

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Verkeer en Waterstaat

Presentation to

SCIRoCCO project team ESA

Presented by

Christoph Reimer Vienna University of Technology

scatterometer instrument competence centre

- Calibration methodology
 - intra-calibration / inter-calibration
- Sensor "intra-calibration"
 - Theoretical framework
 - Results / Verification
 - ▶ ERS-2 SCAT and
 - MetOp-A ASCAT
- Sensor "inter-calibration"
 - Theoretical framework
 - Results / Verification
 - ► ERS-2 SCAT → MetOp-A ASCAT
- (MetOp-B ASCAT calibration)

Calibration methodology

- Stepwise relative calibration strategy
 - Sensor "intra-calibration"
 - Detect and correct for temporal inconsistencies of an individual mission
 - Sensor "inter-calibration"
 - Detect and correct for biases between SCAT missions
 - Utilising a "set of natural calibration targets" over land
- Level 1 scatterometer data

Instrument	Spatial Resolution	Temporal Coverage	Spatial Coverage
ERS- 2 SCAT	25 km	May 1997 – Feb. 2003	Global
MetOp-A ASCAT	25 km	Jan. 2007 – Nov. 2012	Global

SCI-PRE-2014-0002-v-01

serco CECM

Selected calibration targets

SCI-PRE-2014-0002-v-01

Selection based on global backscatter analysis

scirocco scatterometer instrumer competence centre

- Azimuthal modulations
- Temporal variability
- Calibration Tar.
- Verification Tar.

Koninkliik Nederlands leteorologisch Instituu

Calibration reference

$$\overline{\sigma^{0}}(L_{T},\theta) = \frac{1}{n_{obs}} \sum_{i=0}^{n_{obs}} \sigma^{0}(L_{T},t_{i},\theta,\phi_{j}) = B_{0}(L_{T},40^{\circ}) + \sum_{p=1}^{n_{poly}=2} B_{p}(L_{T},40^{\circ}) * (\theta - 40^{\circ})^{p}$$

• ESCAT data of year 1998

scirocco

ASCAT data of year 2007

 Δ overpasses ≈ 0.1 – 0.2 dB [asc - desc] → Calibration reference per overpass

Sensor "inter-calibration" scirocco ometer instrum mpetence centre Measurement Model: $\sigma_{Ma}^{0}(L_{T}, t_{i}, \theta, \phi_{j}) = \sigma_{Sl}^{0}(L_{T}, t_{i}, \theta, \phi_{j}) + \tilde{C}_{inter}(L_{T}, \theta, \phi_{j})$

master RCS

Solve for calibration coefficient:

$$\tilde{C}_{inter}(L_T,\theta,\phi_j) + \epsilon = \overline{\sigma_{Ma}^0}(L_T,\theta) - \sigma_{Sl}^0(L_T,t_i,\theta,\phi_j)$$

$$\overline{\sigma_{Ma}^{0}}(L_{T},\theta) = \sigma_{Ma}^{0}(L_{T},t_{i},\theta,\phi_{j})$$

Inter-Cal. Coeff.

Calibration Reference

WIEN

Koninkliik Nederland Acteorologisch Instituu

Estimate calibration coefficient:

$$\overline{C}_{inter}(\theta,\phi_j) = \frac{1}{n_{tar}} \sum_{T=1}^{n_{tar}} (\tilde{C}_{inter}(L_T,\theta,\phi_j) + \epsilon)$$

Inter-Cal. Coeff.

serco 😇

slave RCS

Sensor "intra-calibration":

$$\sigma_{inter}^{0}(L, t_{i}, \theta, \phi_{j}) = \sigma_{Ma}^{0}(L, t_{i}, \theta, \phi_{j}) = \begin{bmatrix} \sigma_{Sl}^{0}(L, t_{i}, \theta, \phi_{j}) \\ \text{slave RCS} \end{bmatrix} - \begin{bmatrix} \overline{C}_{inter}(\theta, \phi_{j}) \\ \text{Inter-Cal. Coeff.} \end{bmatrix}$$
24 October 2014 SCI-PRE-2014-0002-y-01 Serce FEMME

Inter-calibration anomalies

scatterometer instrument

ESCAT is calibrated with respect ASCAT

$\overline{C}_{inter}(\theta, \phi_j)$ 1-order polynomial centred at 40°

Antenna Beam	С ₀ [dB]	C ₁ [dB/deg]	min(θ) [dB]	max(θ) [dB]
Right Fore	0.158	-0.012	0.384	-0.068
Right Mid	0.194	-0.006	0.332	0.156
Right Aft	0.155	-0.012	0.390	-0.08

Inter-calibration verification

scatterometer instrument competence centre

ESCAT is calibrated with respect ASCAT

$\overline{C}_{inter}(\theta, \phi_j)$ 1-order polynomial centred at 40°

Antenna Beam	С ₀ [dB]	C ₁ [dB/deg]	min(θ) [dB]	max(θ) [dB]
Right Fore	-0.011	-0.002	-0.040	0.019
Right Mid	-0.024	-0.003	-0.042	0.040
Right Aft	-0.019	-0.002	-0.048	0.011

- Simple and obvious SCAT calibration methodology
 - Correct for biases with respect to calibration reference
- Utilising a set of calibration targets
 - A robust estimation of calibration anomalies
- Calibration anomalies correspond to
 - Main mission events
 - On-ground processor updates
- Sensor "inter-calibration"
 - Estimate and correct for biases between SCAT mission
 - Merging of ERS SCAT and MetOp ASCAT

Calibration of MetOp-B ASCAT

SCI-PRE-2014-0002-v-01

- Objective: derive soil moisture from MetOp-B ASCAT
 - Dedicated MetOp-B ASCAT model parameters not available
 - Too short mission lifetime
 - Current available model parameters are based on MetOp-A ASCAT
- Calibration methodology
 - "intra-calibration" of MetOp-B ASCAT
 - "inter-calibration" of MetOp-B ASCAT utilising MetOp-A ASCAT as calibration reference
- Investigated MetOp-B ASCAT data
 - 06-Nov-2014 to 30-Jun-2014

Intra-Calibration MetOp-B ASCAT

MetOp-B ASCAT

Right Swath: Fore-/Mid-/Aft-beam Left Swath: Fore-/Mid-/Aft-beam

Calibration Targets:

- Amazon Rainforest,
- Congo Rainforest and
- Indonesia Rainforest I

Year 2013 as Calibration Reference

Koninkliik Nederland leteorologisch Instituu

Intra-Calibration MetOp-B ASCAT

MetOp-B ASCAT

Right Swath: Fore-/Mid-/Aft-beam Left Swath: Fore-/Mid-/Aft-beam

Verification Targets:

- Upper Guinean Forest,
- Indonesia Rainforest II
- Malaysian Rainforest and

Koninkliik Nederland leteorologisch Instituu

Laos Rainforest

24 October 2014

SCI-PRE-2014-0002-v-01

scirocco Inter-Calibration ASCAT verification

Thank you for your attention

Questions / Comments are welcome

SPUDCOMICS.COM

© 2012 LONNIE EASTERLING

SCI-PRE-2014-0002-v-01