

Soil Moisture "re-processing" activities

Presentation to

SCIRoCCO project team ESA

Presented by

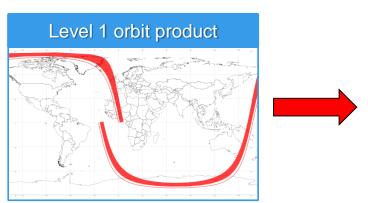
Christoph Reimer Vienna University of Technology

Outline

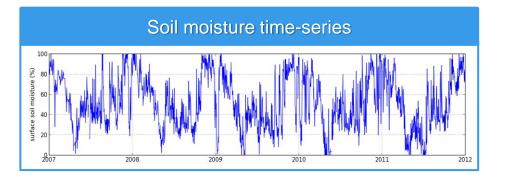
- Introduction to WARP and WARP NRT
 - Different processing approaches
 - SM product differences
 - Software evolution
- Current available ERS ESCAT SM products
 - Who are the users of the different products?
- Proposed "re-processing" plan
- Achievements since PM#1
- Outlook

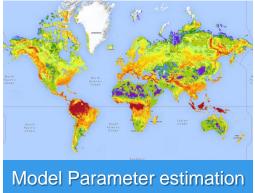
WARP vs. WARP NRT

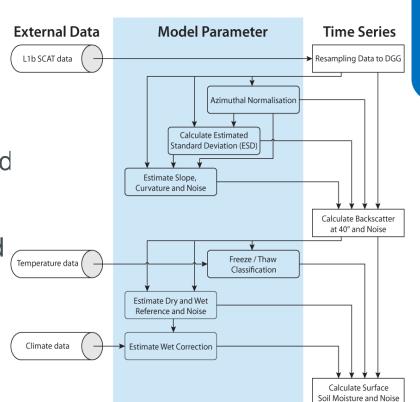
WAter Retrieval Package (WARP) Near Real Time (NRT)


- Processing of L1 data archives
- Time-series based processing on a discrete global grid (DGG)
- Outputs
 - SM model parameter
 - SM time-series on DGG

- Operational processing of L1 data
- Orbit based processing on swath grid
- Outputs
 - SM in orbit (swath grid)


WARP processing approach





WARP processing steps

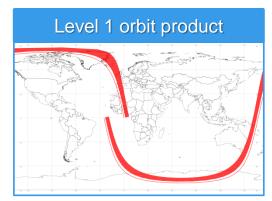
- Model Calibration
 - Estimation of Model Parameter
 - Time consuming task
- All operations are performed in the time-domain
- 9 processing steps required to retrieve SM

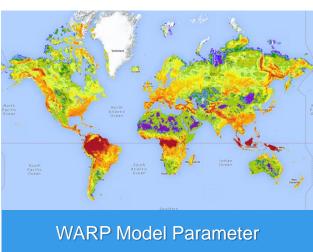
- WARP 5.0 (IDL, new implementation)
 - New definition of the Discrete Global Grid (DGG)
 - Spatial resampling using "Hamming-Window"
 - Initial implementation of error modelling
 - Experimental use of MetOp ASCAT EPS data
 - New/improved Slope/Curvature estimation
- WARP 5.1 (IDL)
 - Improvements related to error modelling
 - First tests between ESCAT and ASCAT

- WARP 5.2 (IDL)
 - Improved resampling (lookup-table, buffer handling with bugs removed)
 - Code entirely adopted to ASCAT
- WARP 5.3 (IDL)
 - Implementation of freeze/thaw (F/T) thresholds estimation
 - Calculation of Surface State Flag (SSF)
 - Improvements in Dry- and Wet- Reference calculation
 - Output of global binaries (WARP NRT)

- WARP 5.4 (IDL)
 - Generic I/O routines fully implemented (data-structure)
 - New cell-structure (partitioning) for DGG
 - New resampling step with different methods (Hamming Window, Inverse Distance Weighting, Lanzcos filtering)
 - ESCAT processing capability re-introduced partly
 - F/T thresholds and SSF missing
- WARP 5.5 (IDL, latest version)
 - Revisions/Changes in SSF processing
 - Capabilities of parallel processing
 - Sensor intra- and inter-calibration of ESCAT and ASCAT

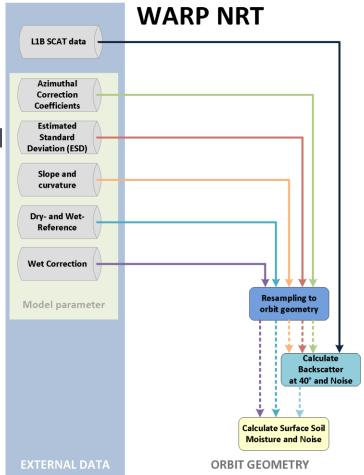
- WARP 6.0 (Python, planned version)
 - Daily Slope/Curvature estimation (ASCAT and ESCAT)
 - Improved Dry- Wet-Reference estimation (Cross-over angle optimisation)
 - Improved Wet-Correction
 - NetCDF IO instead of GenericlO
 - Revision of sensor intra- and inter-calibration
 - Noise estimate based on Kp-value
 - Complete ESCAT and ASCAT processing capability





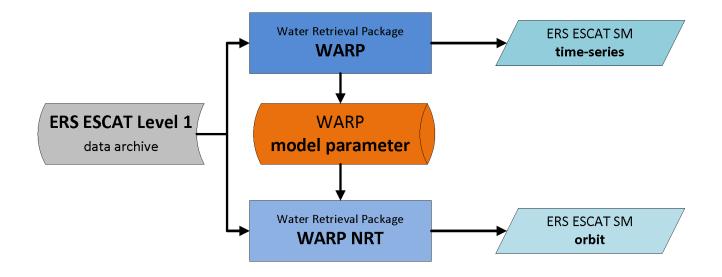
WARP NRT processing approach

standalone and simplified implementation of TU-Wien SM model



WARP NRT processing steps

- NRT processing take full advantage of pre-computed model parameters
- Model parameters are resampled to orbit (swath grid)
 - Fast computation of SM



From WARP to WARP NRT

- WARP and WARP NRT are individual software packages
 - Dependency because of required "model parameter"
 - Model parameter are related to the utilised WARP version

- WARP NRT 1.0 and 1.1 (IDL and C++)
 - Initial implementation
 - ERS-2 UWI data handling
 - First tests with MetOp ASCAT EPS data
 - WARP 4.0 model parameters
- WARP NRT 2.0 (C++, latest ASCAT version)
 - Operational SM processor @ EUMETSAT
 - Adaptions to WARP 5 processing steps and model parameters
- WARP NRT 2.4 (IDL, latest ESCAT version)
 - IDL implementation of version 2.0
 - Adaptions to WARP 5.4
 - ERS-2 ASPS_H data handling

- WARP 3.0 (Python, planned version)
 - Processor encapsulated from input data
 - Common interface for European scatterometer data (ESCAT and ASCAT)

- Adaptations to WARP 6.0 processing steps and model parameters
 - Noise estimate based on Kp-value
 - ▶ Integration of F/T threshold model parameters
 - Estimate of SSF, ...
- Sensor intra- and inter-calibration capabilities
- Improved Processing Flags
- Revised Advisory Flags
- Standardised NetCDF Level 2 soil moisture product output

ERS soil moisture product releases

- 4 different products available
 - Time-series vs. Orbit products
 - Different processor versions (model parameters)
 - Various input data (formats) with different spatial resolutions
 - Temporal coverage (data gaps)
 - Data consistency

"re-processing" demanded

Product Name	Processor	Input data	Temporal Coverage	Spatial Coverage
ERS-1/2 ESCAT Soil Moisture Time-Series	WARP 5.0	ERS-1/2 WNF, UWI 50 km	1991-08-05 to 2007-05-31, data gap between 2001-01 and 2003-08	Global coverage until 2001, from 2003 onwards regional coverage
ERS-2 ESCAT ASPS_H Soil Moisture Time-Series	WARP 5.4	ERS-2 ASPS_H	1997-05-20 to 2003-02-17	Global coverage
ERS-2 ESCAT ASPS_H Soil Moisture	WARP NRT 2.4	ERS-2 ASPS_H	1997-05-20 to 2003-02-17	Global coverage
ERS-1/2 ESCAT Soil Moisture Time-Series	WARP 5.5	ERS-1/2 WNF, UWI 50 km	1991-08-05 to 2007-05-31, data gap between 2001-01 and 2003-08	Global coverage until 2001, from 2003 onwards regional coverage

Products in use

- Who are (will be) the users of the different products?
 - Orbit product (operational product, close as possible to L1 measurements)
 - Meteorological Offices
 - ECMWF
 - Met Office (UK)
 - Météo France
 - ZAMG (Austria)
 - ...
 - Time-series product (research product)
 - Universities
 - Other research institutions
 - Climate change research

ESA CCI SM project requires consistent **ERS-1/2 ESCAT SM**

Contribution from SCIRoCCo

"Re-processing" activities

- Re-processing activity plan outlined in a Technical Note
- Proposed activities were split in two phases

- Phase 1:

- "Completion of ERS-2 ESCAT ASPS data archive"
- ► Extend ERS-2 ESCAT **ASPS_H** SM orbit product
- Creation of ERS-2 ESCAT ASPS_N SM orbit product (WARP 5.4 and WARP NRT 2.4)

- Phase 2:

- "Generation of the most complete and consistent ERS-1/2 ESCAT products"
 - ASPS_H and ASPS_N
- Incorporating all achieved SM-model improvements
- Set of model parameters based on ERS-1/2

Phase 1 (revision request)

- Products generated within Phase 1
 - Products become obsolete after a few month.
 - Improved products will be released in Phase 2
- Request for revision of "Phase 1"
 - Neglect product generation within Phase1
 - Use freed resources for
 - proper implementation / documentation of WARP NRT 3.0
 - Implementation tests
 - Output verification (WARP NRT 2.4 vs. 3.0)
 - Product validation (QC)
 - Concentrate on algorithmic improvements demanded in Phase 2

Achievements since PM#1

- Transition from IDL to Python
 - ASPS reader implemented in Python
 - NetCDF reader/writer for orbit data
 - WARP processor ported to Python
 - Python vs IDL processor (WARP 5.5)
 - First implementation tests of proc. steps were successful
 - Output verification indicates insignificant differences
 - WARP NRT processor ported to Python (package)
 - Processor encapsulated from input data
 - Resampling different to IDL version (Kd-tree) [pyresample]
 - ▶ Interface to run processor with ESCAT and ASCAT data (70%)

Outlook

- Phase 1 "re-processing" products required ?
 - If yes, delivery of data (ASPS_H/N) end of August 2015?
- Phase 2 outlook (timeframe end of 2015)
 - WARP NRT 3.0
 - Implementation tests
 - Output verification (WARP NRT 2.4 vs. 3.0)
 - Adaptations of NetCDF writer (identical format for ESCAT and ASCAT)
 - WARP NRT 3.0 improvements
 - Surface State Flag from F/T-thresholds
 - Improved error characterisation using Kp-value
 - First validation study

Questions or Comments

