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ABSTRACT 

The angular dependence of satellite-measured canopy reflectance has been shown to contain 
information on the structure of vegetated surfaces. The aim of the research was to explore the 
angular variability of spectral indices and to compare the suitability of angular indices and tradi-
tional vegetation indices for retrieval of forest structural attributes using Chris/PROBA data. With 
spruce the largest variability in NDVI occured in forward scattering direction. This variability 
strongly determined the correlations with canopy attributes. The results showed that off-nadir view-
ing improved NDVI performance considerably, particularly in forward scattering direction. The best 
relationship was found between NDVI at 44º view zenith angle and stand age (spruce: r= – 0.91, 
beech: r= – 0.77). Other directional indices (ANIX, NDAX or NDVIHD) were in most cases less cor-
related with canopy attributes. 

1 INTRODUCTION 

Nadir-viewing passive multispectral sensors were shown to be limited in characterising the struc-
ture of forest canopies. For instance, some authors found good correlations (e.g., Running et al., 
1986; Peterson et al.,1987; White et al., 1997; Franklin et al., 1997) but others found poor correla-
tions (Badhwar et al., 1986; Spanner et al., 1990; Chen & Cihlar; 1996) between NDVI or ratio VI 
and leaf area index (LAI). Improved relationships compared to broadband VI were found between 
narrowband VI and forest canopy structure (e.g., Gong et al., 2003; Lee et al., 2004; Schlerf et al., 
2005). However, in a study by Schlerf et al. (2005) using narrowband VI instead of broadband VI, 
the retrieval accuracy could be improved for LAI but not for stem biomass. Multi-angle data may 
better depict the full dimensionality of forest canopies (Asner, 1998), possibly including height and 
biomass related attributes. Indeed, multi-angular remote sensing has recently been used to detect 
structural attributes of vegetated surfaces including LAI, canopy cover and foliage clumping (Wid-
lowski et al. 2004; Chen et al. 2005; Pocewicz et al. 2007; Gascon et al. 2007). Directional effects 
were found in VI similar to the effects observed in reflectance. Yet, the magnitude of angular ef-
fects in vegetation indices and the information content of angular indices to describe forest struc-
ture remain unknown for most indices (Verrelst et al. 2006).  

Multi-directional sensors in orbit typically measure with a coarse spatial resolution and would be 
unsuitable to detect the variability in most of European forests. There, use of multi-angle remote 
sensing has recently been facilitated through high spatial resolution Chris/PROBA images. The 
central questions of this research were to explore the angular variability of spectral indices and to 
compare the suitability of angular indices and traditional vegetation indices for parameter retrieval 
using Chris/PROBA data. 

2 METHODS 

2.1 Satellite data and ground measurements 

Chris/PROBA images were acquired at Idarwald test site (Germany) on 5 September 2005 in 
mode 1 (411-1004 nm) at five observation angels (-44°, -33°, -5°, +28°, and +44°). The sun zenith 
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angle during the sensor overpass was 44° and the relative azimuth angle between sun angle and 
observation angle was 50°. The five images were geocoded to the local reference system using a 
parametric approach described in Kneubuehler et al. (2005). This parametric approach takes into 
account the viewing geometry and geometric distortion due to the sensor, platform and topogra-
phy. The method had been shown to provide high accuracy, robustness and consistent results 
over a full image taken over mountainous terrain in Switzerland. To compute and refine the pa-
rameters of the mathematical model apart from orbit and sensor information a small number of 
ground control points (GCP) was needed. For each image, between 7 and 10 GCP were selected. 
Reference coordinates stemmed from digital topographic map sheets of scale 1:25.000. The digi-
tal elevation model (source: Topographic mapping agency, Rheinland-Pfalz) had a spatial resolu-
tion of 20 m. The images were resampled to the nominal ground resolution at nadir view (34 m). 
The root mean square errors of the respective scenes were for the –44, -33, -5, +28, and +44  
images 1.11, 1.60, 0.78, 1.15, and 1.26 pixels, respectively. The images were radiometrically cor-
rected to top-of-canopy reflectance using AtcPro Software Tool assuming standard atmospheric 
parameters. 

Two weeks after the image acquisition, an extensive field campaign was conducted and the can-
opy structure of altogether 28 forest stands (15 plots of Norway spruce (Picea abies L. Karst.)) 
and 13 plots of Beech (Fagus sylvatica)) was measured. In each forest stand, a plot of 30x30 m2 
size was established and its central position determined using a hand-held GPS device. Measured 
attributes include leaf area index (LAI, measured with Li-Cor LAI-2000), crown diameter (CD), tree 
density (SD), crown cover (COcr), tree height (TH), and percent coverage of understorey vegeta-
tion (COus). 

 

2.2 Vegetation Indices 

Vegetation indices were computed from image pixels that represent the forest stands under inves-
tigation. For each plot, four image pixels were extracted from each image around the GPS-
measured plot location and the mean spectral reflectance was calculated. Various angular indices 
may describe angular effects in relation to canopy structure (Sandmeier et al., 2004). Normalised 
Difference Vegetation Index (NDVI, Rouse et al. 1974) was calculated using bidirectional reflec-
tance factor data from each of the five Chris/PROBA view angles. 
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Anisotropy index (ANIX, Sandmeier et al., 1999) describes the ratio of the maximum (hot spot) and 
minimum (dark spot) bidirectional reflectance in a spectral band. It enhances the anisotropy (angu-
lar variation of reflectance) of objects. 
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Similar to ANIX, the Hotspot-Darkspot Index (HDS, Lacaze et al. 2002) is defined as 
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However, as correlation between ANIX and HDS equals 1, HDS was not further investigated.  

Normalised difference anisotropy index (NDAX, Sandmeier et al., 1999) is computed from ANIX in 
a red band and ANIX in a NIR band. It attempts to eenhance spectral differences in anisotropy. 
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The hotspot darkspot NDVI (NDVIHD) that was recently suggested by Pocewicz et al. (2007) also 
combines information from different spectral bands and viewing angles. 
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Table 1: Overview of Vegetation Indices 

Vegetation Index Number of Indices 
Traditional Indices  
- Nadir NDVI (NDVI–4) 1 
Directional Indices  
- NDVI for off-nadir viewing angles 4 
- ANIX in red, ANIX in NIR 2 
- NDAX, NDVIHD 2 

 

A summary of the investigated vegetation indices is given in Table 1. 

3 RESULTS AND DISCUSSION 

Analysis of the angular dependence of reflectance (Figure 1) revealed in the NIR a more bowl-like 
shape for erectophile canopies (spruce) than for beech forest. This is in agreement with the typical 
observation that conifers with their highly organised canopy architecture show a BRDF curve with 
relatively large amplitude (Chen et al. 2003). The red reflectance was very low and increases more 
from nadir to off-nadir in backward scattering direction (BSD) than NIR reflectance does. This had 
certain implications for the angular dependence of NDVI.  

 

Figure 1: Angular dependence of reflectance in the red and NIR. 

For spruce and beech forest, NDVI showed a bell shape, i.e., NDVI decreases with deviation from 
nadir observations (Figure 2). Several studies have investigated the angular dependence of NDVI 
in coniferous forests, also demonstrating a decrease in NDVI with increasing view angle (Ranson 
et al. 1994, Deering et al. 1994). This is due to greater multiple scattering of NIR photons than 
visible photons, which causes the contrast between sunlit and shaded canopies to be more pro-
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nounced at visible wavelengths than in the NIR. The NDVI decreases as visible reflectance in-
creases more than NIR reflectance (Lobell et al. 2002).  

 

Figure 2: Angular dependence and inter-stand variability of NDVI. The plot shows mean NDVI 
plus/minus one standard deviation (beech: n=13, spruce: n=15). 

With spruce the largest variability in NDVI occured in forward scattering direction (FSD) whereas 
with beech NDVI variability was largest in nadir direction (Figure 2). This variability strongly deter-
mined the correlations with canopy attributes (Table 2). Observed NDVI-LAI correlation was poor 
for spruce (comparable to results from Schlerf et al. 2005), but very good for beech. NDVI-SBM 
correlation was poor in nadir-image, but moderate correlation occured in FSD. Good NDVI-Tree 
height correlations were present in FSD (spruce). Very good (spruce) and moderate (beech) corre-
lations were observed between NDVI and stand age in FSD (Figure 3). 

Off-nadir viewing improved NDVI performance considerably, particularly at view zenith angle of 44º 
(FSD). There are two reasons that can explain the advantage of NDVI in FSD opposed to BSD 
and nadir direction. First, in FSD and BSD, NDVI is less sensitive to background variations com-
pared to nadir direction as smaller proportion of background is observed (Gemmell and Donald 
2000). Furthermore in FSD, the denser the crowns the more shadows on tree crowns are ob-
served (Chen et al. 2003).  

 

Table 2: Correlations between VI and stand attributes. LAI=Leaf area index, SBM=Stem biomass 
(t per ha), TH=Tree height (m), Age=Stand age (years) 

VI LAI  
beech 

LAI  
spruce 

SBM 
beech 

SBM 
spruce 

TH 
beech 

TH 
spruce 

Age 
beech 

Age 
spruce 

NDVI–44 0.78 0.74 -0.00 -0.62 -0.41 -0.70 -0.61 -0.83 
NDVI–33 0.77 0.46 -0.03 -0.43 -0.35 -0.48 -0.54 -0.68 
NDVI–4 0.92 0.47  0.03 -0.33  0.44 -0.45  0.48 -0.52 
NDVI28 0.88 0.37 -0.09 -0.37 -0.51 -0.48 -0.70 -0.51 
NDVI44 0.80 0.67 -0.20 -0.69 -0.60 -0.79 -0.77 -0.91 
ANIX 675 0.58 -0.68 0.60 0.53 -0.38 0.63 0.07 0.75 
ANIX 782 -0.10 -0.69 -0.06 0.53 0.16 0.71 0.77 0.79 
NDAX 0.57 -0.26 -0.28 0.11 -0.48 0.05 -0.70 0.15 
NDVIHD 0.93 -0.32 -0.02 0.17 -0.52 0.23 -0.46 0.30 
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The ANIX spectra (Figure 4) demonstrated that reflectance anisotropy reaches a maximum at visi-
ble wavelengths and a minimum in the NIR. Similar results were found by Lobell et al. (2002). Ani-
sotropy was generally more pronounced in spruce forest than in beech forest reflecting the more 
erectophile structure of spruce canopies. Correlations between ANIX675 or ANIX782 and canopy 
attributes were mostly weaker than the correlations obtained with NDVI44 (Table 2). The same 
holds for the correlations between NDAX or NDVIHD and canopy attributes except for the correla-
tion between NDVIHD and beech LAI. 

 

Figure 3: NDVI in forward scattering direction (view zenith angle: 44º) and stand age. Circles: 
beech, triangles: spruce. 

 

Figure 4: Spectral variability of mean values of ANIX (beech: n=13 (lower line), spruce: n=15 (up-
per line)). 
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CONCLUSIONS 

Conclusions 
� NDVI in forward scattering direction (at view angle of 44º) proofed to be the most suitable 

VI in characterising forest structure. 
� Other directional indices (ANIX, NDAX) showed weaker correlations with stand attributes 
� More sophisticated methods, e.g. radiative transfer models have to be incorporated to bet-

ter explore the full dimensionality of complex vegetation canopies. 
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