been used together with

8 4

airborne E·SARimages of the Lechfeld testsite, located
70 km west of Munich, Schmullius et al. (1994). Figure
5.2 is a multitemporal colour composite of the three
ERS·1 images acquired in June and July 1992. The
colours indicate the radar backscatter variations over

".time. The brightest fields on the multitemporal image
are sugar beet fields. This crop had the highest
backscatter throughout the six-week period. The
darkest fields are cereals. Colour variations are
indicative of crops undergoing significant changes in
backscatter between 1 June and 6 July.



Table 5.2 Confusion matrix (percent of training site pixels) in percent. Lechfeld testsite, Germany
(Source: C. Schmullius, DLR)

Class Fallow S. Barley W. Barley W. Wheat Sugar beet Oilseed Rape

Fallow 40.1 1.1 16.1 0 37.9 4.8
S. Barley 0.4 75.5 5.4 14.6 1.4 2.5
W. Barley 0 27.6 58.6 0 7.3 6.9
W. Wheat 1.1 56 3.5 32.2 2.4 4.8
Sugar beet 8.9 1.2 9.2 0 66 14.7
Oilseed R. 1.9 1 0 0 25.3 71.7

Figure 5.2. ERS-1multitemporal composite, Lechfeld Germany,
1992 (red: 1 June, green: 20 June, blue: 6 July).
(Source: C. Schmullius, DLR).

The use of a Maximum Likelihood Classifier was
investigated. Figure 5.3 shows the resulting
classification for six crop classes (winter wheat, summer
barley, winter barley, sugar beet, oilseed rape and
fallow). The confusion matrix of the training site pixels
which were correctly classified, was calculated after a
5 x 5 median filter and a sieving window were applied
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Figure 5.3. Pixel-based ERS-1 maximum likelihood classifica­
tion of Lechfeld, Germany (Source: C. Schmullius, DLR).

to the classified image to reduce the effect of speckle. In
this case the average (unweighted) overall classification
accuracy is only 57 % . However, there is little doubt that
this could be improved significantly by better choice of
imaging dates and by using segmentation techniques.

Table 5.2 illustrates the misclassification (due to
statistical ambiguity of the covariance matrix) between
fallow, sugar beet, cereals and oilseed rape. These
results from the German test site are in accord with the
UKfindings presented above; in that cereals are easily
discriminated from high biomass crops such as oilseed
rape and sugar beet, as shown here. A better separation
of grain crops or between rape and sugar beet might be
possible with more multitemporal information. For large
area applications, such as mesoscale climate models, a
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mere separation into only three classes (cereal, large leaf
canopies and fallow/grassland) could be feasible in
terms of biomass estimation for evaporation
calculations. In this case, a 3-class confusion table
would show the following values along its diagonal:
fallow 40 % , cereals, 91% , and large leaf canopies 83 % .
The average accuracy then reaches 71% .

Dutch example
ERS-1SARimages acquired from the beginning of May
until the end of October 1992 have been used to map
agricultural crops for the Flevoland test site in The
Netherlands. Figure 5.4a is a multitemporal colour
composite of the test site with field boundaries derived
from a SPOTmultispectral image. Figure 5.4b shows the
ground reference data for each field, and Figures 5.4c &
d the crop classification results, obtained using pixel­
based and field-based approaches, respectively. A visual

Figure 5-4. ERS-1SARimagery and crop classification results
using field-based and pixel-based approaches, Zuid Flevo­
land, 1992. Source: G. Nieuwenhuis, Staring Centre.
(a)ERS-1multitemporal colour composite (red: 7 June,green:
12 July, blue: 16 August).
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inspection of these classification results in conjuction
with the ground data map shows that crops like
grassland and winter wheat are accurately classified,
but the sugar beets are mixed with the potato crop.

Schotten et al. (1995) have studied the effect of the
number of images used in a field-based crop classifica­
tion of Flevoland (Table 5.3). In general, classification
performance improves with the number of images used.
With one image, only a restricted number of crops could
be classified with reasonable accuracy. With an optimal
data set of eight images (selected using separability.
indices) good results were obtained for several crops. For
several crops the accuracy is over 90 % . Overall
classification accuracy was 80 % expressed as a
percentage of the total number of fields, or 88 %
expressed as percentage of the total area (in hectares).
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Table5.3 Crop classificC/tionaccuracyusing rntiltitemporalERS-1SARimagery(setA: 1 date; setB: 3 dates; set C:
5 dates; set D:8 dqtes).Acc4racy is percentage.of the tota! numbw offields. Trqiningsta.tisticsfor this classification
are based on a random selection of 25 fields per crop type (Source:Schotten et al. 1995).

Crop fype

Image w. S. Fr.
set Pots s. Beet Wheat Grass Maize Rape Barley trees Onions Beans Peas Lucerne Overall

A 92 0 37 0 0 92 87 76 60 0 38 0 37
B 91 27 81 57 44 92 87 76 59 58 42 67 64
c 65 44 86 73 50 100 91 74 68 68 63 75 73
D 88 70 85 85 62 100 91 88 64 74 81 100 80

Taking into account the large number of crops this is an
encouraging result. Only for maize are the results very
disappointing.

5.2 Early Estimates

For agricultural applications there is a need to provide
information at the earliest possible stage in the growing
season. For agricultural control applications it is
important to distinguish crops early, so that fieldchecks
can be performed before harvest. The main objective of
the MARS project is to provide early estimates of crop
production for economical planning purposes.

The systems presently being used for both agricultural
control and crop production forecasting, rely on crop
types and areas being derived from time series of
optical imagery. For instance, the optimum requirement
for classifying a full range of arable crops in northern/
central Europe is a time series of three optical images
including an optical image taken in early/mid July.
Besides potential acquisition problems related to
persistent cloudy weather conditions, the fact that an
image taken relatively late in the growing season is
needed for accurate classification of some crops is a
limitation. The potential role of ERS-1in providing early
estimates is therefore a topic of some interest.

Part of the Dutch crop classification study reported
above in § 5.1 has specifically addressed the issue of
early detection of crops. Crop classification has been
carried out starting with just the first ERS·1 image dated
12 May 1992, and then progressively adding images
one by one as they are acquired through the crop
growing season (Table 5.4). Early classification results
are best for cereal crops; with just two images taken by
the end of May, both winter wheat and spring barley
have classification accuracies of around 80 % . By mid-

June results for potatoes and winter rape are also
around 80 % . Classification accuracies for crops such as
onions, beans, peas and lucerne improve significantly
when images taken from August are included in the
analysis.

Examples presented above (Figures5. 1 and 5.3), have
shown that a multitemporal composite of ERS-1images
acquired before the end of June provide good discrimi­
nation of cereals, oilseed rape and grass fields.

Monitoring autumn cultivations
One approach being investigated to improve early
season crop classification, involves ERS-1monitoring of
land cultivation practices in the autumn and winter
months (Lemoine & De Groof, 1994). Different crops
often require different field preparations, and as the ERS
SAR is sensitive to the soil surface roughness and
moisture content, it may be possible to identify tillage
classes relating to particular crops. If tillage classes can
be classified and mapped, this could provide very early
determination of some crop types.

The ERS-1backcattering coefficient of bare soil is known
to be sensitive to soil moisture variation and changes in
surface roughness. Many research efforts have been
directed to the determination of soil moisture, while the
backscattering variation due to surface roughness has
often been treated as an undesired disturbance. For
agricultural mapping and monitoring purposes, though,
valuable information is contained in surface roughness
parameters. Especially in the period between the crop
seasons, the surface roughness state reflects the on­
going tillage preparations, which can directly be linked
with previous and subsequent cropping practices.
Backscattering models can be used in combination with
a priori knowledge on various ancillary resources, such
as meteorological recordings, soil data and crop rotation
practices, in a contextual classification scheme to detect
tillage sequences and relate these to future crop types.
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Table 5.4 Crop classification accuracy(%) using increasing numbers of ERS-1 images (Source: Groot et al., 1994)

No. Last s w w S. F.
images Date Potatoes Beet Wheat Grass Maize Rape Barley Trees Onions Beans Peas Lucerne Overall

1 12 May 4 5 58 6 17 38 78 17 29 0 4 0 19
2 31 May 45 7 80 42 33 69 87 60 44 4 10 58 42
3 7 June 60 26 77 45 31 77 91 60 46 23 23 75 50
4 16 June 91 29 81 57 56 100 91 69 45 53 40 75 63
5 5 July 89 42 83 65 56 100 96 71 48 72 54 92 69
6 12 July 90 50 86 74 56 92 96 74 52 70 67 92 73
7 9 Aug. 89 53 87 77 65 92 96 76 61 81 79 100 77
8 16 Aug. 88 67 85 80 67 92 87 74 75 85 85 100 80

D unclaasili.ed.• potato• sugar bfMt

D wi.n t.r whe.;;a t• gras•

D• r.ape-

D sumnar barl.ey• fruit orchards• luce.rne• horticultural. cropa

~

(a) (b)

(c) (d)

Figure 5.5. Crop maps of the 1991(a) and 1992(b) growing seasons for the test area in the Dutch Flevoland polder.
The RGBcomposite in (c) shows the filtered ERS-1PR! images for the dates 19, 25 and 31 October 1991, the one in
(d) that for the dates 24, 30 November and 6 December 1991.Colour variation reflects harvesting and tillage activities.
(Source: G. Lemoine, Synoptics).

This methodology has been tested on a multitemporal
ERS-1PR! series of the Dutch Flevoland polder acquired
in the autumn of 1991 (19 October - 6 December). A

total of seven images were available. Figure 5.5 shows
colour composites of two multi-date combinations,
together with the crop maps of the area for 1991 and



1992 (i.e. the previous and subsequent growing
seasons). The first colour composite, for the dates 19, 25
and 31 October, clearly shows variation that is related
to harvesting (sugar beet: red arrows) and tillage
(breaking up of grass fields: green arrows; ploughing of
former potato fields: blue arrows). Note that the colour
combinations do not only reflect the sequence of
various tillages, but also its approximate timing. In the
second composite (24, 30 Nov. and 6 Dec.), there is
much less variation in colour. This is due to the fact that
most fields are already in their winter condition (mostly
ploughed: the light coloured fields), and also that the
preceding period was very wet, so that little tillage was
applied. Fields with winter cereals can already be
identified at this stage, due to their typical, moderately
rough, seedbed structure, and corresponding lower
backscattering signatures after preparation (yellow
arrows). With the use of a selection of all dates, the
delineation of various conditions can be further refined
(for instance, group potato fields by row direction,
determine the timing of sugar beet harvesting, etc.).

Lemoine & De Graaf are currently working on method­
ological aspects within the framework of the JRC's
MARS Action IV Agricultural Monitoring programme.
This work includes pre-operational testing and valid­
ation for the Great Driffield (UK)sampling site, for which
a complete dataset, including ground observations on
tillage types and cropping practices has been
assembled. The aim of the work is to develop a
complementary approach to the ongoing Action IV
monitoring activities based on optical datasets.

5.3 Integrated Use of ERS-1 and Optical
Imagery

Crop classification
Kohl et al. (1993) showed in a study that the combina­
tion of ERS-1and SPOTimagery improved the classifica­
tion accuracy of agricultural crops significantly, if
compared to a single SPOT-XSscene. Kohl et al. (1994),
combined two ERS-1SARimages with one SPOTimage
for land-use mapping of the Olsztyn (Poland) area.
Results showed a better discrimination between built-up
areas and natural vegetated surfaces, than was possible
with a single SPOTimage. Schotten et al. (1993), carried
out crop classifications of the Zuid Flevoland test site
with one SPOT and one TM image, and with a set of
eight ERS-1 images, and demonstrated that potatoes,
winter wheat and grass could be classified more
accurately using multitemporal ERS-1data.
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The PASTAproject (Pilot Porject for the Application of
SARTechniques to Agricultural Statistics and Inspection
of Land Use in Badenwurttemberg, Germany), is a
practical example of the combined use of ERS-1 and
optical imagery to provide reliable agricultural statistics
on a year-by-year basis for the main crop types. During
1993, more than 560 test fields were analysed
containing six crop types (winter wheat, winter barley,
summer barley, oats, rape and corn). Six ERS-1 and
three multispectral SPOT scenes were acquired during
the main part of the growing season. The ERS·1scenes
were geocoded to remove the effects of terrain
distortion, so allowing the ERS-1and optical imagery to
be combined. Figure 5.6a shows a combination of
multitemporal ERS-1imagery with a SPOTpanchromatic
image. The !HS transform is seen to improve the spatial
information content as the inclusion of the optical
image clearly improves the definition of field
boundaries. Colours within the !HS composite are
essentially derived from the ERS data.

The classification potential of the combined ERS-1and
optical dataset has been compared to that of optical
data alone. After integration of the data into a GIS,
classification was performed using training samples
provided by the GIS.Using one SPOTscene, crops could
be classified with 66 % accuracy. However, classification
performance increased by 8% when the optical image
was combined with three geocoded ERS-1 scenes.

Monitoring grassland
A combined approach using ERS-1SARand Landsat TM
images, has been used for a landcover classification and
grassland monitoring study in Bavaria (Schadt et al.
1994). Often, the separation of grassland from cereal
crops can be difficult using Landsat TM or SPOTimages
during the main part of the crop growing season, and
crop classification accuracy depends strongly on the
ability to separate grassland from other crops. Analysis
of grassland on multitemporal ERS-1 SAR images has
shown that grassland has a very similar backscatter
across the year, although it is possible to separate
managed grassland from degenerated grassland with
bushes, on the basis of the second type having slightly
higher backscatter. Using the temporal consistency,
ERS-1 images can be used easily in a first stage to
separate grassland from other land cover types. Landsat
TM images have then been used in a second stage to
classify the other crops. Figure 5.7 shows the final
classification, together with a ground truth map of the
area. Classification accuracy for the two grassland
classes is better than 90 % .
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Figure 5.6a. ERS-1multitemporal colour composite, Baden-Wiirttemberg test site, Germany, 1993.
Red: 20 May, green: 24 June,blue: 29 September. (Source: Hartl & Klaedtke 1994).



Figure 5.6b. /HS colour composite produced by combining ERS-1 imagery acquired on 20 May, 24 June and 29 July 1993
with a panchromatic image acquired on 1 April 1993, Bodenwurttemberg test site. (Source: Hartl & Klaedtke 1994).
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The Result of a Combined Laud use Classification of Multitemporal ERS-1 SLC Data of the Year 1992
and a LANDSAT TM Image ofMay,28th 1992in Comparison to the Digital Ground Truth Map

Classification Result Digital Grotmd Truth Map

- forest
- water
- buildings I urbanareas
- grassland

c:::::J grasslandwith bushes
c:::::J oats
c:::::J wlnterwheat
- summerbar1ey

-com
c::J rapeseed
- set- aside arableland
c:::=i gravelwork

- opensoil I peatwork
c:::=i special landuse
- not classified

Figure5.7. Theresult of a combined landuse classification using multitemporal ERS-1SLCimagery and a Landsat-TMimage 1992.
The digital ground truth map is shown for comparison.



6. Tropical Crops

6.1 Rice

6.1.1 General

Socio-economic importance of rice
Rice is the prime source of daily food for those two
thirds of the world's population living in Asia. Table 6.1
shows the major rice producing countries, including ~
selected European countries. For some countries rice a::
export is an important source of income. Thailand, for
example, exports about one third of its annual
production, which makes it the main supplier on the
world rice market. The production of rice contributes to
social and political stability within the country.
Consequently, decision makers have placed the
collection of information about the actual and predicted
state of rice crops on the top of their political agendas.

The most interesting parameters to know are rice
acreage and potential yield. Currently, the collection of
this information is mostly based on interviews of the
farmers or village level. The information gathering
process is cumbersome, and sometimes unreliable
information is given to Government authorities by the
local farmers. An objective method of data collection -
such as based on the use of satellite imagery - is
therefore of high interest for the national authorities
dealing with agricultural economics and planning. Since
rice grows mostly in tropical countries, permanent
cloud coverage during the growth period - which
naturally coincides with the rainy season - is a major
drawback for the use of optical satellite imagery. As an
alternative, the use of radar remote sensing was

Table 6. 1 Rice production of the leading rice producing countries and selected European countries (numbers in
1OOOsof metric tons; source: Electromap Inc., 1989·93)
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120·dayVariety
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Country Rice production Country Rice production Country Rice production
(Top 12) IX 1000 t) (Top 12) (x 1000 t) (Europe) (x 1000 t)

1. China 187,450 7. Myanmar 13,201 Italy 1,236
2. India 110,945 8. Japan 12,005 Spain 582
3. Indonesia 44,321 9. Brazil 9,503 Portugal 153
4. Bangladesh 28,575 10. Philippines 9,670 Greece 127
5. Thailand 20,040 11. S·Korea 7,478 France 109
6. Vietnam 19,428 12. USA 7.006 Hungary 38
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Figure 6.1. Phenological stages of rice plant growth for a
typical period of 120 days.

demonstrated to be an excellent means for repetitive
collection of information related to rice acreage and,
even one step further, parameters related to rice yield
(Aschbacher et al., 1995a).
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Phenological stages of rice plant growth
A typical rice growth cycle lasts between 120-180 days
from planting to harvest, depending on crop variety.
There are three major plant growth phases: the
vegetative, reproductive and ripening phase. After soil
preparation rice fields are flooded. The vegetative phase
starts either with direct sowing or transplanting of
nursery plants. During this phase young plants emerge
from the water surface.

During the reproductive phase, plants continue to grow
until they reach a maximum height of about one metre.
During the ripening phase, the grains develop. Water is
normally drained out and the plants become drier and
turn yellow. The reproductive and ripening phases are
constant for most varieties and last about 35 and 30
days, respectively. The length of the vegetative phase
differs with variety. After harvest a bare soil condition
remains, sometimes with patches of standing water left.
A typical phenological development of the rice plant
during its growth cycle is shown in Figure 6. 1.

There are glutinous and non-glutinous, photo sensitive
and non-photo sensitive, as well as resistant and less
resistant crop varieties. In recent years short-cycled
varieties are favoured, which allow an increased pro­
duction through more frequent harvests. In intensive
rice producing areas such as in Thailand the typical
growth cycle lasts 120 days. Crop yield depends on crop
variety and water availability. A typical crop yield for a
well irrigated field is approx. 5 tons/ha. The availability
of water during the early growth stage is crucial, which
has led to the development of sophisticated irrigation
networks in most of the intense rice growing areas
(Aschbacher & Paudyal, 1993).

Radar remote sensing studies for rice crop mapping
and monitoring
From an agro-economic point of view there are two
main parameters of interest, namely (i)rice acreage, and
(ii) rice yield. Rice production of a given area can be
obtained as the product of acreage and yield (per unit
area). As will be shown later in this Chapter, it is easier
to retrieve acreage from radar imagery than yield.

The investigations of ERS-1SARdata for rice monitoring
include studies carried out in Thailand (Aschbacher &
Paudyal, 1993; Paudyal, 1994), in Indonesia (Asch­
bacher et al., 1995; Harms, 1993), in Spain (Kohl et al.,
1993) and in Japan (Kurosu et al., 1993). Earlier studies
carried out before the launch of ERS-1are from Le Toan
(1989) based on X-band scatterometer measurements,
and Aschbacher & Lichtenegger (1990) based on SIR-A
l.band data.

The Thailand and Indonesia studies are described in
detail in this Chapter, while the studies carried out in
Spain and Japan are also included for comparison with
those of the tropical countries.

Multitemporal radar backscattering signatures
With reference to § 3.3, the radar backscattering
coefficient a0 idB] of rice fields undergoes a very
characteristic temporal signature during the growing
season. Compared to other agricultural crops, the
temporal signature of rice fields is probably the most
significant one showing the largest changes in radar
backscattering values during the growing period. This is
caused by the changing influence of macroscopic radar
backscattering interactions between standing water and
plant canopy. A schematic temporal backscattering
profile has previously been shown (§ 3.3.), and real
values as observed with ERS-1SARdata are shown in
§ 6.1.2 and 6.1.4, respectively.

6.1.2 Case studies in Thailand
Some of the most detailed case studies on the use of
ERS-1SARdata were carried out in Thailand (Paudyal,
1994; Aschbacher et al., 1994, 1995a). Twomain study
areas were used, both of which are located east of the
town of Kanchanaburi, Thailand. Although both areas
are only about 30 km apart the characteristics of the
rice fields are quite different. The northern area shows
slightly undulating terrain, with small individual rice
fields and a heterogeneous growing pattern between
neighbouring fields, The southern study area is flat with
large individual fields and a generally homogeneous
growing pattern. In both areas a well developed irriga­
tion network provides sufficient water for rice growth.
The southern site is part of the EC-ASEANERS-1project,
described in Aschbacher (1992).

For both studies, multitemporal ERS-1 SAR data were
available from nine acquisition dates, namely 22 Nov
91, 7 Oct 92, 11Nov 92, 24 Feb 93, 7 May 93, 11 jun 93,
20 Aug 93, 29 Oct 93 and 3 Dec 93. The 1991/92 dates
are mostly used for the northern study area, while all
dates are used for the southern study area.

Detailed ground measurements were carried out for
both study areas. During the rice growth period
(June- December 1993), the ground measurements
described in Table 6.2 were taken in parallel with ERS-1
acquisitions. Ten different sample areas were selected
for detailed investigations, each of them approximately
1- 2 hectares in size.
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Table6.2 Ground measurements taken in parallel with ERS-1SARdata acquisitions during June-December1993 at
the southern study area in Kanchanaburi, Thailand (Aschbacher et al, 1995).

Parameter Details

GPSand topographic mapLocation deg lat/long

Site photograph state & geometry of rice plants and surface

Method

square grid behind plant

General information Site acreage/planting method (seeding/transplantiflgl. variety name,
date of planting, date of harvest, yield, irrigation (rainfed/irrigatedl

measurements and farmer in·
terviews

Weather at acquisition
time

wind (heavy/medium/light/no), plant orientation (vertical/bended-in
which direction), rainfall (heavy/light/no), surface & plant condition

measured, visual inspection

state of plant growth soil preparation/vegetative stage/tillering/bo6ting/flowedng/panicle/
ha.rves~ingstage

visual inspection

Plant parameters plant d@nsity,_plapt height, pli.lntrnoistu.recontent(weigrt before
after drying), no. of leaves, leaf width, leaf length, stalk diameter

rnTasurTct,avTrage .of1o samples
within 50 x 50 cm frame

Field information height of standing water, general state of surface, general state of
plants, .etc.

measurements, visual inspection

Estimate of rice acreage
Rice acreage can be retrieved from multitemporal radar
imagery, making use of the characteristic backscatter­
ing signature of rice fields. The temporal a0 !dBi profile
of rice is unique, and thus quite easily distinguishable
from that of other crops. The fact that rice fields are
flooded during a certain period of time creates a clear
signature, namely that of a water surface during the
early growth period. Later, when plants are increasing in
height, backscatter increases to values which are
typically higher than those of other agricultural crops.
The large dynamic range of a0 idBI between the early
(flooded) and late (pre-harvest) growing period is an
important factor for rice mapping. It is, however, crucial
to select optimum dates within this cycle. These are
during the early growing period when the surface is
flooded, during the flowering phase and shortly before
harvest. This corresponds to the minimum (approx.
-16 dB), maximum (approx. - 8 dB) and (slightly de­
creased) pre-harvest values of a0.

The growing cycle for the main rice harvest in the Kan­
chanaburi study area lasts from August to December,
and for a secondary harvest from April to July. A three­
date multitemporal image combination is displayed in
Figure 6.2, in which rice fields (in green/bluish colours)
can easily be discriminated by visual interpretation
from _other land-use categories. A digital classification
was carried out based on four acquisition dates in order
to produce a 'rice map'. All images were co-registered

and Gamma MAP filtered (Nezry et al., 1995) before a
simple clustering algorithm was applied.

The result is shown in Figure 6.3 for the three classes:
'rice fields', 'non-rice fields', and 'water'. This clearly
indicates that the rice growing area is generally well
classified. There is, however, some confusion with water
areas and the backslopes of mountains. Both effects can
be removed if GIS-type information is included in the
final classification process (Aschbacher et al., 1995a).

Rice growth parameters
The ultimate goal in the use of radar imagery for rice
studies is to retrieve yield figures from satellite imagery.
Currently, there are only two studies known which point
in this direction, one carried out in Japan (Kurosuet al.,
1993) and one in Thailand (Aschbacher et al., 1995a).
Both aim at yield-related parameters such as plant
height rather than yield itself. An example from the Thai
studies is shown in Figure 6.4, where measured plant
height is compared with radar backscattering values.
Because the timing of rice planting is almost identical
for different years, two more dates from previous years
have been included, namely 22 Nov 91 and 7 Oct 92, in
order to complement some of the missing acquisitions
during the 1993 growth cycle or the 'wind-disturbed'
image of 20 Aug 93. As can be seen from Figure 6.4a
there is a clear increase of radar backscattering values
with increasing plant height. The mean ao values is
-10.6 dB two months before harvest (with a spread
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Figure 6.2. ERS·1 multitemporal composite of Kanchanaburi study area in Western Thailand, 1993; red: 11lune;
green: 29 October; blue: 3 December. All images are Gamma MAP speckle filtered. (Source: 1.Aschbacher, IRC).

from -12.6 to -9.0dB), and increases to -8.5dB
(- 9.5 to - 6.8 dB) shortly before harvest. This
corresponds to mean plant heights (above water
surface) of approx. 45 and 85 cm, respectively, as
evident from Figure 6.4b. Similar observations were also
made by Kurosu et al. (1993) for the Japanese study
area (see§ 6.1.4).

6.1.3 Case studies in Indonesia
A feasibility study for a MARS-type project, but based
on ERS-1 SAR data instead of optical imagery and
focusing on rice only, was carried out by a team of
European investigators in cooperation with the
Indonesian Government (Scot Conseil, CESR).The overall
project goal, was to define a rice monitoring system

based on satellite data, in-situ data and modelling for
the retrieval of statistical information about rice growth.
Two test sites were selected, one in West Java and one
in Central Java. Over both sites field information and
satellite data were combined in a Geographic Informa­
tion System. Data interpretation was performed by
computer-aided visual interpretation and automatic
classification using segmentation based field classifiers
(Harms, 1993). An overview of the rice planting area and
a rice classification based on one ERS-1image from the
area are shown in Figures 6.5 and 6.6, respectively.
The area shown in Figure 6.5 was also investigated by
Aschbacher et al. (1995b), who distinguished different
growth stages of rice plants based on the information
content of multitemporal images. The image is an ex­
cellent example, showing the ability of radar to monitor



Figure 6.3. Classified 'rice map' based on four ERS-1acquisitions (6 fun., 20 Aug., 29 Oct. and 3 Dec. 1993).
Rice is shown in mauve, non-rice areas in dark green and water in light blue. (Source:Aschbacher et al., 1995).
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Figure 6.4. Comparison of (a) changes in rice backscatter with time of rice fields in Kanchanaburi, Thailand (the rice
growing period lasts from August to December); (b) rice plant height (above water) measured at the same sample fields.
(Source:Aschbacher et al. 199Sa).
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the status of growing, and rice field management
practices with multitemporal SAR data. Individual rice
fields, or groups of rice fields, are shown in greenish and
bluish colours, with some smaller fields in red.
According to ground truth information, most of the
fields in the area were harvested either in early or late
February, and a very few in early )anuary 1994. After
harvest bare soil was left, which has a relatively high
radar backscattering value (approx. - 7 to - 5 dB), and
is thus higher than that of pre-harvest rice fields
(approx. - 8 to - 7 dB). Taking these two considerations
into account and assuming a temporal signature of rice
fields as shown in § 3.3.3, one can easily attribute
greenish fields to fields harvested in early February
(with bare soil in the 16 Feb and flooded fields in the
6 Mar images), and bluish fields to rice fields harvested
in late February (bare soil in 6 Mar image). The few red
fields are harvested in early )anuary, and show flooded
to early growth stages in the February and March
images (Aschbacher et al., 7995a).

6.1.4 Case studies in Spain & Japan
Geographically, the growth of rice is not only limited to
the tropical belt, as it is evident from Table 6.1. In )apan
and Spain, for example, rice is also grown and mainly
used for local consumption. However, if compared to
tropical countries, the management of rice fields is
generally more homogeneous over larger areas, and the
individual field sizes are larger. Therefore, the results are
expected to be less disturbed by within-field variations
of growth stage or by vegetation along the field
boundaries (e.g. banana trees, palm trees).

An example of a digital classification of an agricultural
area in temperate zones was carried out by Kohl et al.

Figure 6.5. ERS-1 multitemporal composite of Semerang,
Central Java, Indonesia (red: 23 January, green: 16 February,
blue: 6 March 1994). Depending on the status of the plant
growth cycle, rice fields appear in different colours.
(Source: J. Harms, Scot Conseil and LAPAN).

(1993), based on a comparative analysis of multitern­
poral SPOTand ERS-1SARdata. It is interesting to note
that the classification result based on SPOT is quite
similar to the ERS-1based classification (compare Figure
6.7 SPOT-AIS with ERS-1-AIS). There is, however, some

Figure 6.6. Rice classification using a single ER5·1 image of
the Semerang area, Indonesia, acquired during the field
flooding stage; (a) extract of rice growing area, (b)pixel-based
classification, rice fields are black. (Source: J. Harms, Scot
Conseil).
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Figure 6.7. Comparison of rice and cotton classification for Seville, Spain, using SPOTand ERS·1 imagery (Source: Kohl et al. 1994).

confusion between classes where the land use is Jess
homogeneous, such as in the top left corner of the
image.

included in this study are part of an Agricultural College
and thus very homogeneous in terms of field
management and plant growth stage.

Kurosu et al. (1993) relate rice plant height [cm[ with
ERS-1 radar backscatter values a0 [dB[ at a study area
in Japan, where eight consecutive ERS-1 SAR
observations were available. The correlation coefficient
obtained using just six values of different dates during
the growth cycle is remarkably high (r= 0.98). The fields

6.1.5 Conclusions
Among all the agricultural crops, the use of radar
remote sensing is probably most promising for rice
crops due to its significant temporal backscattering
signature. The dynamic range of a0 [dB[ is the largest
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among all agricultural crops, ranging from approx.
-16 dB during the flooded and early growing stage, to
approx. - 8 dB during the pre-harvest stage. The selec­
tion of appropriate acquisition times is crucial for
mapping purposes. As regards yield estimates or
parameters that lead to yield estimates, there is a clear
correlation between radar backscattering signals and
plant height. This allows the approximate age of rice
plants to be determined, and thus a prediction of the
approximate harvesting time.

The results available from several case studies allow the
following conclusions to be drawn on the use of ERS-1
SARdata for rice mapping and monitoring (Aschbacher
et al., 1995a,b):
1_ Multitemporal ERS-1 SAR data can be used in an

operational or quasi-operational mode for mapping
of rice fields, both for irrigated and rain-fed fields.

2. Multitemporal ERS-1SARdata can be used in a pre­
operational manner for the retrieval of yield-related
parameters.

3. A priori knowledge about the rice crop calendar and
growing practices as well as parallel in-situ
measurements largely facilitate the interpretation of
radar images. However, reliable results can be
obtained without or with a very limited set of in-situ
measurements. This is of particular interest in view
of large-scale operational rice monitoring systems.

4. Formapping purposes, at least three dates should be
available during the growing cycle. The optimum
acquisition times are during the early flooded stage,
the flowering stage and shortly before harvest. An
additional post-harvest image is useful if the time of
rice harvest is different from that of other agricultural
crops on the same scene.

5. For the retrieval of yield-related parameters the use of
4 - 8 acquisitions during the growth cycle is recom­
mended. The image dates should be equally spread
throughout the growth period. An acquisition shortly
before harvest is mandatory.

6. Multi-temporal ERS·1 SAR data can be used to
determine field management practices; such as the
timing of irrigation, time of harvest, method of water
supply (irrigated or rain-fed), and the length of the
growth cycle. This information can be retrieved
largely without in-situ measurements.

7. As regards the optimum analysis technique applied
to radar imagery for rice mapping, it is recommend­
ed to speckle filter the images and apply texture
and/or segmentation based algorithms, before
classifying the images. Depending on the scene
characteristics, special measures may have to be
applied if field management differs within one scene.

8. If an operational rice monitoring system is
developed, it is strongly recommended to include
multitemporal radar imagery as a prime data source.

Figure 6.8. ERS-1 image of part of Johar state, Malaysia, 24
August 1993, coverage 100x100 km. (Source: M. Wooding,
RSAC).

Figure 6. 9. ERS-1 PR! extract of Costa Rican coast, 18 May
1992; banana plantations show the brightest returns,
Gamma MAP filtered. (Source: M. Wooding, RSAC).



6.2 Plantations
ERS-1images are potentially valuable for mapping some
types of plantation crops, which form an important part
of the economy of many tropical countries. Oil palm
and bananas, in particular, tend to have very bright
image tones in comparison with other types of tropical
vegetation because of the large leaf sizes and the overall
structure of the vegetation.

Figure 6.8 is an ERS-1image covering parts of southern
Malaysia and Singapore Island. Large oil palm
plantations are seen as the lighter toned patches in the
zone between the coastal plain and the mountains to
the north-east. The coastal plain itself is an area of
mixed smallholder agriculture without clear field
patterns, which has darker image tones. Besides the
potential for mapping new areas of oil palm, there is
also some interest for monitoring the replanting of oil
palm, which happens approximately every 30 years.
Replanted oil palm appears dark on ERS-1 images
because the signal is dominated by the low herbaceous
ground cover between young trees.

Banana plantations are readily seen on ERS-1 images,
Beaulieu et al. (1994). Figure 6.9 shows large planta­
tions in Costa Rica located on flat land near the coast
and on large alluvial fans within the mountains. Banana
plantations are identified both by their brightness and
geometric shape. Although the extent of areas
cultivated with banana are relatively well known in
Costa Rica, there is potential for monitoring changes in
the extent of plantations, which can be quite rapid in
some areas.
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6.3 Other Crops
There is a great variety of tropical agricultural crops,
examples of which are rice, sugarcane, maize, tapioca,
coffee, tea, rubber and fruit tree plantations. Rice and
tree plantations have been discussed in § 6.1 and 6.2,
respectively. Paudyal (1994) has investigated also other
land cover categories at the Thailand study area
(described in § 6.1), where, apart from rice fields, large
plots of sugarcane are present, intermixed with bushes,
shrubs, water and urban areas.

Various classification methods were compared such as
maximum likelihood with knowledge-based classifica­
tion methods, or unfiltered versus speckle filtered
and/or texture analysed images. The latter method was
developed making use of pre-assumptions about the
rice growth cycle based on temporal profiles of o? !dBi.
These results were compared with a Landsat TM image
and ground measurements for accuracy assessment.
An overview of the classification results is given in Table
6.3.

The results of the supervised classification based on five
dates (MAP-filtered)has given an overall classification
accuracy of 70 % , while the knowledge-based method
gave 80 % , which is a clear improvement. The same
accuracy was obtained when combining speckle and
texture analysed images as input for a maximum
likelihood classification. As an example, the classifica­
tion accuracy matrix was extracted for the agricultural
crops, rice and sugarcane only, and compared with the
overall accuracy including all six land cover categories.
It is worth noting that the accuracy of rice alone has
increased from 72 % for the MAP-filteredclassification to
92 % for the knowledge-based segmentation method.

unfiltered
MAP-speckle. filtered

(2 iterat.)
4

segmentation

age dates. Theobserved
ne, bush, shruhs, water

70 72
78 88

71
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For sugarcane, however, the combined speckle filtered
and texture analysed images are the best input source
for further classification. The accuracy reaches 88 % in
this case.

As can be seen from Table 6.3, there is no general
method superior to another if all land-use categories are
considered. However, the more sophisticated methods
which combine speckle filtered and texture analysed
data are clearly superior to a classification using only
unfiltered or speckle filtered images. The knowledge­
based method was adapted to discriminate rice fields
from other categories and performs best for the
category of rice. A further description of the
methodology can be obtained from Paudyal et al.
(1994).
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7. Future Developments

7. 1 Data Continuity

Since its launch in 1991, ERS-1is the first radar satellite
to have provided a long period of continuous data
acquisition. ERS-1data have been used by the interna­
tional science community since then to extract
environmentally important parameters. Despite the
restriction to a single frequency and polarization, the
guaranteed high-repetition frequency and the sensor's
quality and stability make it a very important
monitoring tool. ERS-1 has acquired more than half a
million images, which will be exploited for years to
come. With the launch of ERS-2 in 1995 and Envisat in
1998, there is the prospect of data continuity well into
the next century using ESA satellites. Other radar
satellites including JERS-1 and Radarsat will further
extend the amount of data. Brief technical specifications
for these satellite radar systems are given in Table 7.1.

Built like ERS-1, ERS-2 carries the same active radar
instruments to continue the data flow started in 1991.
For a period of time, it is planned to operate both
spacecraft 'in tandem' to collect interferometric data
pairs (see § 4.5 and 7.3). One of the main applications
of interferometry is to develop three-dimensional digital
maps of the Earth's surface. The C-band data continuity
will be guaranteed with the ASAR (advanced SAR)
system on-board the Envisat platform. The Envisat
mission will be ESA'sthird major remote sensing effort.
As ERS-1/2, it will use a polar orbit at 800 km altitude
and 98.5° inclination. Based on the Polar Platform
concept, Envisat carries ten active instruments to cover
a wide range· of remote sensing tasks from Earth's
surface monitoring to atmospheric research.

Table 7. 1 Continuously operating and planned spaceborne SAR systems

Sensor ERS-1 ERS-2 Envisat JERS-1 Radarsat

Agency ESA ESA ESA NASOA CSA
Launch 1991 1995 1999 1992 1995
Expected lifetime 3 years 3 years 5 years 2 years 5 years
Frequency (GHz) 5.3 5.3 5.3 1.3 5.3
Polarisation vv vv VV, HH, VH HH HH
Incidence angle 23 23 15 to 55 38 1O to 60
Range resolution 26 26 30 18 9 to 1oo
Azimuth resolution 28 28 30 18 9 to 100

The Japanese spaceborne SARprogramme started with
a SAR on JERS-1 (Japanese Earth Resources Satellite).
Application objectives focused on Earth resources and
environmental protection, disaster prevention and
coastal monitoring. In contrast to the other systems,
JERS-1allows observation at L-band (23 cm wavelength),
supplying additional information about the Earth's
surface. Figure 7.1 illustrates a comparison of ERS-1and
)ERS-1SARimages over the Dutch Flevoland agricultural
site (Borgeaud et al., 1994).

The Canadian Radarsat adds, by using HH-polarization,
an additional feature to the available radar parameters.
It is also capable of beam steering, allowing varying
incidence angles and geometric resolutions (fine
resolution vs. wide swath). The SAR data will be
distributed to commercial, government and scientific
organizations for applications in resource management,
ice mapping and reconnaissance and environmental
monitoring.

7 .2 Multi-parameter Radar

The useful information which a satellite radar can
provide on an agricultural field depends on the kinds of
structures within the crop canopy or the soil with which
it interacts. The natures of those structures and the
strengths of interaction are influenced by the
parameters of the radar, including its frequency and
polarisation (Schmullius & Nithack, 1992). A multi­
channel radar exploits these differing responses to
provide a more complete instantaneous picture of the
structure or density of a crop.



Figure 7. 1 Comparison of (a) ERS-1 and (b) /ERS-1!SAR images over the Dutch test site, Flevoland (Source: M. Borgeaud,
ESA/ESTEC)
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(a)

Radar frequency is a tool for varying the penetration of
microwaves into the canopy of a crop. While, in some
circumstances, the C-band radiation of ERS-1 can
penetrate completely through a canopy, it is not
generally as penetrative as longer wavelengths such as
L- band. Longer wavelengths react with structures
through a greater volume of a canopy, and more
regularly interact with the soil below. Higher
frequencies, such as X-band radars, are more sensitive
to the small-scale properties of the upper layers of
vegetation or the canopy boundary layer.

The selection of horizontal and vertical polarisation
varies the response of a radar to different shapes or
scattering elements within a canopy. Selecting crossed
polarisations between the radar transmitter and
receiver, tends to detect backscatter from within the
volume of a crop canopy rather than from the soil, and
as such may be an indication of the amount of biomass.
We might conceivably select different single radar
channels or particular frequency and polarisation
combination to optimise the discrimination of certain
crops at some point in the growing season. Of far
greater potential, however, is the use of multiple
frequencies and/or polarisations simultaneously to
provide a multi-dimensional set of measurements, akin
to moving from monochrome optical imagery to colour.

Airborne radar experiments over the last two decades
have supplied the remote sensing user community with

(b)

high-quality multi-frequency and/or multi-polarization
data (e.g. AGRISTARS,ROVE, AGRISCATT,AGRISAR,
MAESTRO1, Mac Europe 91, EMAC-1994).The recent
SIR-C/X-SAR1 and 2 experiments during April and
October 1994 offered, for the first time, an opportunity
to acquire multi-parameter SARdata from space within
the 10-day mission time frame.

The application of multi-frequency SAR data for crop
identification is demonstrated in Figure 7.2, which is a
colour composite of x-band, C-band and L-band images
covering the same 2.5 x 6 km area as the multitemporal
ERS·1 composite shown in Figure 5.2. On the imaging
date in )uly, all crops are fully developed and cause
characteristic backscatter intensities, which simplifies
the digital landuse classification. The brightest fields
belong to oilseed rape (yellow-white) and sugar beet
(light orange), since they have the highest backscatter
in all three wavelengths. Dark blue fields are winter
wheat (higher L-band returns), green fields are summer
barley (higher C-band returns), making discrimination
between cereals possible (compare the C-VV temporal
signatures in Figure 3.10).

Figure 7.3 shows a multi-frequency composite acquired
from the space borne SIR-C/X-SAR.The image was
acquired at 04:00 GMTat night, as a thick cloud layer
covered Germany, and shortly after a heavy storm
covered the area with 20 cm of snow. The quality of the
image demonstrates the capabilities of radar remote



Figure 7.2. DLR ESAR multifrequency colour composite,
CLEOPATRAtest site Lechfe/d, Germany, 14 fuly 1992; red: X­
vv, green: C-VV,blue: L-HH. (Source: C. Schmullius, DLR).

sensing for environmental monitoring independent of
weather conditions. Forested areas appear in red,
because the long I-band wavelengths penetrate the
vegetation canopy and are scattered by tree trunks and
branches. Agricultural fields (mostly bare soil) appear
blue in this April image, since the longer wavelengths
are forward scattered, i.e. away from the sensor, but the
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X-band signals undergo diffuse scattering. Where the
vegetation is taller, e.g. in the marshy areas at the
northern tip of the large lake (Ammersee), L-and C-band
returns add to the yellow colour.

Figure 7.4 provides an example of a C-band multi­
polarisation composite. The airborne imagery was
acquired by the EMISAR system developed by the
Technical University of Denmark. It shows an
agricultural area near Uppsala, Sweden, and is a
composite of HH, VVand HVpolarisation channels. The
large range of colour associated with the agricultural
fields provide a simple illustration of the extra
information content of multi-polarisation radar, and is
indicative of the future potential of Envisat with its dual­
polarisation capability.

7 .3 Analysis Techniques

Neural networks
Davison (1994) has investigated the potential of neural
computing techniques, which are being increasingly
applied to a wide variety of classification applications,
and are recognised to cope particularly well with 'noisy'
data. Pixel-based neural network classification of multi­
temporal ERS-1 data of the Great Driffield site, UK,
produced an accurate classification result for a small
number of fields.

The work of Melis & Lazzari (1994) provides a further
example of the use of neural network classification
technique. Figure 7.5a is a multitemporal ERS-1/SAR
image (April, May and July 1992) for a test site in the
Tiber Valley, Rome. Figure 7.5b is an unsupervised
classification obtained by a neural network (3-dimen­
sional Kohonen's Map).

SAR interferometry
SAR interferometric data processing combines two
complex valued images acquired with slightly different
sensor positions. For ERS-1imagery, random dislocation
of the individual scatters between the two acquisitions
reduces the interferometric correlation. As a conse­
quence, this correlation contains thematic information
which can be used to support land-use classification
and change detection (Wegmiiller et al., 1995).

A series of ERS-1/SAR SLCimages of an area near Bonn,
Germany, have been analysed using interferometric
methods. The images were acquired in 3-day intervals
giving good phase coherence between image pairs.
Images acquired between 1 and 28 March were con­
sidered, and a total of nine coherence images from the
different image pairs were generated.
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Figure 7.3. SIR·CIXmultifrequency colour composite, Germany, 13April 1994; red: L·total power; green: C-total power;
blue: X-VV.(Source: C. Schmullius, DLR).

Figure 7.6 shows the results of combining three of the
coherence images. Forest areas and highways have low
coherence so they show up as dark areas. For forests,
this can be explained by the well-known de-correlation
due to multiple scattering. For the 'smoother' highways,
the amplitude of the reflected signal is too low for
coherence detection.

All fields with no change in coherence over the period
7 -16 March 1994 appear black and white. Ground
observations at the time of image acquisition help to
explain the apparent changes in coherence between
fields. The coloured fields result from different grey
values in at least one of the image planes. The red fields

have low coherence in the green and blue image planes
and, therefore, do not contribute to the perceived colour.
This can be explained by cultivation activities. Red fields
were ploughed in the period 13-19 March 1994 and
therefore had low coherence compared to the start of
cultivation. Yellowfields have no coherence in the blue
image plane as farming activities occurred after 13
March. In the same manner, all other colours can be
explained.

It should be noted that not only farmer activities cause
de-correlation. Other factors such as rain, wind blow
and irrigation can be involved. However, in the German
study, growth-related loss of coherence can be ruled out



Figure 7.4. EM/SAR Cband multi-potarimetriccolour composite, Uppsala, Sweden, 23 June 1994; red: HV; green: HH; blue: VV.
(Source: E. Attema, ESTEC).

as the crops were not experiencing rapid changes in
productivity.

In a similar study of BadenWilrttemberg, coherence
images were generated from image pairs acquired
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Figure 7.5a.Multitemporal ERS-1FDCcomposite, Tiber Valley,
Rome in 1992; red: April; green: May; blue: July
(Source: ). Lichtenegger, ESAIESRIN).

Figure 7.6. ERS-1multitemporal colour composite showing
repeat-pass interferometric correlation, near Bonn, Germany,
1994; red: 7-10; green: 10-13; blue: 13-16March. Coloured
fields indicate farming activities in the observed periods
mostly attributed to the effects of ploughing.

during the period March to September. In all cases, no
fringe images or coherence images could be generated

Figure 7.Sb.Unsupervised classification obtained by a neural
network (3-0 Kohonen'sMap) approach after feature extrac­
tion and statistics computation.

due to the time interval of 35 days between consecutive
passes. This period was too large and de-correlation
occurred due to abundant changes in vegetation cover.

The potential of repeat-pass SARinterferometry for crop
monitoring has been investigated using ERS-1 imagery
acquired over Flevoland The Netherlands, in 1991.
Figure 7.7 shows a multitemporal composite of the
interferometric correlation which occurred between
three different time periods. The colours indicate
differences in crop development and cultivation
practice. Most potato fields appear blue due to the high
correlation only between 19 October and 9 November.
Prior to this period, interferometric correlation was low
due to harvesting and spraying. However, for some
potato fields, changes had already occurred between 19
September and 4 October as indicated by the turquoise
colour (high green and high blue). The yellow fields (high
red, high green) indicate that fields were mechanically
cultivated between 19 October and 9 November for the
establishment of winter crops. Corresponding explana­
tions are valid for the other crops.

Figure 7.8 shows a multitemporal backscatter compo­
site for the same site. It is much harder to interpret the
colour changes. Only minimal differences are observed
despite the fact that fields are undergoing cultivation
and harvesting. For a more detailed appraisal of this
work, see Wegmiiller & Werner (1995).



Figure 7.7. ERS-1multitemporal colour composite showing
repeat-pass interferometric correlation, Flevoland, 1991; red:
19Sept.-4Oct. pair, green: 4-19Oct. pair, blue: 19Oct.-4Nov.
pair.

Cropgrowth models
Agricultural crop growth can be monitored by using
crop growth models. However,often estimates of crop
growth are inaccurate for non-optimal growing
conditions. Remote sensing can provide information on
the actual status of agricultural crops, thus calibrating
the growth model for actual growing conditions.
Encouraging results have already been obtained using
optical remote sensing data in estimating the leaf area
index (LAI) regularly during the growing season and
subsequently calibrating the growth model on time­
series of estimated LA!s.
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Figure 7.8. ERS-1multitemporal backscatter colour compo­
site, Flevoland 1991; red: 19Sept.; green: 4 Oct.; blue: 9Nov.
(Courtesy of U. wegmuller, RSL).

By combining the SUCROScrop growth model for sugar
beet (Bouman, 1992), with microwave and optical
remote sensing data, it was possible to improve the
predicted yield. As shown in Table 7.2, the average error
on the crop yield is smallest when L-band SAR data
together with an optical model are used to calibrate the
SUCROScrop growth model.

Table 7.2 Average errors in yield estimation for sugar beet using a vegetation growth model calibrated either by
microwave and/or optical data.

Techniques Error (tons/ha) Error(%)

SUCROS(vegetation growth model) 13.4 19.1
SUCROSwith radar data (L-HH) 10.8 15.4
SUCROSwith radar data (C-VV) 6.5 9.2
SUCROSwith optical remote sensing data (3 dates) 4.0 5.7
SUCROSwith radar data (C-VV) and optical model 3.7 5.3
SUCROSwith radar data (L-HH)and optical model 3.3 4.7
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8. Conclusions and Recommendations

8. 1 ERS-1 Backscatter of Agricultural
Crops

There have been significant developments in our
understanding of the radar backscatter of agricultural
crops over the lifetime of ERS-1.Prior to the launch of
ERS-1 in July 1991, research experience had concen­
trated on experimental programmes using airborne
radar systems, and involvement in space had been
limited to brief duration Seasat and Shuttle Imaging
Radar (SIR-Aand SIR-B)missions. The availability of
frequent and reliably timed satellite radar data from
ERS-1 has provided new insights into the potential of
multitemporal radar imaging for monitoring agricultural
crops. The excellent stability of the ERS-1/SAR
calibration has been another important factor, facilitat­
ing comparisons of crop backscatter measurements
across different test sites and over different years.

Research work carried out within the ESAAnnounce­
ment of Opportunity Programme has included studies
in successive years at test sites in The Netherlands, UK
and Germany. In general there is very good correspon­
dence in the backscatter of crops across the different
test sites. It has been found that cereal crops (wheat and
barley) consistently show trends in backscatter as a
function of time. The main features are:

(i) a decline in backscatter during the tillering to the
flag leaf stage

(ii) a period in which backscatter is at a minimum at
the time of heading and ear development

(iii) an increase in backscatter during grain fill until
harvest.

The backscatter minima which occurs at the heading
stage is a characteristic which shows up consistently. As
barley matures before wheat, the backscatter profiles
for barley appear to turn earlier and this provides a
basis for separating these different cereal crops.

Rice also has been shown to have a characteristic tem­
poral behaviour. In this case there is low backscatter at
the early stage of development associated with the
presence of standing water, backscatter increases to
reach a maximum at the heading stage, and then
declines slightly during senescence and harvest.

Environmental and meteorological effects have been
found to have some influence on the crop backscatter.
Wet crop conditions following rainfall seem to be the
main factor, and this can result in an increase in
backscatter by several dB's. This suggests the need for
ancillary information on the timing of rainfall events.

Recommendation
The establishment of crop backscatter databases which
include both field averaged backscatter measurements
and details of crop growing conditions at the time of
ERS-1 acquisitions. This is vital for improving our
general understanding of causative relationships, and
also the effects of specific environmental/meteorolo­
gical factors (e.g. rainfall, disease, drought, wind blow).
A better understanding of the interaction of electro­
magnetic waves with different crops is important for
improving current backscatter models.

8.2 Crop Classification

The fact that particular crops have distinctive temporal
backscatter profiles can be exploited for crop classifica­
tion purposes. Rice, wheat, barley, oilseed rape and
grass have been shown to have particularly distinctive
behaviour. Time windows exist in which these crops are
separable on the basis of their backscatter and
difference in backscatter between dates, and this allows
these crops to be classified with high orders of accuracy.
Best results have been achieved using a field-based
approach to classification. However, good results are
also possible using a pixel-based approach, where this
involves the use of special filtering or segmentation
techniques.

Often there is an important requirement to distinguish
crops at the earliest possible stage in the growing
season so that field checks can be performed well
before harvest. Results from Holland and the UK
indicate that winter wheat can be accurately classified
in early May and June (classification accuracies of
> 80 % ). Oilseed rape can be mapped to accuracies
approaching 100% using images from within the same
time frame. However, more difficulties have been
experienced with the separation of sugar beet and
potato crops. Barley crops can be distinguished at the
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end of June and early July. At this time barley ripens
relative to wheat and this is reflected in the temporal
profiles. Grass can only be distinguished using
additional images acquired after the more seasonal
crops are harvested.

Results from Holland indicate that surface roughness in
autumn is an indicator of site specific tillage and
cropping practices in the following growing season.
Although crop development is insignificant in Autumn,
experimental results have shown that information could
be obtained which was relevant to crop type discrimina­
tion much later in the growing season. There seems to
be potential to use a combination of autumn and spring
images to map crops earlier than would be possible
using optical imagery.

Mapping of rice fields is also possible at a very early
stage when fields are flooded, which coincides with
sowing or transplanting.

The potential for crop classification may be limited in
areas where field sizes are very small. The accuracy of
averaged field backscatter measurements is reduced for
field sizes less than 1 ha, and it becomes difficult to
resolve individual fields of this size. However, this has
not been a significant problem for rice mapping because
of the common management of groups of fields related
to water availability. Another important consideration is
the effect of geometric distortion in hilly areas. Much of
the preliminary work has been carried out in areas
where terrain distortion is not a problem (ie.East Anglia
in the UK,Lechfeld in Germany, the Dutch Polders and
Kanchanaburi in Thailand).

Recommendation
Further research studies are required to investigate crop
classification accuracies for a wide range of crops in
different environmental situations. New work is required
to assess the effect of local incidence angle correction
on crop classification performance in hilly terrain. There
should be an emphasis on the potential for early crop
forecasts.

8.3 Strategies for Operational Use of
Satellite Radar Data

The main weakness of current crop monitoring systems
based on the use of optical satellite data is the un­
reliability of image acquisitions in parts of the world
with frequent cloud cover. However, even when opti­
mally timed images are available, there still appears to

be problems with the identification of some crops. The
SPOTsatellite for instance still lacks a spectral channel
in the middle infrared which provides much approved
crop discrimination (a situation that will change with
the launch of SPOT-4).

Although it is attractive to contemplate the use of
satellite radar data for operational crop monitoring
simply on the basis of reliable cloud-free data acquisi­
tion, the major issue is the value of the data for crop
classification in comparison, or used in conjunction
with optical data. The research results on ERS-1 crop
classification presented in this document are viewed as
being highly encouraging in this respect, and two alter­
native approaches are suggested depending on the
difficulties encountered in obtaining optical satellite
images.

Firstly, in cloudy parts of the world, such as the humid
tropics and northern Europe, multitemporal satellite
radar data should increasingly fulfil a primary role,
supplemented by occasional optical images. In this
case, optical images would be used for field area
measurement and to aid in the classification of crops
which are poorly discriminated on radar images.

Secondly, in parts of the world with generally clear
weather conditions, optical satellite images should
continue to be the main data source, although
supplemented by satellite radar images if these can be
shown to be useful for early crop identification, or for
dealing with particular crops which are difficult to
classify using optical images. Examples have been
presented which show that classification performance
can be improved by the combined use of optical and
ERS-1 imagery.

Experience with ERS-1has established the potential of
satellite radar for agricultural applications. With ERS-2,
JERS-1,Radarsat (launch in 1995), and ASAR(launch in
1998) providing continuity of data into the next century,
there are excellent opportunities for exploiting the
potential of satellite radar for operational crop
monitoring in Europe and the rest of the world.
Operational multi-frequency, multi-polarisation radars
now being planned for early next century will extend
the capabilities even further. The potential for crop
growth monitoring is likely to be improved both by the
availability of multi-frequency and multi-polarisation
data, and by the further development of interferometry
techniques. For rice there are already very positive yield
prediction results.
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Recommendations
A programme of pilot projects should be initiated to
develop methodologies and to evaluate crop classifica­
tion accuracies using ERS-1/2 data in different agricul­
tural situations. There is also a need for more detailed
analyses of radar backscatter time series linked to crop
growth models. These should be carried out within the
framework of present remote sensing control and
statistics projects within Europe and elsewhere.

Finally, after four years of research and encouraging
results, operational users should be encouraged to
integrate ERS-1 imagery into their programmes.

Furthermore, the complementarity of optical and radar
data should be studied in more detail as well as the
possibility of combining ERS and JERSdata.





65

9. References

Aschbacher J, 1992. Can satellites help in the management of
tropical ecosystems? Proc. Intl. Space Year, Regional Seminar
on Remote Sensing Applications to Tropical Eco-System
Management, Khao Yai, Thailand, 14-20 June 1992, ESCAP/
UNDP,pp. 90-92.

Aschbacher J & Lichtenegger J, 1990. Complementary nature
of SARand optical data: a case study in the Tropics,ESAEarth
Obs. Quart., Sept. 1990, No. 31, pp. 4·8.

Aschbacher J & Paudyal D R, 1993. Studies of rice fields in
Thailand using ERS-1 SAR data, Proc. National Conf ERS-1I
Landsat/SPOT Applications: A Complementary Approach,
Jakarta, Indonesia, 23-25 November 1993, p. 9.3. 1-9.3.9.

Aschbacher J, Dipak R P, Pongsrihadulchai A, Karnchanasu­
tham S & Rodprom C, 1994. Radar backscattering studies of
rice fields using ERS-1SARdata, Proc. IGARSS 94, Pasadena,
California, 10-12 August 1994.

Aschbacher J, Pongsrihadulchai A, Karnchanasutham S,
Rodprom C, Paudyal D R & Le Toan T, 199Sa. Assessment of
ERS-1SARdata for rice crop mapping and monitoring, Proc.
IGARSS 95, Florence, Italy, 10-14 August (Abstract submitted).

Aschbacher J, Poniman A. & Wismann V, 1995b. Assessment
of ERS-1/SAR for tropical land-use mapping along coastal
zones in Indonesia, Proc. IGARSS 95, Firenze, Italy, 10-14 Aug.
(Abstract submitted).

Askne J& Hagberg J, 1993. Potential of interferometric SARfor
classification of land surfaces, Proc. IGARSS 93, Tokyo, Japan,
pp. 985-987.

Beaulieu N, Leclerc G, Velasquez S, Pigeonnat S, Gribius N,
Escalant J-V& Bonn F, 1994. Investigations at CATIEon the
potential of high-resolution radar images for monitoring of
agriculture in Central America, SAREX-92 Workshop Proc.,
Paris, 6-8 December 1993, ESAWPP-76, pp. 139-153.

Borgeaud M, Noll J & Bellini A, 1994. Multitemporal com­
parisons of ERS-1and JERS-1/SAR data for land applications,
Proc. IGARSS 94, Pasadena, CA, 10-12 Aug. 1994.

Bouman BAM, 1992. Linking physical remote sensing
models with crop growth simulation models applied for sugar
beets, Intl. fl. of Remote Sensing, Vol.13, No. 14, pp.
2565-2781.

Davison M, 1994. Development of neural network techniques
for the classification of multitemporal ERS-1/SAR imagery
with respect to agricultural applications. Proc. 1st Workshop
on ERS-1Pilot Projects, Toledo, Spain, June 1994, ESASP-365,
pp 469-473.

Frost VS, Stiles JA, Shanmugan KS & Holztman JC, 1982. A
model for radar images and its application to adaptive digital
filtering of multiplicative noise, IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol.PAMI-4, No. 2,
pp. 157-165.

Geudtner D, 1995. Die interferometrische Verarbeitung van
SAR Oaten des ERS-1,DLR Forschungsbericht (in press).

Groot J,Van der Broek B,Nieuwenhuis G,Schotten C,Van Rooij
W & Jansen L, 1994. Crop classification using ERS-1/SAR data,
Experts Meeting, JRC-IRSAAgricultural Project, 7-8 Feb. 1994.

Harms J, 1993. Integration of ERS-1 data into the European
project of agriculture statistics, Proc. 1st ERS-1Symp., Cannes,
France, 4-6 Nov. 1992, ESASP-359, Vol.2, pp. 629-630.

Harms J, Galaupe M, Rabaute T, Cailton JM, Roques j M &
Demailly C, 1994. Integration of ERS-1data into the European
project of agricultural statistics, Proc. 2nd ERS-1 Symp.,
Hamburg, 11-14 Oct. 1993, ESA SP-361, Vol.1, pp. 85-86.

Hartl P & Klaedtke H G, 1994. Some results of the PASTA
project concerning agricultural classification, Proc. 1st Work­
shop on ERS-1 Pilot Projects, Toledo, June 1994, ESASP-365,
pp. 481-491.

Hartl P, Klaedtke H-G, Reich M & Xia Y, 1994. Agricultural
implications of ERS-1 data: Preliminary results of the PASTA
project, Proc. 2nd ERS-1 Symp., Hamburg, 11-14 Oct. 1993,
ESASP-361, Vol.1, pp. 63-68.

Iutten C, Blayo F, Cabestany J, Cheneval Y, Cowman P &
Verleysen M, 1995. Eds. 'ELENA- Enhanced Learning for
Evolution Neural Architects', ESPRITIII Basic Research Action
(No.6891 ), Project Results and Industrial Openings, Brussels.

KohlH-G,1994. An evaluation of ERS-1PR!data in the context
of the rapid estimation of crop acreages in Europe, Proc.
IGARSS 94, Pasadena, CA, 10-12 Aug. 1994.

Kohl H-G,King C & De Graaf H, 1994a. Agricultural statistics:
Comparison of ERS-1 and SPOT for the crop acreage
estimation of the MARS project, Proc. 2nd ERS-1 Symp.,
Hamburg, Oct. 1993, ESASP-361 (Jan. 94), Vol.1, pp. 87-92.

Kohl H-G, Nezry E, De Graaf H & Kattenborn G, 1994b.
Monitoring agricultural surfaces using ERS-1 multitemporal
SAR data, Proc. IGARSS 94, Pasadena, CA, 10-12 Aug. 1994.

Kohl H-G,Nezry E, Mroz M & De Graaf H, 1994c. Towards the
integration of ERS/SARdata in an operational system for the
rapid estimate of crop acreage at the level of the European
Union, Proc. 1st ERS-1Pilot Projects Workshop, Toledo, Spain,
ESASP-365, pp. 433-441.



66

KurosoT,Suitz T,Fujita M, ChibaK& Mariya T,1994.Ricecrop
monitoring with ERS-1/SAR: a first year result, Proc. 2nd
ERS-1 Symp., Hamburg, ESASP-361,Vol. 1, pp. 97-102.

Laur H, Sanchez I. Dwyer E & Meadows P, 1993. ERS-1/SAR
radiometric calibration, Proc. SAR Calibration Workshop, ESA
WPP-48,pp. 257-281.

LeeJS, 1986. Speckle suppression and analysis for synthetic
aperture radar images,Optical Engineering, Vol.25, No.5, pp
636-643.

Lemoine GG & De Groot H, 1994. Personal communication.

LeToanT,Laur H & Mougin E, 1989. Multitemporal and dual­
polarisation observations of agricultural vegetation coversby
Xband SAR images, IEEE Trans. on Geoscience & Remote
Sensing, Vol.27, No.6, pp. 709-718.

Li Chang, 1988. Two adaptive filters for speckle reduction in
SARimages using variance ratio, Intl. fl. of Remote Sensing,
Vol.9, No.4, pp. 641-653.

LopezA, Nezry E,Touzi R& Laur H, 1993. Structure detection
and statistical adaptive speckle filtering in SARimages, Intl.
fl. of Remote Sensing, Vol. 14, No.9, pp. 1735-1758.

Massonnet D,RossiM, Carmona C,Adragna F, PeltzerG,Feig!
K & Rabaute T, 1993. The displacement field of the Landers
earthquake mapped by SARinterferometry, Nature, No.364
Vol.6433, 8 July 1993, pp. 138-142.

Meadows PJ & Wright PA, 1994. ERS-1SAR analogue to
digital convertor saturation, Proc. SAR Calibration Workshop,
CEOSCalibration/Validation Working Group, Ann Arbor, Ml,
Sept.1994.

Melis M & Lazzari A, 1994. Multitemporal and single-image
features extraction from ERS-1 image data with wavelet
transforms and unsupervised neural networks, Proc. 1st ERS-1
Pilot Projects Workshop, Toledo,June 1994, ESASP-365.

Nezry E, LopesA & TouziR, 1991.Detection of structural and
textural features for SARimage filtering. Proc. IGARSS 91, pp.
2169-2172.

Nezry E, LeysenM & De Grandi G, 1995. Speckle and scene
spatial estimators for SARimage filtering application to ERS-1
over fragmented forest, Proc. IGARSS 95, Florence, Italy (in
press).

Paudyal D R, 1994. An assessment of spaceborne radar
remote sensing for monitoring of tropical agriculture, Doctoral
thesis, Asian Institute of Technology, Bangkok, Thailand
(unpublished).

Paudyal D R & Achbacher I, 1993a. Evaluation and perfor­
mance tests of selected SARspeckle filters, Proc. Intl. Symp.

on Operationalization of Remote Sensing, ITC,Enschede,The
Netherlands, 19-23 April 1993, Vol.5, pp. 89-96.

Paudyal DR & Aschbacher f, 1993b. Land cover separability
studies of filtered ERS-1/SAR images in the tropics, Proc.
IGARSS 93, Tokyo Japan, 18-23 Aug. 1993, pp. 1216-1218.

Paudyal D R, Eiumnoh A, Aschbacher J& Schumann R, 1994.
A knowledge-basedclassification of multitemporal ERS-1and
JERS-1/SAR images over the tropics, Proc. IGARSS 94,
Pasadena,CA, 10-12August 1994.

Quegan S, Caves RG & White RG, 1993. The structural
content of ERS-1images and its implications, Proc. 2nd ERS-1
Symp., Hamburg, ESASP-361,Vol.2, pp 623-628.

Schadt R, Kellndorfer J & Mauser W, 1994. Comparison of
ERS-1SLC and Landsat thematic mapper for monitoring
grassland and detecting changes in agricultural use, Proc.
2nd ERS-1 Symp., Hamburg, ESASP-361,Vol. 1, pp. 75-78.

Schmullius C & Nithack I. 1992. High-resolution SAR fre­
quency and polarization dependent backscatter variations
from agricultural fields, Proc. IGARSS 92, Houston, Texas,
26-29 May 1992, pp. 930-932.

Schmullius C, Nithack J & Kern M, 1994. Comparison of
multitemporal ERS-1and airborne DLRE-SARimage data for
crop monitoring, Proc. 2nd ERS-1 Symp., Hamburg, ESA
SP-361,Vol.1, pp. 79-84.

Schotten CG J, Van Rooij WW L, Janssen LL F, 1995.
Assessment of the capabilities of multitemporal ERS-1/SAR
data to discriminate between agricultural crops (acceptedby
Intl. fl. of Remote Sensing).

wegmuller U, Werner CL, Nuesch D & Borgeaud M, 1995.
Land surface analysis using ERS-1/SARinterferometry, ESA
Bulletin, February 1995, No.81, pp. 30-37.

wegmuller U, Werner CL, Nuesch D & Borgeaud MM, 1995.
Forest mapping using ERS-1/SAR interferometry, ESA Earth
Observation Quarterly, No.49, Sept.1995.

wegmuller U & Werner CL, 1995. Farmland monitoring with
SARinterferometry, Proc. IGARSS 95, Florence,July 1995.

Werner CL & Wegmuller U, 1994. Extraction and characteri­
zation of interferometric parameters for agricultural and
forest regions.Progress in Electromagnetics Research Symp.
PIERS '94, 11-15July 1994, Noordwijk, The Netherlands.

White RG, 1994. A simulated image annealing algorithm for
radar cross-section estimation and segmentation, SPIE Intl.
Conf on Applications of Artificial Neural Networks V, 4-8
April, Orlando, Florida, Manuscript 2243-25, pp. 1-10.

------------------------------------------- --------



67

Wooding MG, Zmuda AD & Griffiths GH, 1994. Crop dis·
crimination using multitemporal ERS-/SARdata, Proc. 2nd
ERS-1 Symp., Hamburg, ESASP-361,Vol.1, pp. 51-56.

Wright P,Saich P & Cordey R, 1994. Crop monitoring with
ERS·1/SAR in East Anglia, Proc. 2nd ERS-1 Symp., Hamburg,
ESASP-361,Vol.2, pp. 103-108.

Zebker HA, Werner CL, Rosen PA & Hensley S, 1994.
Accuracy of topographic maps derived from ERS-1interfero­
metric SAR,IEEE Trans. on Geoscience and Remote Sensing,
Vol.32, No.4, pp. 823-836.

Zmuda AD, Batts A), Wooding M G & Fletcher P, 1994.
Discrimination of agricultural crops using multitemporal
ERS·1/SAR data. Results of the 1993 crop growing season.
Unpublished report to the DefenceResearchAgency, UK.





APPENDIX l
User Calibration of ERS Image Products ~

Users can generate accurately calibrated ERS/SAR
images using information contained in the header files
supplied by ESA's Processing and Archiving Facilities
(PAFs)with the datasets.

For standard precision products (ERS.SAR.PRI),image
values are supplied which are proportional to the
amplitude of the normalised backscattered signal. The
square of these numbers (/) is related to the normalised
radar cross section <J0 by the expression:

<I> sin a0

K sin a,er

where <J0 normalised radar cross section of
region
average pixel intensity of region
calibration constant
radar incidence angle at the region
reference incidence angle (23°)

<I>
K

The PAFs apply the necessary corrections for any
variations of calibration associated with the antenna
pattern of the radar before they are distributed to the
user.

In a large proportion of cases where ERS-1 images
agricultural regions, the calibration equation can be
simplified to:

<I> sin ao
K sin a,er

For work to the very highest levels of accuracy, and to
achieve the calibration performance described in
Chapter 5, additional corrections for 'replica pulse
power' and 'ADCpower loss' are recommended.

69

The replica pulses, which are copies of the pulses
transmitted by the radar, are used in the generation of
image products from the raw radar signals in the PAFs.
The power of the replica pulses is not perfectly constant
and for accurate measurements of radar backscatter
this variation in power should be corrected (Laur et al.
1993). The replica pulse power for each product is
stored in its header.

In cases were ERS-1images bright areas of land or sea,
extending over areas of a few tens of km 2, a loss of
power can result from saturation of the analogue-to­
digital converter (ADC) in the receiver on-board the
satellite. When imaging regions darker than <J0 = - 7 dB,
the power loss amounts to less than 0.5 dB.The details
of how to calculate the ADC power loss are given in
Meadows & Wright (1994). For ERS-2,it is intended that
the impact of ADC power loss will be considerably
reduced by a reduction in the gain setting of the on­
board radar receiver.
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