

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaa

Presentation to

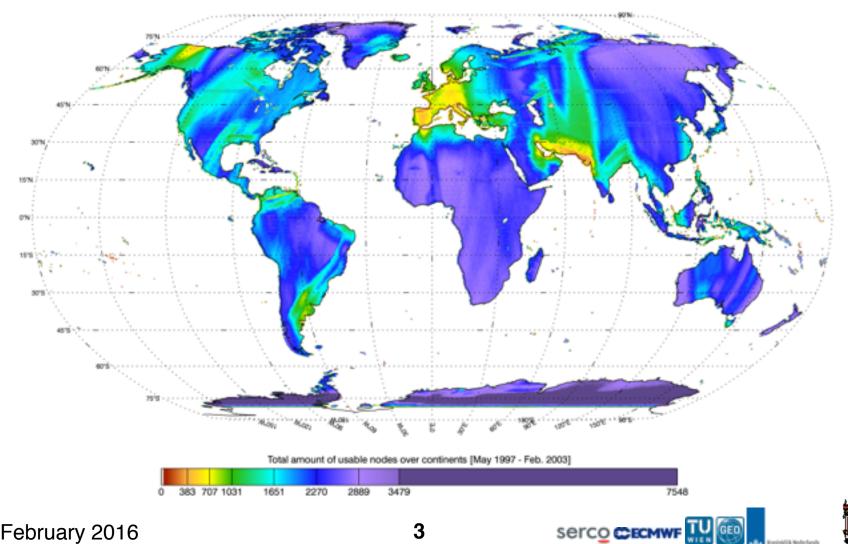
SCIRoCCo project team ESA

Presented by Isabella Pfeil TU Wien

scirocco

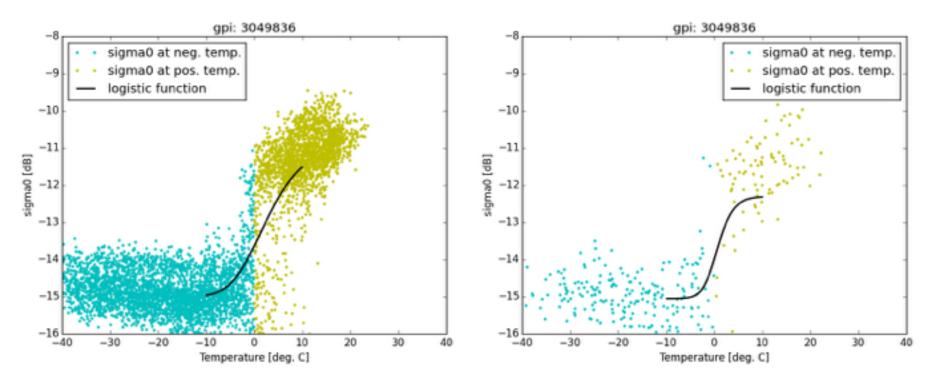
scatterometer instrument competence centre

Initial situation


	ASCAT	ERS
F/T parameters	\checkmark	-
Surface State Flag	\checkmark	-

Objective

	ASCAT	ERS
F/T parameters	\checkmark	✓
Surface State Flag	\checkmark	✓

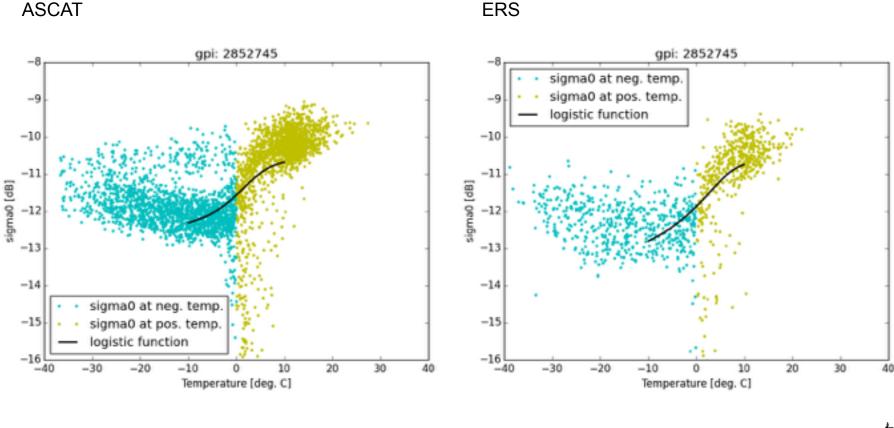

17 February 2016

GEO

Examples of the behavior of normalized backscatter with respect to temperature: Alaska, Happy Valley (Wooded Tundra) / 69.16°N, 148.84°W

ASCAT

4


serco CECMWF

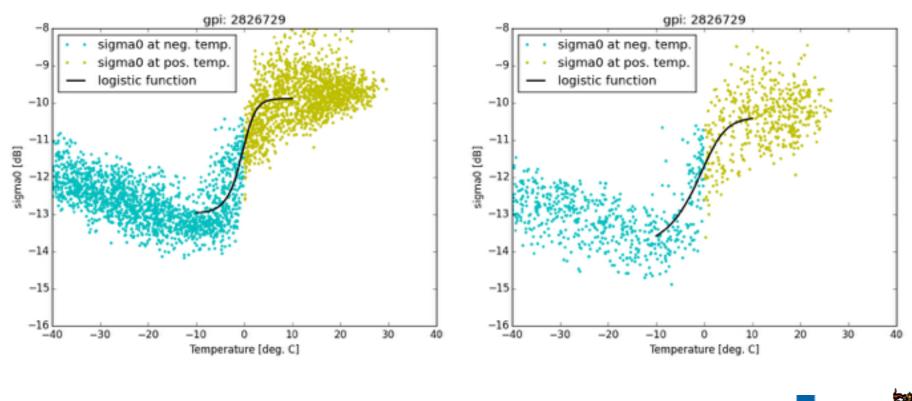
17 February 2016

ERS

Examples of the behavior of normalized backscatter with respect to temperature: Russia, Apuka (Herbaceous Tundra) / 60.97°N, 168.27°E

5

Serco CECMWF


17 February 2016

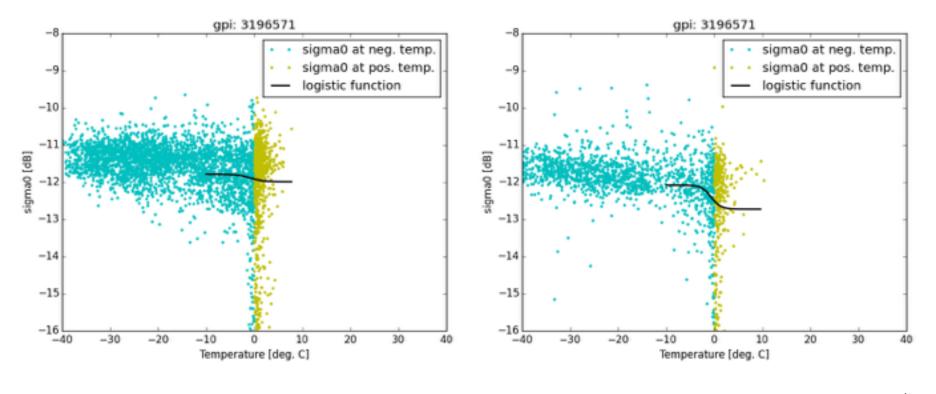
ERS

Examples of the behavior of normalized backscatter with respect to temperature: Russia, Buyaga (Deciduous broadleaf forest) / 60.08°N, 126.19°E

ASCAT

ERS

17 February 2016

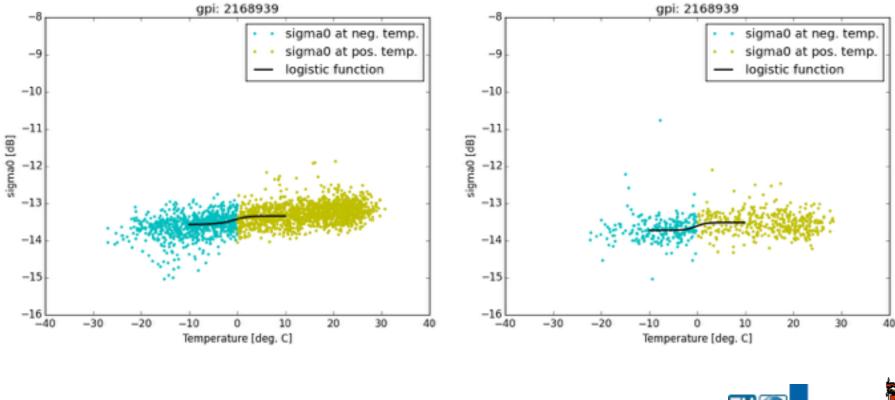

6

Serco CECMWF

Examples of the behavior of normalized backscatter with respect to temperature: Russia, Solnechnaya Bay (Ice) / 78.34°N, 104.69°E

ASCAT

ERS


17 February 2016

Serco CECMWF

Examples of the behavior of normalized backscatter with respect to temperature: China, Mazong Shan (sparsely vegetated area) / 41.76°N, 97.25°E

ASCAT

8

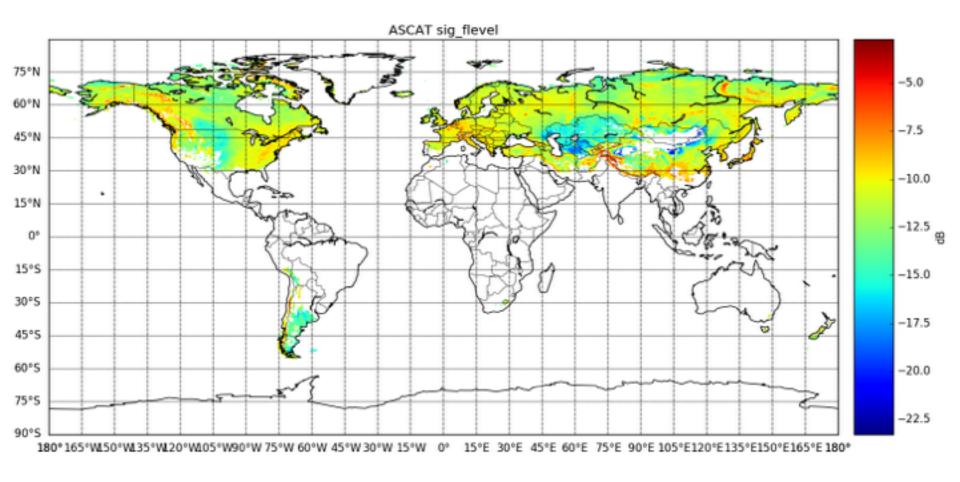
Serco CECMWF

17 February 2016

ERS

F/T parameters (static for each grid point)

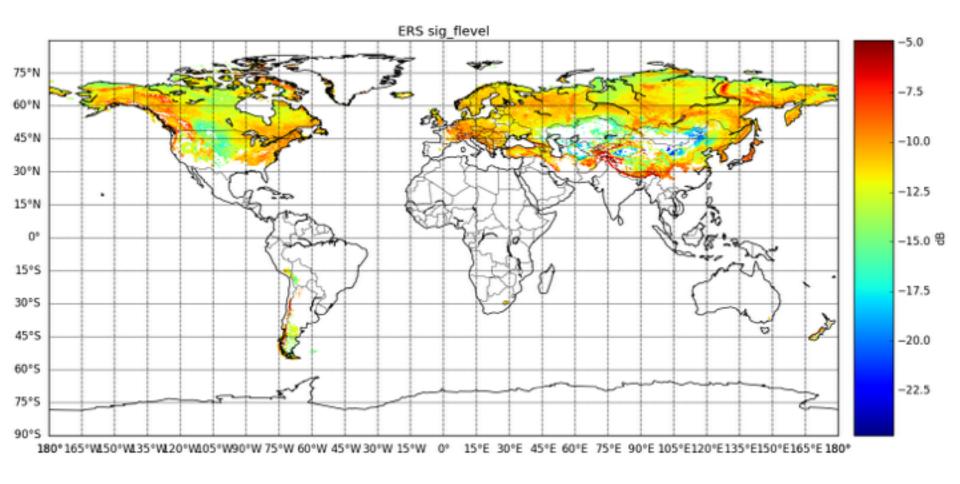
Name	Description
Freeze/thaw threshold	Threshold below which the surface state can be flagged as frozen: inflection point of logistic function betwen +- 10°C
Steepness of linear regression during frozen period	Steepness of linear regression between -35 and -5°C
Snowmelt/water level	Statistical outlier method; outlier with highest backscatter value = snowmelt threshold (~snowmelt onset, inundation) // lowest backscatter measurement if no outlier is detected
Transition point 1, 2	Day of year when transition between winter and summer (1) and summer and winter (2) happens
Standard deviation frozen	Standard deviation of normalized backscatter during frozen period
Sigma mean summer, winter	Mean normalized backscatter in summer/winter
Permanent ice flag	True if logistic function has a negative behavior


17 February 2016

Serco CECMWF 🔣 🗓

einklijk Wederb

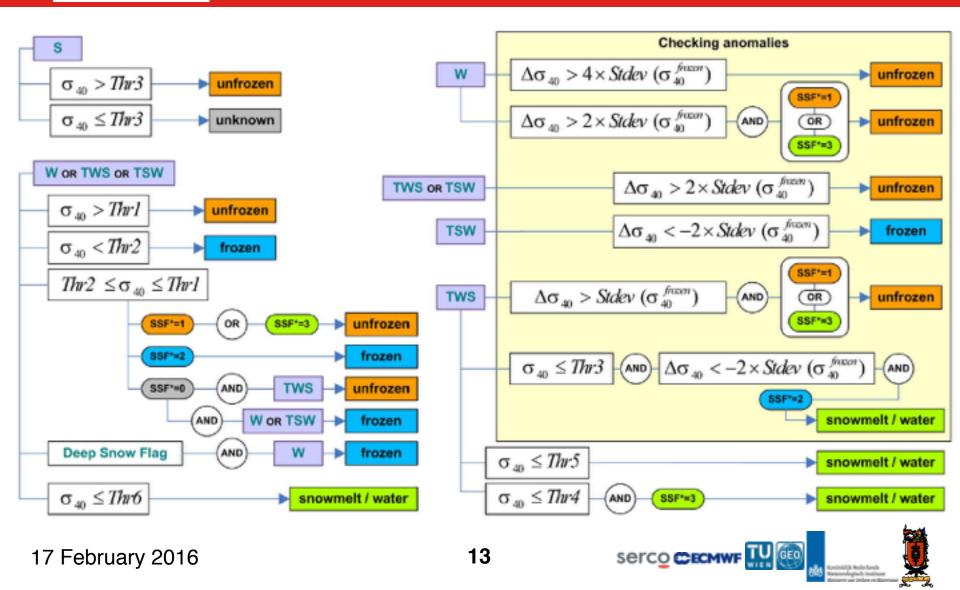
F/T parameters – ASCAT frozen level (static for each grid point)

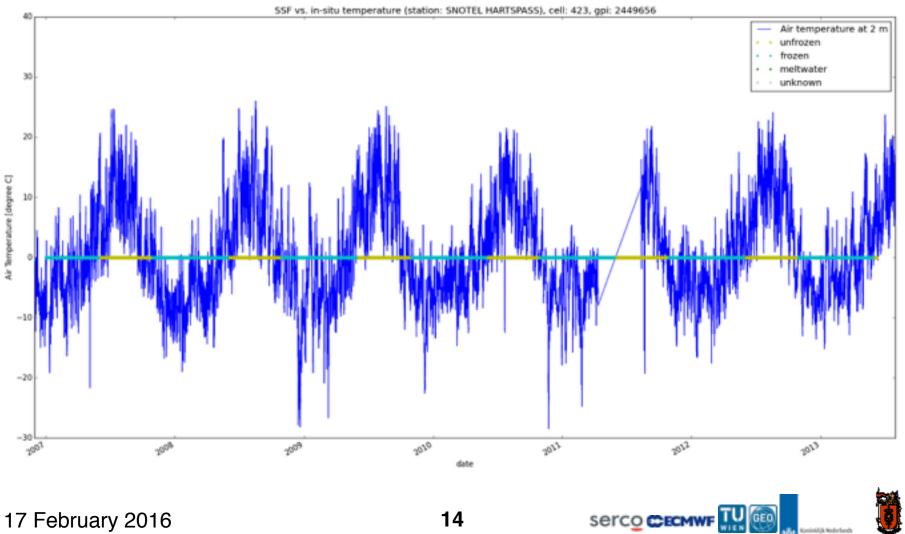


10

F/T parameters – ERS frozen level (static for each grid point)

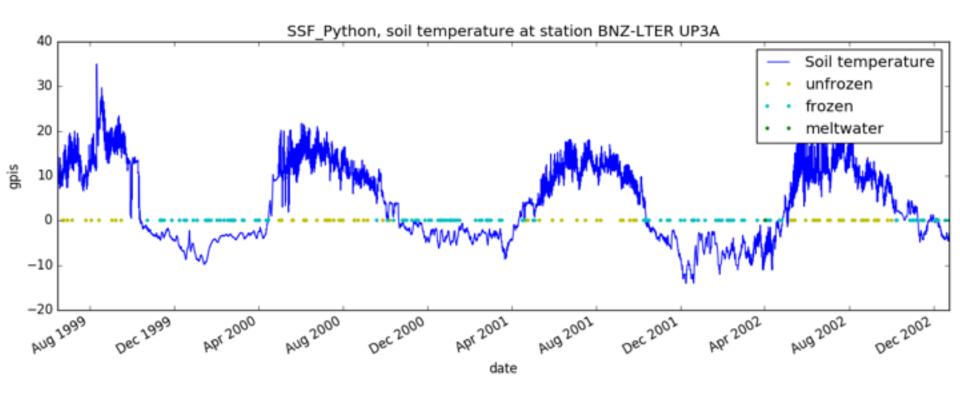
11




Surface State Flag values

Value	Description
0	Unknown
1	Unfrozen
2	Frozen
3	Snow melt / water on surface

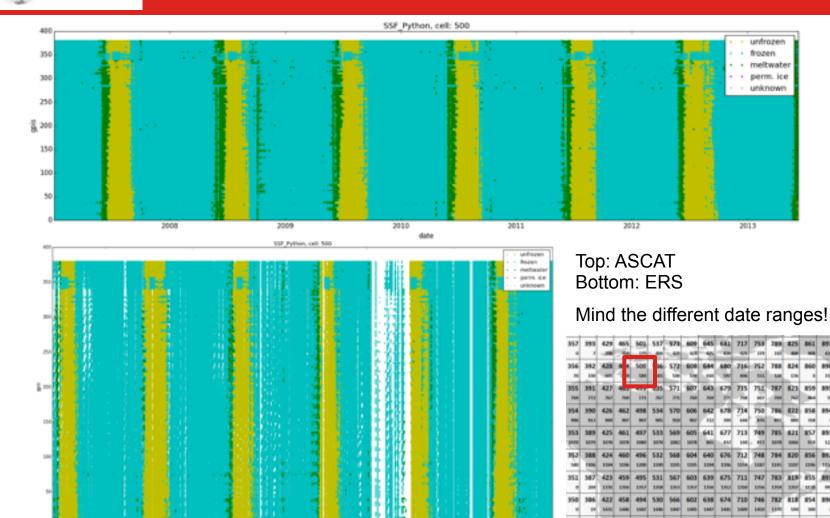
scirocco Television trees for the SSF



17 February 2016

ALL MADE

SSF from ERS backscatter data - air temperature at UP3A (64.77 N, -148.28 E)



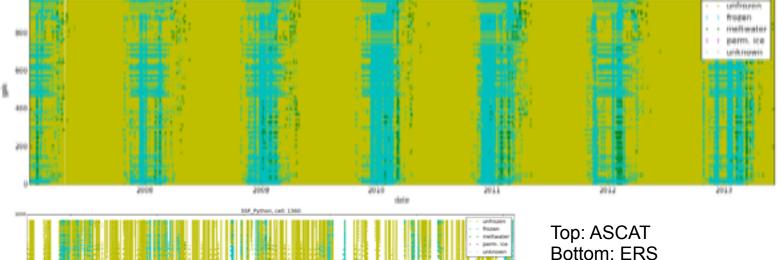
17 February 2016

Serco CECMWF

GEO

SSF from ASCAT and ERS data

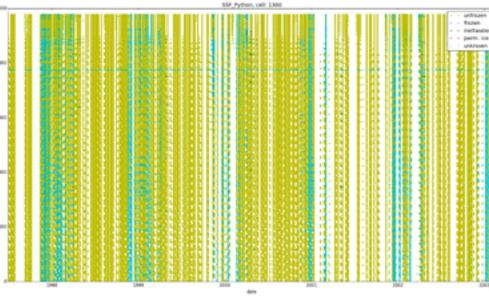
17 February 2016


scitocco scattarometer instrument competence centre

serco CECMWF

shiik Wederland

-



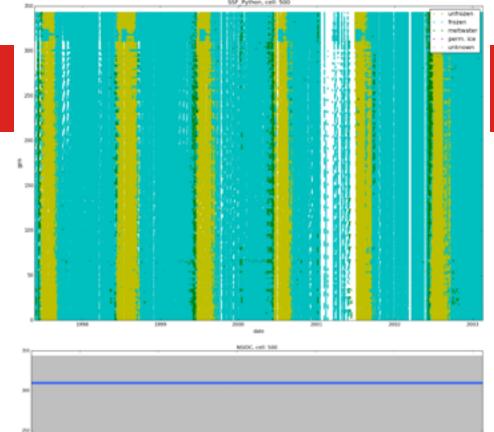
Mind the different date ranges!

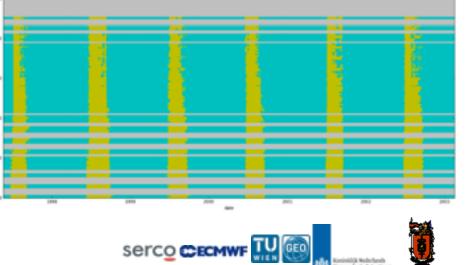
2	1328	1364	1400	1436	1472	1508	1544	1580	1
2	0			140	212	208	103	0	l
	1327	1363	1399	1435	1471	1507	1543	1579	6
)	0	1	443	763	269	770	769	698	Ľ
,	1326	1362	1398	1434	1470	1506	1542	1578	
1	138	764	906	849	907	907	908	906	l
	1325	1361	1397	1433	1469	1505	1541	1577	
ł	-84	845	1063	934	1030	1080	1079	1077	l
	132	1360	396	1432	1468	1504	1540	1576	
	1.8	1087	1992	1194	1196	1194	1196	1194	I
1	100						4500		t

Serco CECMWF TU

SSF Validation

Referenc	e Dataset	ASCAT SSF	ERS SSF
Internation Soil Moisture Network (ISMN)	Air and soil temperature at different network stations	~	~
National Snow and Ice Data Center	Arctic Soil Freeze Thaw Status from SMMR and SSM/I	~	~
Global Land Data Assimilation System (GLDAS)	Soil temperature (0.00-0.10 m)	~	V
Global Land Data Assimilation System (GLDAS)	Surface temperature	~	~

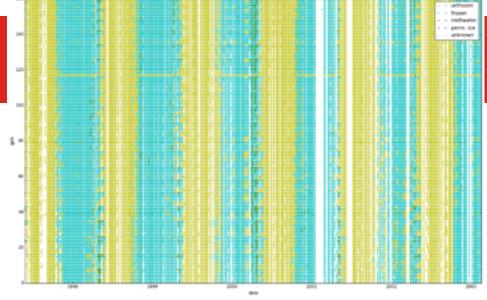


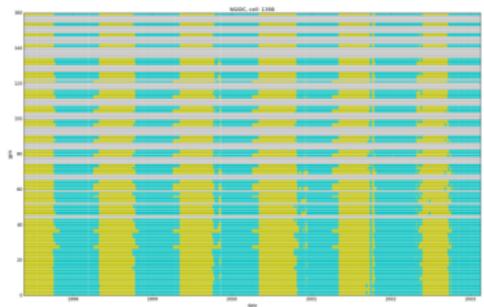


Validation: ERS – NSIDC

Northern Canada (cell 500)

357	393	429	465	501	537	573	609	645	681	717	753	789	825	861	897	9
e		- 29	- 11		405	4/3	4/8	415	426	4/5	119	110	408	408	425	4
356	392	428	44	500	536	572	608	644	680	716	752	788	824	860	896	9
20	130	1605	- 64	589	605	500	- 500	610	50.7	606	568	128	136	6	181	$ \ge $
355	391	427	400	477	-\$35	571	607	643	679	715	751	787	823	859	895	9
268	373	367	269	371	267	271	269	269	371	208	607	- 268	262	864	50	1
354	390	426	462	498	534	570	606	642	678	714	750	786	822	858	894	93
900	913	909	907	907	905	910	907	m	199	644	875	893	889	358	•	
353	389	425	461	497	533	569	605	641	677	713	749	785	821	857	893	92
3470	3079	3078	1078	1080	3078	1062	3078	805	412	344	872	3078	1006	918	121	
352	388	424	460	496	\$32	568	604	640	676	712	748	784	820	856	892	93
580	1106	1194	1196	1300	1290	1195	1195	1194	1196	1154	1587	1195	1597	1396	1154	
351	387	423	459	495	531	567	603	639	675	711	747	783	819	855	891	9
e	259	1105	1356	1357	1358	1353	1357	1356	1352	1350	1356	1359	1357	1128	992	1
350	386	422	458	494	530	566	602	638	674	710	746	782	818	854	890	93
•	19	1403	1486	1467	1446	1407	1465	1447	140	1449	1450	1170	594	300	•	
149	205	421	457	493	579	545	601	617	673	709	745	791	917	853	999	

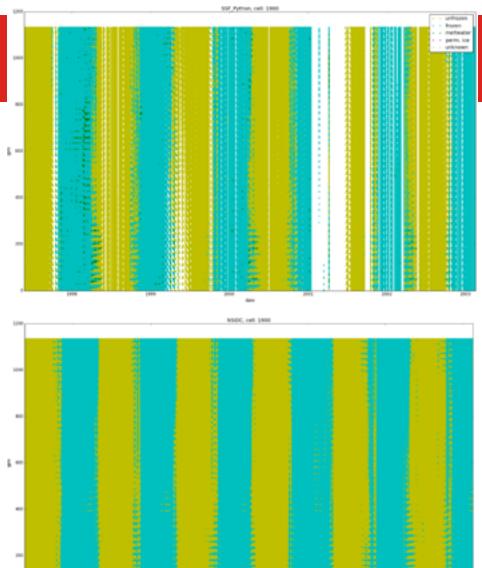




Validation: ERS – NSIDC

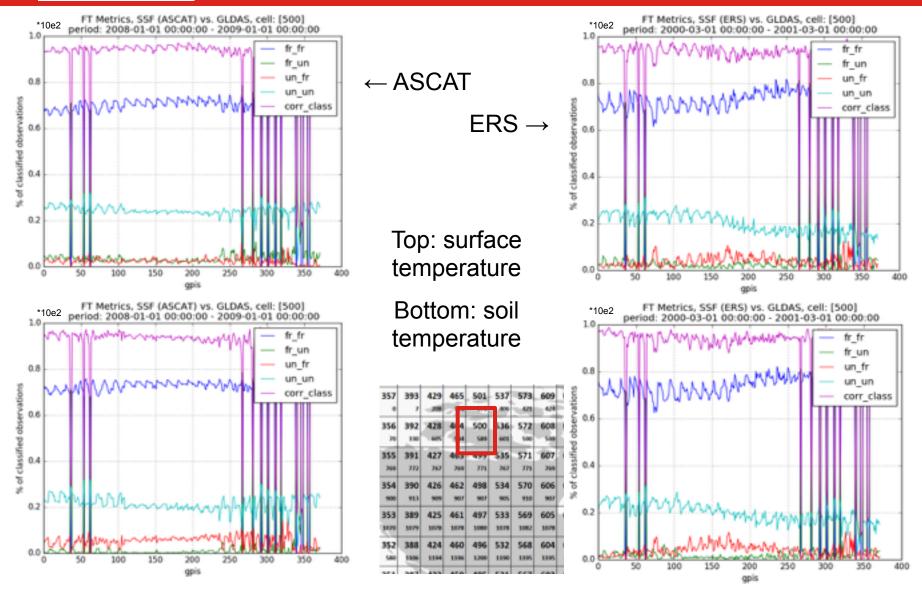
Norway (cell 1398)

2	1328	1364	1400	1436	1472	1508	1544	1580	1
D	0	0	0	140	212	208	103	0	
ι	1327	1363	1399	1435	1471	1507	1543	1579	1
þ	0	1	443	763	769	770	769	698	2
)	1326	1362	1398	.434	1470	1506	1542	1578	1
7	138	741	906	849	907	907	908	906	
,	1325	1361	1397	1433	1469	1505	1541	1577	1
5	84	849	1063	934	1030	1080	1079	1077	
3	1324	1360	1396	1432	1468	1504	1540	1576	1
3	895	1087	1192	1194	1196	1194	1196	1194	
,	1222	1250	1205	1421	1467	1502	1520	1575	1

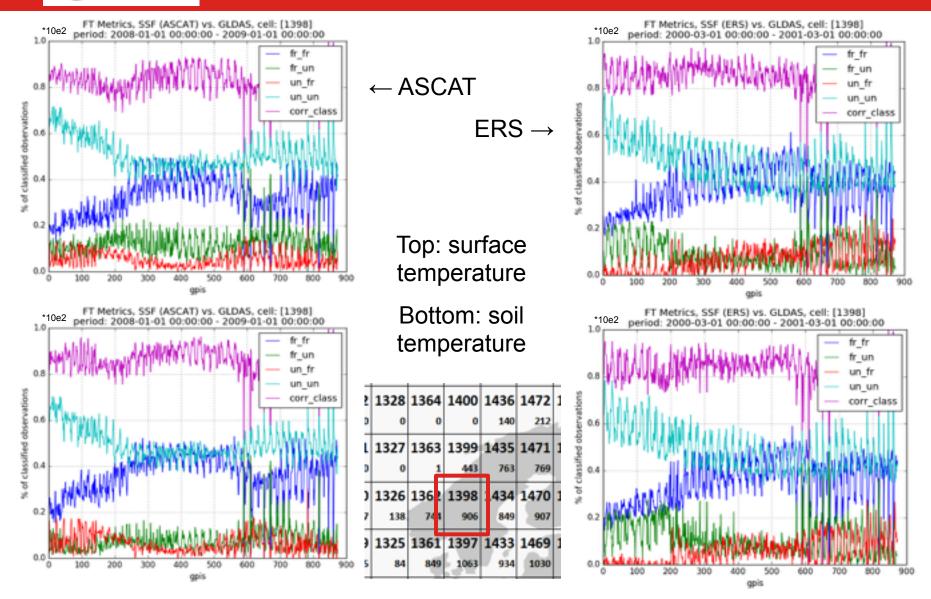


Validation: ERS – NSIDC

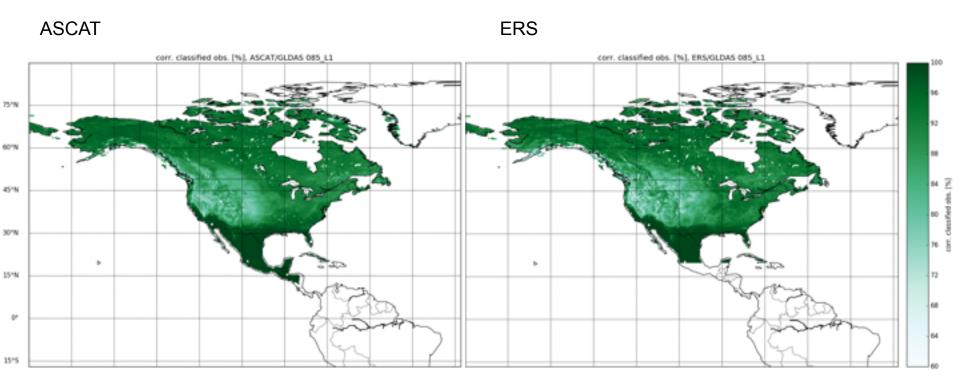
Russia (cell 1900)


	0.	1.0	•					1	1.1												
89	1725	1761	1797	1833	1869	2905	1941	1977	3013	2049	2085	2121	2157	2199	2229	2265	2305	2337	2373	2409	264
42	101	- 107	- 20		- 12	- 10	100	385	- 10	45	1.49	1.07	- 14			- 47	154			-	
-88	1724	1760	1796	3852	1868	2904	1940	1976	2012	2048	2084	2120	2156	2192	2228	2264	2300	2834	2372	2408	244
-		162	- 46			500	500	-	- 440	- 104	-	- 104	588	5.00	504		1.00	604	-48.5		
87	1723	1759	1795	1831	1867	2903	1999	1975	2011	2047	2083	2129	2155	2191	2227	2263	2299	2335	2371	2407	244
196	210	799	768	246	768	200	278	240	768	335	- 262	319	210	367	- 711	398	268	799	367	226	26
86	1722	1758	1794	1830	1866	1902	1958	1974	2010	2046	2082	2118	2154	2190	2226	2262	2298	2334	2370	2406	2445
908	908	905					-		-		-	907	907		913	900	908	908	907	908	/ 8
85	1721	1757	1793	1829	1865	1901	1957	1973	2009	2045	2081	2117	2153	2189	2225	2261	2297	2533	2569	2405	244;
	3019	1000	30.75	2010	100	100.00	-	35%	38.78	3002	38.78	3080	30.00	38.00	3079	3080	3017	-0.0	307	104	100
84	1720	1756	1792	1828	18	1900	3 56	1972	2008	2044	2080	2116	2152	2188	2224	2260	2296	2892	2368	2404	2444
380	1247	1206	1000	1206		1006	-	1114	1100	1105	1100	1.000	1196	1114	1200	1196	1200	184	- 1	-	M
83	1719	1755	1791	1827	184.0		4995	1971	3007	2043	3879	2115	2151	2187	2223	2259	2295	2833	2367	2403	2431
294	1750	100	3.62	100	104	100	100	174	182	150	110	100	1796	1993	1754	1798	(Det	(in	211	- 408	,
82	1718	1754	1790	1826	1862	1898	1994	1970	3906	2042	3078	2154	2150	2186	2222	2258	2294	2530	2366	2402	2434
200	1418	140	348	140	3468	140	340	3447	346	1447	3440	1447	1444	1000	1448	942	425	104	- 444		
81	1717	1753	1789	3825	1861	1897	1993	1969	3005	3041	3077	2113	2149	2185	2223	2257	2293	2129	2365	2401	243
248	1042	1580	10.00	15.00	1208	1586	1000	100	1.00	1100	-	1100	HP	Piere	1100	412	1000	244			
80	1716	1752	1788	3824	1860	1896	1992	1968	2004	2040	2076	2112	2148	2184	2220	2256	2292	2328	2364	2400	2434
-	1004	185.8	3854	1855	385.0	185.4	354	3853	38.0	3057	314	3965	3868	1.00		1.111	-	54			

Mill Mederla



Validation: SSF – GLDAS temperature



Validation: SSF – GLDAS temperature

24

- Limiting factor: data density
- Good results for higher data density compared to different validation datasets
- Outlook:
 - Why does the process fail in regions with low data density?
 - What can be done against it?

