

Reference Model for MERIS Level 2 Processing

Third MERIS reprocessing: Ocean Branch

Doc. no: PO-TN-MEL-GS-0026-Ocean

Issue: 5.0

Date: July 2011

Function	Name	Company	Signature	Date
Editor:	K. Barker	ARGANS		July 2011
Approved:	L. Bourg	ACRI-ST		
Released :	P. Goryl	ESA		

Contributors:

- D. Antoine (LOV, France)
- L. Bourg (ACRI-ST, France)
- C. Brockmann (Brockmann-Consult, Germany)
- R. Doerffer (HGZ, Germany)
- J. Fischer (FUB, Germany)
- G. Moore (Bio-Optika, UK)
- R. Santer (LISE. France)
- F. Zagolski (ParBleu, Canada)

Acknowledgement

To all MERIS QWG members who have all contributed to the MERIS Third Reprocessing and who have provided feedback on the Reference Model Document, and to ACRI-ST as contract manager (ESA Contract numbers: 21091/07/I-OL).

Table of Contents

1.	Р	URPOSE AND SCOPE	1
	1.1	CAUTION: ATBD REFERENCING WITHIN THE RMD	1
2.	R	EFERENCES, ABBREVIATIONS, DEFINITIONS	2
	2.1 2.2 2.3 2.4	REFERENCES	2
3.	Μ	IERIS SPECTRAL BANDS AND REFRACTIVE INDEX OF SEAWATER	9
	3.1 3.2	MERIS SPECTRAL BANDS	
4.	W	ATER OPTICAL PROPERTIES AND WATER CONSITUENTS	11
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	REMOTELY SENSED LAYER WATER CONSTITUENTS. VERTICAL DISTRIBUTION INHERENT OPTICAL PROPERTIES (IOPS) OF PURE SEA WATER CASE 1 WATERS IOPS. CASE 2 WATERS IOPS. THE MERIS CASE 2 ALGORITHM (NEURAL NETWORK).	11 11 14 14 20 33 33
	4.8	SIMULATION OF WATER REFLECTANCES	
_	4.9	BRIGHT PIXEL ATMOSPHERIC CORRECTION REFLECTANCE MODEL	
5.	B	IDIRECTIONALITY CONVERSIONS FOR AOPS	47
6.	SI	EA SURFACE STATE	53
	6.1	SPECULAR REFLECTIONS	53
	6.2	WHITE CAPS	
7.	A	TMOSPHERE	55
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12	CONSTITUENTS POLARISATION	55 55 56 56 56 57 57 57 58 58 58 58 58 58 58 58 58 58 58 58 58
8.	С	LOUDS	70
	8.1 8.2	WATER CLOUDS CIRRUS CLOUDS	70 70
9.	R	EFRACTIVE INDICES	71
10	. A	EROSOLS OPTICAL PROPERTIES (ATBD 2.7)	73
11	. D	EFINITION OF THE AEKOSOL ASSEMBLAGES OVER OCEAN (ATBD 2.7)	77

12.	AER	OSOL PHASE FUNCTIONS	80
12.	.1	OCEAN MODELS	80
13.	SPEC	CTRAL DEPENDENCE OF THE AEROSOL OPTICAL THICKNESS	87
13.	.1	– OCEAN-AEROSOLS	
13.	.2	-AEROSOL FORWARD SCATTERING PROPORTION	

List Of Figures

Figure 2-1: Geometry notations (see table of symbols)
Figure 4-1: Schematic representation of IOP compartments
Figure 4-2: Normalised VSFs of large, small particles (blue curves; tables 4.5.2-1 & 4.5.2-2),
and of mixed populations following a mixing rule depending on chl (Eqs. (12) & (13)).
These "mixed VSFs" are shown as red curves, and the corresponding chl concentration is
indicated in the green box on the side of the figure. In insert is shown the resulting
backscattering probability, as a function of the chl concentration (Equation 16)27
Figure 4-3: the Raman wavelength redistribution function $f^{R}(\lambda^{2} \rightarrow \lambda)$ for selected incident
wavelengths λ ' Figure reproduced from Mobley (1994) Conversely the Raman emission
at a fixed wavelength λ is excited by a spectral hand centred on λ , the shape of which is
at a fixed wavelength λ is excited by a spectral band centred on λ , the shape of which is approximately the reverse image of those shown in this figure 30
Figure 4.4: Typical Gaussian spectral distribution for the chl-a fluorescence, neaked around
Figure 4-4. Typical Gaussian spectral distribution for the chi-a hubble scence, peaked around $\sigma = 10.64$ nm, corresponding to a width of about
25 nm at half maximum 21
Eigure 4.5: Scheme of the big optical model used for development of the MERIS Case 2
water algorithm
Figure 4.6: Spectral exponent of bleached TSM (left) and gelbstoff (after passing a filter with
a nore size of 0.2 µm) for a two years time series of measurements around the island of
Helgeland (Corman Pight North See)
Figure 4-7: Normalized nigment absorption spectra selected from the data base of site
Helgoland 36
Figure 4-8: Normalized absorption spectra of nigments from the North Sea / German Bight
(left) and from waters in the Skagerrak and the North Sea off Norway (right) 37
Figure 4-9: Relationship between the scattering coefficient of particles in the North Sea at 440
nm and the dry weight of total suspended matter used for determining the conversion
factor 39
Figure 4-10: Relationship between the nigment absorption at 443 nm and the chlorophyll
concentration Data is from cruise 187 of RV "Heincke" The blue regression line is chl
= 23 (a pig) ^{1.02} red line is the algal 2 model for MEGS 7 3 algal $2=21$ (a pig) ^{1.04} 40
Figure 7-1: Schematic representation of the «3 aerosol-lavers» atmosphere 56
Figure 7-2: Principle of aerosol assemblages 60
Figure 7-3: Total atmospheric transmittance at 442.5 nm for a purely Rayleigh atmosphere
(AOT=0) and a purely aerosol atmosphere for a set of 6 AOTs at 550 nm as function of
the air mass (no unit) using a MAR90 assemblage 67
Figure 7-4: Total atmospheric transmittance at 442.5 nm for a purely Rayleigh atmosphere
(AOT=0) and a purely aerosol atmosphere for a set of 6 AOTs at 550 nm, as function of
the air mass, using a COA90 assemblage

Eisen 7.5. Tetal stars and seis the new itteness of 142.5 mm fam a membra Dealaich stars and an
Figure 7-5: Total atmospheric transmittance at 442.5 nm for a purely Rayleign atmosphere
(AOT=0) and a purely aerosol atmosphere for a set of 6 AOTs at 550 nm, as function of
the air mass, using a RUR90 assemblage68
Figure 7-6: Total atmospheric transmittance at 442.5 nm for a purely Rayleigh atmosphere
(AOT=0) and a purely aerosol atmosphere for a set of 6 AOTs at 550 nm, as function of
the air mass, using a BLUE-IOP1 assemblage69
Figure 12-1: Scattering phase functions for the Conti and H2SO4 models in the 15 MERIS
bands80
Figure 12-2: Scattering phase functions for the COA models in the 15 MERIS bands81
Figure 12-3: Scattering phase functions for the MAR models in the 15 MERIS bands82
Figure 12-4: Scattering phase functions for the RUR models in the 15 MERIS bands83
Figure 12-5: Scattering phase functions for the DBDS models in the 15 MERIS bands84
Figure 12-6: Scattering phase functions for the DBDW models in the 15 MERIS bands85
Figure 12-7: Scattering phase functions for the BLU-IOP models in the 15 MERIS bands86

List Of Tables

Table 3-1: MERIS Spectral bands 9
Table 3-2: Refractive Index of sea water (35 psu) and for freshwater (0 psu)10
Table 4-1: Absorption coefficient of pure water, $a_w(1)$, from Pope and Fry (1997). Percent
denotes the combined uncertainty from the authors14
Table 4-2: Absorption coefficient of pure water, from Pope and Fry (1997) combined with
that of Kou <i>et al.</i> (1993) where a_w , is computed as $4\pi k/l$, with l in meters. Percent
denotes the combined uncertainty from the authors
Table 4-3: the band integrated values for water absorption at 22°C. The rate of change with
Table 4.4: temperature dependence of the water absorption for hands 7.15. The temperature
effects at wavelengths below 665 nm are not significant
Table 4-5: K x and e values. Values are reproduced from Morel and Maritorena (2000) and
from Morel and Antoine (1994) Above 775nm only $q(\lambda)$ is specified (unit: m ⁻¹) 22
Table 4-6: mean cosines of the downwelling irradiance (μ_d) as a function of wavelength
(lines) and chlorophyll concentration (columns), sun zenith angle: 30°, no Raman emission
Table 4-7: total absorption coefficients a_1 (m ⁻¹), computed as function of <i>chl</i> and λ through
Equation 7 to Equation 12, with μ_d from Table 4-623
Table 4-8: Normalised VSF for small particles (see text) 25
Table 4-9: Normalised VSF for large particles (see text) 26
Table 4-10: Data from Walrafen (1967)29
Table 4-11: Comments on model parameterization
Table 4-12: Absorption coefficients of pure water (Pope & Fry, 1997) for MERIS bands 1-7
and band 9
Table 4-13: Normalised volume scattering function for marine particles as derived by Mobley (1004) from Patzold'a massuramenta
(1774) HUILI FUZULU S IIICaSULCIIICIUS
reflectance spectra
rencetance spectra

Table 4-15: BPAC parameters
Table 4-16: BPAC sediment absorption properties
Table 5-1: Values of $\rho_F(W, \theta)$, the mean Fresnel reflection coefficient for the water-air
interface, as function of wind speed W and view angle θ' , (Austin, 1974)
Table 5-2: Values of \Re as function of wind speed W and view angle θ'
Table 7-1: Rayleigh optical thickness in the 15 MERIS bands
Table 7-2: Aerosol components and their respective contributions (as percent of the volume,
or as percent of the number of particles) in the composition of the aerosol models. The
principle of «external mixing» is applied when calculating the optical properties of the
aerosol models. ‡ 70% of water soluble particles, and 30% of dust-like particles
Table 7-3: Parameters defining the size distribution of the aerosol models
Table 7-4: Parameters defining the size distribution of the blue aerosol models
Table 7-5: Ozone optical thickness for a standard amount of 0.32 cm-atm and ozone
transmissivities within each of the 15 MERIS spectral bands64
Table 9-1: Refractive index of aerosol components/models71
Table 10-1: Aerosol optical properties (single scattering albedo and scattering coefficient) at
the 15 MERIS wavelengths for rural model (RH=50, 70, 90, 99%)73
Table 10-2: Aerosol optical properties (single scattering albedo and scattering coefficient) at
the 15 MERIS wavelengths for maritime model (RH=50, 70, 90, 99%)74
Table 10-3: Aerosol optical properties (single scattering albedo and scattering coefficient) at
the 15 MERIS wavelengths for coastal model (RH=50, 70, 90, 99%)74
Table 10-4: Aerosol optical properties (single scattering albedo and scattering coefficient) at
the 15 MERIS wavelengths for dust-like particles (BDS-1, 2 & 3)
Table 10-5: Aerosol optical properties (single scattering albedo and scattering coefficient) at
the 15 MERIS wavelengths for dust-like particles (BDS-1, 2 & 3)
Table 10-6: Aerosol optical properties (single scattering albedo and scattering coefficient) at
the 15 MERIS wavelengths for dust-like particles (BDW-1, 2 & 3)
Table 10-7: Aerosol optical properties (single scattering albedo and scattering coefficient) at
Table 10.1: Description of the 24 percent according to a final even opening (4 monitime
Table 10-1. Description of the 34 aerosol assemblages (<i>laer</i>) defined over oceans (4 maritime
+ 4 coastal $+ 4$ futal assemblages with 4 feative number of KH, 18 dust assemblages
Table 10.2: Agreed entired thickness at 550 pm for each of the 4 agreed layers (i.e.
houndary dust transchere and stratesphere) and for each of the 34 aerosol assemblages
(iger)
Table 13-1: Spectral dependence of AOT for assemblages #0 through to #33
Table 13-7: Aerosol forward scattering proportion in 11 MERIS hands for each of the 18 dust
assemblages defined over ocean (<i>iger</i> = 0.12 31-33 are land aerosols and not included
here)
/

1. Purpose and Scope

The specifications provided in this document define the parameters to be used to generate inherent optical properties for the oceanic and atmospheric components as a function of geophysical properties and wavelengths, which can be the basis upon which to generate test data and auxiliary parameters needed for operation and end-to-end tests of the MERIS ground-segment processor (i.e. mostly to generate water reflectances or total reflectances at top of the atmosphere level). Parameters have been selected from various measurements and models in water, surface and atmosphere. The underlying geo-physical models are the same as those of the MERIS geophysical algorithms, as described in the "MERIS Algorithm Theoretical Basis Document" (ATBD), PO-TN-MEL-GS-0005, Iss. 4.1.

Parts of the model might be subject to evolution in the future, thanks to more field and research works. In its current state, this model has severe limitations when used as a predictive tool. The inherent and/or apparent optical properties computed with this model for given geophysical properties may deviate from locally measured properties. This is due in general to deviation between parameter values or parameterizations adopted in the model and those that may be derived locally in any given water body.

This model is intended to apply to the generation of operational auxiliary parameters for the MERIS processing, and accompanies the third MERIS reprocessing.

1.1 CAUTION: ATBD REFERENCING WITHIN THE RMD

A caution is here provided in relation to the referencing to the ATBD's in this document.

At the time of preparation this RMD is to be considered the most up to date reference source for the scientific content detailed in regard to the MERIS reprocessing. Any discrepancies with the original science and/or the ATBD documents should be made known to the QWG.

2. References, Abbreviations, Definitions

2.1 REFERENCES

- ANTOINE, D. and MOREL, A. 1999. A multiple scattering algorithm for atmospheric correction of remotely sensed ocean color (MERIS instrument): Principle and implementation for atmospheres carrying various aerosols including absorbing ones, *International Journal of Remote Sensing*, **20** (9), 1875-1916.
- AUSTIN, R.W. 1974. The remote sensing of spectral radiance from below the ocean surface, in *Optical aspects of Oceanography*, Ed. N.G. Jerlov and E. Steemann Nielsen, Academic, London, 317-344.
- BABIN, M., STRAMSKI, D., FERRARI, G. M., CLAUSTRE, H., BRICAUD, A., OBLENSKY, G. And HOEPFFNER, N. 2003. Variations in the light absorption coefficients of phytoplankton nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res., 108, No. C7, 3211
- BARKER, K., HUOT, J-P and MVT Coauthors. 2009. The MERIS Optical Measurement Protocols. Doc No. PO-TN_MEL-GS_0043.
- BRICAUD, A., A. MOREL, M. BABIN, K. ALLALI and H. CLAUSTRE, 1998. Variations of light absorption by suspended particles with Chlorophyll-a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models, *Journal of Geophysical Research*, 103: 31033-31044
- BROGNIEZ, G., J-C. BURIEZ, V. GIRAUD, F. PAROL, C. VANBAUCE, 1995. *Monthly Weather Review*, **123**, 1025.
- COX, C., and W. MUNK, 1954. Measurements of roughness of the sea surface from photographs of the sun glitter, *Journal of Opt. Soc. Am.*, 44 (11): 838-888.
- DEUZÉ, J.L., HERMAN, M. And SANTER, R. 1989. Fourier series expansion of the transfer equation in the atmosphere-ocean system. *Journal of Quantitative Spectroscopy & Radiative Transfer*, **41** (6), 483-494.
- DOERFFER, R. And SCHILLER, H. 2007. The MERIS Case 2 Water Algorithm. International Journal of Remote Sensing 28 (3-4): 517-535.
- ELTERMAN, L. 1968. UV, visible, and IR attenuation for altitudes to 50 km, Air Force Cambridge Research Laboratories, *Environmental Research papers*, N° 285, AFCRL-68-0153, 49pp.
- GORDON, H.R. 1979. Diffuse reflectance of the ocean : the theory of its augmentation by Chl-a fluorescence, *Applied Optics*, **18**: 1161-1166.
- GORDON, H. R., and W. R. McLUNEY., 1975. Estimation of the depth of sunlight penetration in the sea for remote sensing, *Applied Optics*, 14: 413-416.
- GORDON, H. R. and CLARK, D. K. 1981. Clear water radiances for the atmospheric correction of coastal zone scanner imagery. Applied Optics **20**: 4175-4180
- GORDON, H. R. and A. MOREL, 1983. Remote assessment of ocean color for interpretation of satellite visible imagery: A review, *Lecture Notes on Coastal and Estuarine Study*, Vol. 4, Springer Verlag.
- HANSEN, J.E. and L. TRAVIS, 1974. Light scattering in planetary atmospheres, *Space Science Reviews*, 16: 527-610.
- KATTAWAR G.W., and J.C. VALERIO, 1982. Exact 1-D solution to the problem of the Chla fluorescence from the ocean, *Applied Optics*, **21**: 2489-2492.

- KISHINO, M., S. SUGIHARA, and N. OKAMI, 1984. Influence of fluorescence of Chl-a on underwater upward irradiance spectrum, *La Mer*, **22**: 224-232.
- KOU, L. LABRIE, D. and CHEYLEK, P. 1993. Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range. *Applied Optics*, **32**, No. 19, pp. 3531-3541.
- LOISEL, H., and A. MOREL, 1998. Light scattering and chlorophyll concentration in Case 1 waters: A re-examination, *Limnology and Oceanography*, **43**(5): 847-858.
- MARITORENA S., A. MOREL, and B. GENTILI, 2000. Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat, *Applied Optics*, **39**, in press.
- MIE, G., 1908. Beitraege zur optik trüber medien, speziell kolloidaler metallösungen", Ann. Physik.: 25, 377-445.
- MOBLEY, C.D., 1994. Light and water: Radiative transfer in natural waters, Academic Press.
- MOREL, A., 1966. Etude expérimentale de la diffusion de la lumière par l'eau, les solutions de chlorure de sodium et l'eau de mer optiquement pure, *Journal of Physical Chemistry*, 10: 1359-1366.
- MOREL, A., 1974. Optical properties of pure water and sea water. In : Optical aspects of Oceanography, N. G. Jerlov and E. Steemann-Nielsen, N. G. Jerlov and E. Steemann-Nielsen, Academic: 1-24.
- MOREL, A., 1987. Chlorophyll-specific scattering coefficient of phytoplankton. A simplified theoretical approach, *Deep-Sea Research*, **34**: 1093-1105.
- MOREL A., 1988. Optical modelling of the upper ocean in relation to its biogenous matter content (case 1 waters). *Journal of Geophysical Research*, **93**: 10749-10768.
- MOREL A., and D. ANTOINE. 1994. Heating rate within the upper ocean in relation to its bio-optical state, *Journal Physical Oceanography*, **24**: 1652-1665.
- MOREL, A. and GENTILLI, B. 1996. Diffuse Reflectance of Oceanic Waters. 3. Implications of Bidirectionality for the Remote-Sensing Problem. *Applied Optics* 35:4850-62
- MOREL, A. and ANTOINE, D. 2000. ATBD 2.9: Pigment Index Retrieval in Case 1 Waters. ESA Doc. No. PO-TN-MEL-GS-0005, pp. 9-1 9-26.
- MOREL, A., and S. MARITORENA, 2001. Bio-optical properties of oceanic waters : a reappraisal. *Journal of Geophysical Research* **106(C4)**: 7163-7180
- MOULIN, C., H.R. GORDON, V.F. BANZON, AND R.H. EVANS, 2001. Assessment of Saharan dust absorption in the visible from SeaWiFS imagery, *Geophysical Research Letters*, 106D(18), 239-249.
- PETZOLD, T. L., 1972. Volume scattering functions for selected ocean waters. San Diego: Scripps Inst. Oceanogr., Ref. 72-78, 79 pp.
- POPE, R. M., and E. S. FRY, 1997. Absorption spectrum (380-700 nm) of pure water. II. integrating cavity measurements, *Applied Optics*, **36**: 8710-8723.
- ROTHMAN, L. S. and CoAuthors. 2009. The *HITRAN* 2008 molecular spectroscopic database. *Journal of Quantitative Spectroscopy and Radiative Transfer*. **110**: 533-572
- SATHYENDRANATH, S., and T. PLATT, 1998. An ocean color model incorporating transspectral processes, *Applied Optics*, **27**, 2216-2227.
- SANTER, R., CARRÈRE, V., DUBUISSON, P and ROGER, J. C. 1999. Atmospheric corrections over land for MERIS. *International Journal of Remote Sensing*, **20** (9), 1819-1840.
- SANTER, R., and ZAGOLSKI, F., 2010. Extraction of the blue aerosols with an approach combining the micro-physical properties of these small particles and their inherent optical properties derived from CIMEL sun/sky radiance measurements, MERIS Technical Note PO-TN-PAR-GS-0004 1 BLUE_AEROSOLS.

- SHETTLE, E.P. and R.W. FENN, 1979. Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. *Environmental Research Papers, AFGL-TR-79-0214*, 20 September 1979, AFGL, Hanscom (Mass.).
- SIEGEL, H., GERTH, M., OHDE, T. and HEENE, T. 2005. Ocean colour remote sensing relevant water constituents and optical properties of the Baltic Sea. *International Journal of Remote Sensing* 26(2): 315-330
- TASSAN, S. and FERRARI, G. M. 1995. An alternative approach to absorption measurements of aquatic particles retained on filters, *Limnol. Oceanogr.* 40: 1358-1368, 1995.
- THUILLIER, G., HERSÉ, M., LABS, D., FOUJOLS, T., PEETERMAN, W., GILLOTAY, D., SIMON, P. C. and MANDEL, H. 2003. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. *Solar Physics*, 214: 1-22.
- VERMONTE, E., TANRÉ, D., DEUZÉ, J. L., HERMAN, M. and MORCETTE, J. J. 1997. Second simulation of the satellite signal in the solar spectrum, 6S: an overview. *I.E.E.E. Transactions on Geoscience and Remote Sensing*, **35** (3), 675-687.
- WALRAFEN, G.E., 1967. Raman studies of the effect of temperature on water structure, *Journal of Physical Chemistry*, **47**: 114-126.
- WORLD CLIMATE RESEARCH PROGRAM, 1986. A preliminary cloudless standard atmosphere for radiation computation, *Int. Ass. for Meteor. and Atm. Phys.*, Radiation Commission, March 1986, WCP-112, WMO/TD-N° 24.

2.2 ABBREVIATIONS AND DEFINITIONS

AOP	Apparent Optical Property
AOT	Aerosol Optical Thickness
AU	Astronomical Unit
ATBD	Algorithm Theoretical Basis Document
BOA	Bottom Of the Atmosphere
BPAC	Bright Pixel Atmospheric Correction
CDOM	Coloured Dissolved Organic Matter
FUB	Freie Universität Berlin (Berlin, Germany)
GS	Ground-Segment
IOP	Inherent Optical Property
LBL	Line-By-Line code to compute the gaseous absorption coefficients
LUT	Look-Up Table
MERIS	MEdium Resolution Imaging Spectrometer (<u>http://envisat.esa.int/instruments/meris/</u>)
MOMO	Matrix-Operator MethOd code (RTC/FUB)
NN	Neural Network tool
NIR	Near-InfraRed part of the solar spectrum
QWG	Quality Working Group
RH	Relative Humidity (expressed as percent)
RTC	Radiative Transfer Code
SAM	Standard Aerosol Model
SO	Successive Orders of the scattering code (RTC/LISE)
SPM	Suspended Particulate Matter
STP	Standard Temperature and Pressure ($T_0=273.5 \text{ K}; P_0=1013.25 \text{ hPa}$)
TBD	To Be Defined
TGRD	Table Generation Requirements Document
TOA	Top Of the Atmosphere
TSM	Total Suspended Matter
VIS	Visible part of the solar spectrum
VSF	Volume Scattering Function
WCRP	World Climate Research Programme

Case 2(S) water: Case 2 water dominated by SPM (see ATBD: PO-TN-MEL-GS-0005)

Case 2(Y) water: Case 2 water dominated by yellow substances (see ATBD: PO-TN-MEL-GS-0005)

2.3 NOTATIONS AND CONVENTIONS

The Geometry notations and conventions in this document are recalled here. In a Cartesian frame linked to the Earth ellipsoid at a given point, the directions of the Sun and of the observer are represented in Figure 2-1 below.

Equations in this document are numbered. The number sequence does *not* reflect a model or algorithm logic.

Figure 2-1: Geometry notations (see table of symbols)

2.4 TABLE OF SYMBOLS

Symbol	Definition	Dimension / units
Geometry (see fig. 2	2.1)	
λ	Wavelength	nm
$ heta_{ m S}$	Solar zenith angle ($\mu_{\rm S} = \cos(\theta_{\rm S})$)	degrees
$ heta_{ m V}, heta$	Satellite or view zenith angle $(\mu_V = \cos(\theta_V))$	degrees
heta '	Refracted view zenith angle (θ = sin ⁻¹ (n.sin(θ _V)))	degrees
$arDelta \phi$	Relative azimuth angle between the sun-pixel and	
	pixel-sensor directions	degrees
Ψ	Scattering angle (not represented)	degrees
Radiometric quanti	ties	
$L(\lambda, \theta_{\rm S}, \theta_{\rm V}, \Delta \phi)$	Spectral radiance	W m ⁻² sr ⁻¹ nm ⁻¹
Inherent Optical Pr	roperties (IOPs)	
$eta(heta,\lambda)$	Volume scattering function (VSF)	sr ⁻¹
$\widetilde{oldsymbol{eta}}(heta)$	Normalised volume scattering function	sr-1 m-1
$a(\lambda)$	Absorption coefficient	m ⁻¹
$b(\lambda)$	Scattering coefficient	m ⁻¹
$c(\lambda)$	Attenuation coefficient for wavelength λ	m ⁻¹
$b_b(\lambda)$	Backscattering coefficient	m ⁻¹
Apparent Optical P	roperties (AOPs) and derived quantities	
$\rho_{w}(\lambda, \theta_{\mathrm{S}}, \theta_{\mathrm{V}}, \Delta \phi)$	Reflectance	dimensionless
$ \rho_{wn}(\lambda) $	Normalised water reflectance (i.e. the reflectance	
	if there were no atmosphere, and for $\theta_{\rm S} = \theta_{\rm V} = 0$)	dimensionless
$E_{u}(\lambda)$	Upwelling irradiance	W m ⁻² nm ⁻¹
$E_{d}(\lambda)$	Downwelling irradiance	W m ⁻² nm ⁻¹
$E_s(\lambda)$	Total downwelling irradiance just above the sea surface,	W m ⁻² nm ⁻¹
	denoted also as $Ed(0+)$.	
$R(\lambda, 0^{-})$	Diffuse reflectance at null depth, or irradiance reflectance	dimensionless
	(E_u / E_d)	
$F_0(\lambda)$	Mean extraterrestrial spectral irradiance	W m ⁻² nm ⁻¹
f	Ratio of $R(0^{-})$ to (b_b/a) ; subscript 0 when $\theta_s = 0$	dimensionless
f	Ratio of $R(0^{-})$ to $(b_b/(a + b_b))$; subscript 0 when $\theta_s = 0$	dimensionless
$Q(\lambda, \theta_{\rm S}, \theta_{\rm V}, \Delta \phi)$	Factor describing the bidirectionality character of	sr-1
	$R(\lambda, 0^{-})$ Subscript 0 when $\theta_{\rm S} = \theta_{\rm V} = 0$; $\rm Q = E_u/L_u$	

Other atmosphere and aerosol properties

$f_a(\lambda)$	Aerosol forward scattering proportion (section 15)	dimensionless
$ au_{a}(\lambda)$	Aerosol optical thickness	dimensionless
$ au_{\mathbf{r}}(\lambda)$	Rayleigh (or molecular) optical thickness	dimensionless
$\varpi_{a}(\lambda)$	Aerosol single scattering albedo	dimensionless
$\overline{\varpi}_{\Gamma}(\lambda)$	Rayleigh or molecular single scattering albedo	dimensionless
V	Exponent from the Junge's law used to describe the	
	vertical distribution of particle (aerosol) size.	dimensionless
$t_d(\lambda, \theta_s)$	RH Relative humidity Total downwelling transmittance at sea surface level	percent dimensionless
	$t_d(\lambda, \theta_s) = E_d(0^+) / (\mu_s \varepsilon_c F_0)$, where $E_d(0^+)$ is the downwelling irradiance just above the sea surface	
Geophysical properti	es	
chl	Chlorophyll concentration	mg m ⁻³
TSM	Total Suspended Matter concentration	g m ⁻³
YS	Yellow Substance absorption coefficient	m ⁻¹
Air-water interface		
$\Re(heta')$	Geometrical factor, accounting for multiple reflections and	dimensionless
	refractions at the air-sea interface (Morel and Gentilli, 1996;	
	defined further in Section 5.1.2)	
n	refractive index of sea water	dimensionless
$ \rho_{\mathrm{F}}(\theta) $	Fresnel reflectance at the air-sea interface for the scattering angle θ	dimensionless
$\overline{ ho}$	mean reflection coefficient for the downwelling irradiance at the	
	sea surface	dimensionless
\overline{r}	average reflection for upwelling irradiance at the air-water interface	dimensionless
σ	Root-mean square of wave facet slopes	dimensionless
eta	Angle between the local normal and the normal to a wave facet	
р	probability density function of facet slopes for the illumination and viewing configurations ($\theta_{\rm S}$, $\theta_{\rm V}$, $\Delta \phi$)	dimensionless
Miscellaneous		,
W .	wind-speed just above sea level	m/s
In	Natural (or Neperian) logarithm	
\log_{10}	Decimal logarithm	

3. MERIS Spectral bands and refractive index of seawater

3.1 MERIS SPECTRAL BANDS

The following MERIS spectral bands are considered in this document:

Band number	Wavelength (nm)	Width (nm)
1	412.5	10
2	442.5	10
3	490.0	10
4	510.0	10
5	560.0	10
6	620.0	10
7	665.0	10
8	681.25	7.5
9	708.75	10
10	753.75	7.5
11	761.875	3.75
12	778.75	15
13	865.0	20
14	885.0	10
15	900.0	10

Table 3-1: MERIS Spectral bands

<u>NOTE</u>: Due to the programmable spectral mode of the MERIS sensor and the optimisation of the processing, this list of 15 bands may evolve in the future.

3.2 REFRACTIVE INDEX OF SEAWATER

The refractive index of sea water and fresh water shall be taken from Table 3-2. Values are extracted from Mobley's database (Mobley, 1994) and extrapolated to the MERIS wavelengths, for a standard surface pressure of 1013 hPa, a sea water salinity of 35 psu (and 0 psu for freshwater). Values have been computed at 12 °C. However, because of the small spectral variation of the refractive index of sea water between the MERIS spectral bands, a mean refractive index (at 15 °C) of 1.34 was used for generating atmospheric correction LUT's over the ocean.

Table 3-2: Refractive	Index of sea water	(35 psu) and for	· freshwater (0 psu).
	much of sea mater	(00 psu) and 101	in convator (o pou)

Band	λ (nm)	35 psu	0 psu
1	412.5	1.349	1.342
2	442.5	1.347	1.340
3	490.0	1.345	1.338
4	510.0	1.344	1.337
5	560.0	1.341	1.335
6	620.0	1.339	1.333
7	665.0	1.338	1.331
8	681.25	1.337	1.331
9	708.75	1.337	1.330
12	778.75	1.335	1.329
13	865.0	1.334	1.327
14	885.0	1.333	1.327

4. Water Optical Properties and water constituents

At a given λ , the optical properties described below apply to Case 1 and Case 2 ocean waters (tentatively to inland waters). Water optical properties shall be computed at least for the following MERIS bands:

1, 2, 3, 4, 5, 6, 7, 9, 12, 13 for algorithms which include the atmospheric correction; 1, 2, 3, 4, 5, 6, 7, 9 for algorithms based on the water-leaving radiance, L_w , (or water reflectance, ρ_w).

4.1 **REMOTELY SENSED LAYER**

The geometrical thickness of the vertical water layer from which 90% of the remotely sensed ocean colour signal emerges [denoted $Z_{90}(\lambda)$; m] can be approximated by Gordon and McCluney (1975):

$$Z_{90}(\lambda) = 1/K_d(\lambda)$$
 Equation 1

where $K_d(\lambda)$ (m⁻¹) is the vertical attenuation coefficient for downward irradiance. Here, we assume that, whatever the wavelength (λ),

$$z >> Z_{90}(\lambda)$$
 Equation 2

where z (m) is the geometrical thickness of the water column. In other words, bottom effect is not accounted for in the present model.

4.2 WATER CONSTITUENTS

4.2.1 OVERVIEW

This section presents the concepts and terminology used through the discussion and specification of the water optical properties models.

The apparent optical properties of sea waters can be determined according to the inherent optical properties (absorption and scattering) of 5 groups of substances (cf. Figure 4-1):

- 1. pure sea water, denoted "w"
- 2. phytoplankton and other associated particles (detritus, bacteria, ...), denoted " p_1 "
- 3. endogenous coloured dissolved organic matter (associated with biological activity), denoted " y_l "
- 4. terrestrial (exogenous) particles (sediment resuspended from the bottom, brought by rivers), denoted " p_2 "
- 5. exogenous coloured dissolved organic matter from land drainage (present in Case 2 waters only), denoted " y_2 ".

While only groups 1, 2 and 3 are present in Case 1 waters, all of them (1 to 5 above) co-exist in Case 2 waters. In this case, however, the individual components y_1 and y_2 cannot be practically separated (a measure of CDOM absorption provides the sum $y_1 + y_2$). IOPs of groups 2, 3, 4 and 5 are related to the following "concentrations":

- 1. p_1 and y_1 IOPs will be a function of the concentration of chlorophyll-a (including the divinyl form and pheopigments) denoted "[*chl*]" and with units as mg m⁻³
- 2. p_2 IOPs will be ideally related to the sea water particles dry weight (denoted "TSM" and with units as g m⁻³) from which the contribution of p_1 has been subtracted; practically it is related to the corresponding scattering coefficient (units m⁻¹).
- 3. y_2 IOPs will be a function of the CDOM concentration as determined by its absorption coefficient at 443 nm, denoted indifferently " $a_{y2}(443)$ " or CDOM and with units as m⁻¹ (i.e. the total measured CDOM absorption from which a_{vI} has been subtracted).

Figure 4-1: Schematic representation of IOP compartments.

Comments on Figure 4-1

Case 2 waters are seen as Case 1 waters to which other optically active substances are added. In other words, Case 1 waters can be seen as particular Case 2 waters when these additional substances are lacking.

Case 1 waters include 3 components:

- pure sea water for which 2 spectral IOPs must be specified: $a_w(\lambda)$ and $\tilde{\beta}_{w}(\theta)$.
- all particulate matter found in open ocean, such as living algal cells, heterotrophic bacteria and organisms, various debris, ... Again, this compartment is described by its absorption and scattering properties: $a_{pl}(\lambda)$,

 $b_{pl}(\lambda)$ and $\beta_{n1}(\theta)$

- coloured dissolved organic material presumably generated in open ocean (through processes like excretion, organism decay, ...), and likely related to the particulate matter abundance. This compartment comes into play through its absorption coefficient $a_{vl}(\lambda)$

In summary, there are 3 components in forming the absorption coefficient of Case 1 waters and 2 components in forming the scattering properties.

Case 2 waters include the three above components and in addition:

- exogenous particles, mainly sediment, either transported by rivers, or resuspended from the bottom in shallow waters. The proportions between organic and mineral particles is varying according to the location and origin; the mineral particles are also geographically differing (clay, calcareous, ...). Therefore, several types of particles may be simultaneously present, and to each type corresponds a couple of properties like $a_{p2}(\lambda)$ and $\beta_{p2}(\theta)$.
- exogenous CDOM resulting from land drainage which acts only as absorber: $a_{v2}(\lambda)$. As for particles, it is likely that several types may be distinguished depending on the location.

4.2.2 RELATIONSHIP WITH MERIS LEVEL 2 PRODUCTS

The way the IOPs presented above will be practically related to the MERIS Level 2 products is explained separately for Case 1 and Case 2 waters in Sections 4.5 and 4.6 below, respectively.

To summarise:

- The Algal Pigment Index 1 product corresponds to p_1 (and take y_1 into account), in Case 1 waters.
- The Algal Pigment Index 2 product corresponds to the absorption of p_1 .
- The Total Suspended Matter product corresponds to the aggregate scattering of p_1 and p_{2} .
- The Yellow Substance product corresponds to the aggregate absorption of p_2 , y_1 and y_2 .

4.3 VERTICAL DISTRIBUTION

It is assumed that all substances are homogeneously distributed in the upper part of the water column. For many coastal waters, this is a realistic assumption, especially when considering the $Z_{90}(\lambda)$ layer; this may be false for river plumes, where very strong vertical gradients associated with fresh water spreading may be observed.

4.4 INHERENT OPTICAL PROPERTIES (IOPS) OF PURE SEA WATER

These IOPs are involved in both Case 1 and Case 2 waters and include absorption, scattering, and emission (Raman) properties.

4.4.1 ABSORPTION COEFFICIENT

The absorption coefficients of pure water, (a_w) , are taken from Pope and Fry (1997) for wavelengths up to 682 nm, i.e. up to and including MERIS band 8 (Table 4-1). For band 9 the combined values of Kou *et al.* (1993) and Pope and Fry (1997) are used to ensure consistency of NIR with higher wavelength NIR bands. Values above 709nm are taken from Kou *et al.* (1993). The combined values of Kou *et al.* (1993) and Pope and Fry (1997) are given in Table 4-2, where they have been linearly interpolated onto a 1 nm scale. The values from Pope and Fry (1997) are measured at 2.5 nm intervals and those from Kou *et al.* (1993) at approximately 1.2 nm intervals (20 cm⁻¹). The pure water values are measured at temperature of 22 °C, and appropriate corrections are needed for temperature and salinity when calculations are applied to pure seawater in the NIR region. These corrections are *not* applied for the third MERIS reprocessing, but are intended for inclusion in the next reprocessing.

λ(nm)	$a_{w}(m^{-1})$	Percent	λ(nm)	$a_{w}(m^{-1})$	Percent
380.0	0.01137	14.0	500.0	0.02040	6.0
382.5	0.01044	15.0	502.5	0.02280	6.0
385.0	0.00941	13.0	505.0	0.02560	6.0
387.5	0.00917	16.0	507.5	0.02800	5.0
390.0	0.00851	15.0	510.0	0.03250	4.0
392.5	0.00829	14.0	512.5	0.03720	4.0
395.0	0.00813	13.0	515.0	0.03960	4.0
397.5	0.00775	15.0	517.5	0.03990	5.0
400.0	0.00663	11.0	520.0	0.04090	3.0
402.5	0.00579	12.0	522.5	0.04160	4.0
405.0	0.00530	14.0	525.0	0.04170	4.0
407.5	0.00503	13.0	527.5	0.04280	5.0
410.0	0.00473	13.0	530.0	0.04340	4.0
412.5	0.00452	13.0	532.5	0.04470	5.0
415.0	0.00444	13.0	535.0	0.04520	4.0
417.5	0.00442	14.0	537.5	0.04660	4.0
420.0	0.00454	14.0	540.0	0.04740	3.0
422.5	0.00474	13.0	542.5	0.04890	4.0
425.0	0.00478	14.0	545.0	0.05110	3.0
427.5	0.00482	13.0	547.5	0.05370	4.0
430.0	0.00495	12.0	550.0	0.05650	3.0
432.5	0.00504	11.0	552.5	0.05930	3.0

Table 4-1: Absorption coefficient of pure water, $a_w(l)$, from Pope and Fry (1997). Percent denotes the
combined uncertainty from the authors.

Table 4-1: Continued						
435.0	0.00530	11.0	555.0	0.05960	3.0	
437.5	0.00580	10.0	557.5	0.06060	4.0	
440.0	0.00635	9.0	560.0	0.06190	3.0	
442.5	0.00696	9.0	562.5	0.06400	4.0	
445.0	0.00751	8.0	565.0	0.06420	3.0	
447.5	0.00830	7.0	567.5	0.06720	3.0	
450.0	0.00922	6.0	570.0	0.06950	3.0	
452.5	0.00969	6.0	572.5	0.07330	4.0	
455.0	0.00962	5.0	575.0	0.07720	3.0	
457.5	0.00957	5.0	577.5	0.08360	3.0	
460.0	0.00979	6.0	580.0	0.08960	3.0	
462.5	0.01005	6.0	582.5	0.09890	3.0	
465.0	0.01011	7.0	585.0	0.11000	3.0	
467.5	0.01020	6.0	587.5	0.12200	3.0	
470.0	0.01060	6.0	590.0	0.13510	3.0	
472.5	0.01090	8.0	592.5	0.15160	3.0	
475.0	0.01140	7.0	595.0	0.16720	3.0	
477.5	0.01210	8.0	597.5	0.19250	3.0	
480.0	0.01270	7.0	600.0	0.22240	3.0	
482.5	0.01310	7.0	602.5	0.24700	3.0	
485.0	0.01360	6.0	605.0	0.25770	3.0	
487.5	0.01440	6.0	607.5	0.26290	3.0	
490.0	0.01500	5.0	610.0	0.26440	3.0	
492.5	0.01620	9.0	612.5	0.26650	3.0	
495.0	0.01730	6.0	615.0	0.26780	3.0	
497.5	0.01910	8.0	617.5	0.27070	3.0	

Table 4-2: Absorption coefficient of pure water, from Pope and Fry (1997) combined with that of Kou *et al.* (1993) where a_w , is computed as $4\pi k/l$, with l in meters. Percent denotes the combined uncertainty from the authors.

λ(nm)	$a_{w}(m^{-1})$	Percent	λ(nm)	$a_{w}(m^{-1})$	Percent
600	0.22240	3.0	650	0.34000	3.0
601	0.23329	3.0	651	0.34650	3.0
602	0.24305	3.0	652	0.35451	3.0
603	0.25012	3.0	653	0.36078	3.0
604	0.25448	3.0	654	0.36539	3.0
605	0.25770	3.0	655	0.37100	3.0
606	0.26035	3.0	656	0.37939	3.0
607	0.26218	3.0	657	0.38878	3.0
608	0.26343	3.0	658	0.39677	3.0
609	0.26393	3.0	659	0.40366	3.0
610	0.26440	3.0	660	0.41000	3.0
611	0.26524	3.0	661	0.41625	3.0
612	0.26612	3.0	662	0.42182	3.0
613	0.26679	3.0	663	0.42554	3.0
614	0.26720	3.0	664	0.42729	3.0
615	0.26780	3.0	665	0.42900	3.0
616	0.26875	3.0	666	0.43185	3.0
617	0.26997	3.0	667	0.43482	3.0
618	0.27153	3.0	668	0.43725	3.2
619	0.27344	3.0	669	0.43867	3.4
620	0.27550	3.0	670	0.44076	3.6
621	0.27780	3.0	671	0.44479	3.7
622	0.28009	3.0	672	0.44919	3.9
623	0.28160	3.0	673	0.45136	4.0
624	0.28226	3.0	674	0.45147	4.1
625	0.28340	3.0	675	0.45309	4.2
626	0.28615	3.0	676	0.45782	4.3
627	0.28930	3.0	677	0.46401	4.4
628	0.29090	3.0	678	0.46751	4.4
629	0.29092	3.0	679	0.46976	4.5
630	0.29160	3.0	680	0.47253	4.6
631	0.29458	3.0	681	0.47758	4.7
632	0.29821	3.0	682	0.48239	4.9
633	0.30016	3.0	683	0.48710	4.8
634	0.30047	3.0	684	0.49100	5.0
635	0.30120	3.0	685	0.49554	5.0
636	0.30362	3.0	686	0.50105	5.0
637	0.30654	3.0	687	0.50799	4.9
638	0.30841	3.0	688	0.51459	5.0
639	0.30914	3.0	689	0.52027	5.0
640	0.31080	3.0	690	0.52754	5.0
641	0.31509	3.0	691	0.53750	5.1
642	0.32016	3.0	692	0.54751	4.9
643	0.32301	3.0	693	0.55654	5.0
644	0.32369	3.0	694	0.56627	4.9
645	0.32500	3.0	695	0.57710	4.9
646	0.32874	3.0	696	0.58944	4.8
647	0.33321	3.0	697	0.60279	4.7
648	0.33611	3.0	698	0.61693	4.9
649	0.33730	3.0	699	0.63072	4.6

λ (nm)	$a (m^{-1})$	Percent	$\lambda(nm)$	$a (m^{-1})$	Percent
700	0.64540	4 5	750	2,85331	1 4
700	0.64111	4.5	751	2.85551	1.4
701	0.67804	4.0	752	2.80133	1.4
702	0.07804	4.5	752	2.03047	1.3
703	0.09308	4.3	757	2.07041	1.4
704	0.71421	4.4	755	2.80011	1.4
705	0.75210	4.4	755	2.87010	1.3
706	0.75239	4.4	/50	2.87023	1.3
707	0.77304	4.2	759	2.8/184	1.3
708	0.79680	4.1	/58	2.80803	1.3
709	0.82328	4.1	759	2.80383	1.4
710	0.83043	4.0	760	2.8014/	1.3
/11	0.88298	4.0	/61	2.8/326	1.4
/12	0.91417	3.8	/62	2.86970	1.3
/13	0.95116	3.7	/63	2.865/3	1.3
/14	0.98900	3.6	/64	2.86197	1.3
715	1.02991	3.4	765	2.85906	1.3
716	1.0/551	3.4	766	2.85116	1.3
717	1.11880	3.3	767	2.83386	1.2
718	1.16501	3.2	768	2.83071	1.3
719	1.21627	3.1	769	2.82702	1.4
720	1.26652	2.9	770	2.82456	1.3
721	1.31808	2.9	771	2.81256	1.3
722	1.37438	2.8	772	2.79373	1.3
723	1.43092	2.7	773	2.77913	1.3
724	1.48762	2.6	774	2.77629	1.4
725	1.54773	2.5	775	2.75845	1.3
726	1.61257	2.4	776	2.75354	1.4
727	1.69050	2.5	777	2.74233	1.4
728	1.77644	2.4	778	2.72433	1.4
729	1.85493	2.5	779	2.70754	1.3
730	1.97385	2.3	780	2.69049	1.4
731	2.08007	2.2	781	2.66158	1.4
732	2.18600	2.1	782	2.64123	1.5
733	2.30218	2.0	783	2.62508	1.5
734	2.42636	1.7	784	2.60909	1.5
735	2.50845	1.7	785	2.59189	1.5
736	2.58251	1.6	786	2.56239	1.4
737	2.64692	1.5	787	2.53203	1.5
738	2.70610	1.4	788	2.51188	1.5
739	2.75339	1.4	789	2.49212	1.5
740	2.78132	1.5	790	2.46361	1.5
741	2.80403	1.4	791	2.44892	1.6
742	2.81442	1.5	792	2.42220	1.5
743	2.82607	1.4	793	2.39243	1.5
744	2.83757	1.4	794	2.36846	1.6
745	2.83287	1.4	795	2.35411	1.6
746	2.84299	1.4	796	2.33868	1.7
747	2.84247	1.3	797	2.32448	1.7
748	2.84854	1.4	798	2.30231	1.7
749	2.85249	1.4	799	2 27308	17

ble 4-2: Cont	inued	-	• • •	1	-
λ(nm)	$a_w(\mathbf{m}^{-1})$	Percent	λ(nm)	$a_w(\mathbf{m}^{-1})$	Percent
800	2.24624	1.6	850	4.19789	1.1
801	2.24388	1.7	851	4.20351	1.1
802	2.23274	1.7	852	4.22543	1.0
803	2.21638	1.7	853	4.26296	1.0
804	2.20312	1.7	854	4.29016	1.0
805	2.20097	1.7	855	4.31793	1.0
806	2.19948	1.7	856	4.35468	1.1
807	2.18857	1.7	857	4.37120	1.0
808	2.17855	1.7	858	4.39207	1.0
809	2.18975	1.7	859	4.42876	1.0
810	2.18681	1.7	860	4.45472	1.0
811	2.19116	1.7	861	4.47775	1.0
812	2.20123	1.7	862	4.50133	1.0
813	2.21023	1.7	863	4.53366	1.0
814	2.21810	1.7	864	4.56791	1.0
815	2.23486	1.7	865	4.60137	1.0
816	2.25625	1.7	866	4.63476	1.0
817	2.27656	1.6	867	4.66806	1.0
818	2.29676	1.6	868	4.70129	1.0
819	2.31496	1.6	869	4.73236	1.0
820	2.34218	1.6	870	4.77352	1.0
821	2.38694	1.6	871	4.82781	1.0
822	2.42825	1.7	872	4.87160	1.0
823	2.47588	1.7	873	4.91275	1.0
824	2.53536	1.7	874	4.95499	1.0
825	2.61217	1.8	875	5.01166	1.0
826	2.71748	1.8	876	5.06478	1.0
827	2.82486	1.8	877	5.10457	1.0
828	2.93831	1.7	878	5.16173	1.0
829	3.08026	1.7	879	5.22291	1.0
830	3.22208	1.7	880	5.27880	1.0
831	3.35180	1.5	881	5.33915	1.0
832	3.46488	1.4	882	5.39711	1.0
833	3.57271	1.3	883	5.44204	1.1
834	3.65559	1.3	884	5.49960	1.1
835	3.72123	1.2	885	5.56612	1.0
836	3.78077	1.1	886	5.62673	1.0
837	3.83235	1.1	887	5.68424	1.0
838	3.87605	1.1	888	5.73926	1.0
839	3.91190	1.1	889	5.79463	1.0
840	3.93804	1.0	890	5.84989	1.0
841	3.97268	1.0	891	5.90503	1.0
842	4.00851	1.0	892	5.96005	1.0
843	4.03446	1.1	893	6.01494	1.0
844	4.06097	1.1	894	6.06970	1.0
845	4.08745	1.1	895	6.12435	1.0
846	4.11378	1.0	896	6.17887	0.9
847	4.13889	1.0	897	6.23328	0.9
848	4.17315	1.0	898	6.28736	0.9
849	4.20536	1.0	899	6.34086	0.9

4.4.2 WATER ABSORBANCE: BAND INTEGRATED VALUES

These are the current harmonic means that have been derived by merging Pope and Fry (1997) and Kou *et al.* (1993). The RMD has been updated with these.

Table 4-3 shows the change with wavelength is together with the percentage effect for consideration for future smile effect corrections.

Table 4-3: the band integrated values for water absorption at 22°C. The rate of change with wavelength is
shown for future smile effect corrections.

Band	λ(nm)	Width	<i>a_w</i> (22°C)	da _w /dλ	%/nm
1	412.500	10.00	0.00460	-0.000055	-1.19
2	442.500	10.00	0.00688	0.000250	3.63
3	490.000	10.00	0.01518	0.000366	2.41
4	510.000	10.00	0.03185	0.001358	4.26
5	560.000	10.00	0.06202	0.000467	0.75
6	620.000	10.00	0.27554	0.001565	0.57
7	665.000	10.00	0.42828	0.003327	0.78
8	681.250	7.50	0.47929	0.004006	0.84
9	708.750	10.00	0.81911	0.026110	3.19
10	753.750	7.50	2.86712	0.001879	0.07
11	761.875	3.75	2.86710	0.000335	0.01
12	778.750	15.00	2.69492	-0.017334	-0.64
13	865.000	20.00	4.61577	0.034267	0.74
14	885.000	10.00	5.55930	0.057044	1.03
15	900.000	10.00	6.40580	0.059348	0.93

In Table 4-4 are the current temperature coefficients.

Table 4-4: temperature dependence of the water absorption for bands 7-15. The temperature effects at
wavelengths below 665 nm are not significant.

Band	λ(nm)	da _w =/dT	a_w (T=5)	$a_w(T=15)$	%Change
7	665.000	0.00017	0.4254	0.4271	-0.40
8	681.250	0.00015	0.4767	0.4782	-0.32
9	708.750	0.00180	0.7885	0.8065	-2.24
10	753.750	0.00894	2.7153	2.8047	-3.19
11	760.625	0.00568	2.7705	2.8273	-2.01
12	778.750	0.00055	2.6857	2.6912	-0.20
13	865.000	0.00394	4.5489	4.5883	-0.86
14	885.000	-0.00488	5.6423	5.5935	0.87
15	900.000	0.00049	6.3975	6.4024	-0.08

Equation 3

4.4.3 NORMALISED VSF, TOTAL SCATTERING AND BACKSCATTERING COEFFICIENTS

The normalised volume scattering function of pure sea water is that published by Morel (1966, 1974), which can be expressed as:

$$\widetilde{\beta}_{w}(\theta) = \frac{3}{4\pi(3+p)}(1+p\cos^{2}\theta)$$

where the parameter p (polarisation factor at 90°) equals 0.84.

The backscattering probability corresponding to this normalised VSF is

$$\widetilde{b}_{bw} = \frac{1}{2}$$
 Equation 4

The total scattering coefficient for sea water (in the salinity range 35-38 psu), $b_w(\lambda)$, is determined from Morel (1974):

$$b_w(\lambda) = 0.00288 \cdot \left(\frac{\lambda}{500}\right)^{-4.32}$$
 Equation 5

Note that for fresh water it is

$$b_w(\lambda) = 0.00222 \cdot \left(\frac{\lambda}{500}\right)^{-4.32}$$
 Equation 6

Also note, the variation of b_w with salinity is roughly a linear function of salinity.

4.4.4 Emission

See Section 4.5.4.1

4.5 CASE 1 WATERS IOPS

4.5.1 TOTAL ABSORPTION COEFFICIENT (PURE SEA WATER AND PHYTOPLANKTON¹)

Here, the analytical approach suggested by Figure 4-1, and which consists of explicitly modelling a_1 as the sum $[a_w + a_{pI} + a_{yI}]$ is not used, by lack of knowledge of a stable relationship (if any) between [chl] and the associated endogenous yellow substance. The indirect approach used here relies on the consideration of $K_d(\lambda)$. Indeed, this coefficient merges the influences of all absorbing substances, without discriminating their separate

¹ Here, "phytoplankton" means the living algal cells as well as all other particulate or dissolved matter found in open ocean, such as heterotrophic bacteria and organisms, various debris, yellow substances etc. (see comments on Figure 4-1).

contributions. Therefore a_l is globally determined as a function of [chl] as described in Morel and Maritorena (2000):

$$a_1(\lambda) = K_d(\lambda)u(\lambda)$$
 Equation 7

where $K_d(\lambda)$ is given as a function of [chl]:

$$K_{d}(\lambda) = K_{w}(\lambda) + \chi(\lambda)[chl]^{e(\lambda)}$$
 Equation 8

Values for K_w are given in Table 4-5 below.

The factor u is determined by iterations as described in Morel (1988) and Morel and Maritorena (2000). This scheme consists of introducing of $b_b(\lambda)$ in the following equation:

$$R(\lambda) = f(\lambda) \frac{b_b(\lambda)}{a_1(\lambda)}$$
 Equation 9

where R is the irradiance reflectance (E_u/E_d) , and $b_b = b_{bw} + b_{bp1}$. The coefficient b_{bw} is calculated according to Equation 4 and Equation 5 above, and b_{bp1} according to Equation 19 below (§4.5.2.2). Then $a_1(\lambda)$ is replaced by $u_1 K_d(\lambda)$, with $u_1=0.75$, whatever the wavelength and f is set to 0.33. A first set of $R(\lambda)$ values is thus derived. Then, an exact relationship (derived from the Gershun's equation), namely:

$$a_{1} = K_{d} \ \mu_{d} \left[1 + R\left(\frac{\mu_{d}}{\mu_{u}}\right)\right]^{-1} \left[1 - R + (K_{d})^{-1}\left(\frac{dR}{dZ}\right)\right]$$
 Equation 10

is operated by letting μ_u equal to 0.42, by interpolating μ_d from the values given in table 4.5.1-2 below as a function of the chlorophyll concentration and wavelength, and by neglecting dR/dZ, which results in:

$$a_1(\lambda) = K_d(\lambda) \,\mu_d \left[1 + R(\lambda) \left(\frac{\mu_d}{0.42}\right)\right]^{-1} \left[1 - R(\lambda)\right]$$
Equation 11

or

$$a_1(\lambda) = K_d(\lambda) \mu_2(\lambda)$$
 Equation 12

The first set of $R(\lambda)$ values is used to produce the spectrally varying $u_2(\lambda)$ values through Equation 11 and a new set of $a_1(\lambda)$ values through Equation 12. The value of a_1 shall be constrained to be higher than or equal to $a_w(\lambda)$ (from §4.4.1). With these adjusted $a_1(\lambda)$ values, through a second loop using Eq. (10), a more accurate set of $R(\lambda)$ values is derived, and so forth. Stable $R(\lambda)$ values (then stable $a_1(\lambda)$ values) are obtained within three loops in this iterative process. The final $a_1(\lambda)$ values are given in Table 4-7.

Table 4-5: K_w , x and e values. Values are reproduced from Morel and Maritorena (2000), a	nd from Morel
and Antoine (1994). Above 775nm, only $a(\lambda)$ is specified (unit: m ⁻¹).	

λ	Kw	е	γ	λ	Kw	е	γ	λ	a(λ)
350	0.0271	0.6523	0.19031	530	0.04454	0.55863	0.06402	775	2.40
355	0.0238	0.65786	0.1809	535	0.0463	0.55144	0.06301	800	1.96
360	0.0216	0.65298	0.1731	540	0.04846	0.54385	0.06227	825	2.77
365	0.0188	0.653	0.1669	545	0.05212	0.5332	0.0603	850	4.33
370	0.0177	0.6534	0.16131	550	0.05746	0.53029	0.05711	875	5.61
375	0.0159	0.6595	0.15625	555	0.06053	0.525	0.0561	900	6.78
380	0.0151	0.66268	0.15132	560	0.0628	0.52	0.0555		
385	0.01376	0.6651	0.146	565	0.06507	0.515	0.0551		
390	0.01271	0.661	0.142	570	0.07034	0.505	0.0545		
395	0.01208	0.642	0.138	575	0.07801	0.501	0.0542		
400	0.01042	0.638	0.134	580	0.09038	0.501	0.0535		
405	0.0089	0.628	0.1333	585	0.11076	0.502	0.0525		
410	0.00812	0.628	0.1347	590	0.13584	0.502	0.0522		
415	0.00765	0.631	0.1346	595	0.16792	0.502	0.0521		
420	0.00758	0.63424	0.13223	600	0.2331	0.495	0.0522		
425	0.00768	0.6378	0.12961	605	0.25838	0.491	0.0525		
430	0.00771	0.63656	0.12728	610	0.26506	0.489	0.05228		
435	0.00792	0.63739	0.12485	615	0.26843	0.482	0.0538		
440	0.00885	0.64339	0.12065	620	0.27612	0.481	0.0555		
445	0.0099	0.645	0.1157	625	0.28401	0.48	0.056		
450	0.01148	0.64317	0.1103	630	0.29218	0.483	0.057		
455	0.01182	0.637	0.1068	635	0.30176	0.488	0.0585		
460	0.01188	0.6345	0.10384	640	0.31134	0.49	0.0598		
465	0.01211	0.6394	0.1005	645	0.32553	0.501	0.0605		
470	0.01251	0.63255	0.09704	650	0.34052	0.505	0.062		
475	0.0132	0.62869	0.09333	655	0.3715	0.508	0.0615		
480	0.01444	0.63262	0.0891	660	0.41048	0.51	0.064		
485	0.01526	0.62689	0.08618	665	0.42947	0.513	0.0675		
490	0.0166	0.625	0.08323	670	0.43946	0.51	0.0705		
495	0.01885	0.62364	0.08028	675	0.44844	0.495	0.0735		
500	0.02188	0.62459	0.07742	680	0.46543	0.465	0.074		
505	0.02701	0.62553	0.07333	685	0.48643	0.432	0.067		
510	0.03385	0.625	0.06911	690	0.5164	0.405	0.058		
515	0.0409	0.615	0.0675	695	0.55939	0.365	0.046		
520	0.04214	0.592	0.06602	700	0.62438	0.33	0.027		
525	0.04287	0.575	0.06578	705	0.74200	0.60000	0.02500		
				710	0.83400	0.60000	0.02000		
				715	1.00200	0.60000	0.01500		
				720	1.17000	0.60000	0.01000		
				725	1.48500	0.60000	0.00700		
				730	1.80000	0.60000	0.00500		
				735	2.09000	0.60000	0.00200		
				740	2.38000	0.60000	0.00000		
				745	2.42000	0.60000	0.00000		
				750	2.47000	0.60000	0.00000	_	

Note that the K_w values in Table 4-5 have been obtained by using the absorption and scattering coefficients of pure sea water as described in Sections 4.4.1 and 4.4.2 ($K_w = a_w + 0.5b_w$).

	0.03	0.1	0.3	1.	3.	10.
350.	0.770	0.769	0.766	0.767	0.767	0.767
400.	0.770	0.769	0.766	0.767	0.767	0.767
412.	0.765	0.770	0.774	0.779	0.782	0.782
443.	0.800	0.797	0.796	0.797	0.799	0.799
490.	0.841	0.824	0.808	0.797	0.791	0.791
510.	0.872	0.855	0.834	0.811	0.796	0.796
555.	0.892	0.879	0.858	0.827	0.795	0.795
620.	0.911	0.908	0.902	0.890	0.871	0.871
<i>670</i> .	0.914	0.912	0.909	0.901	0.890	0.890
700.	0.914	0.912	0.909	0.901	0.890	0.890
710.	0.914	0.912	0.909	0.901	0.890	0.890

Table 4-6: mean cosines of the downwelling irradiance (μ_d) as a function of wavelength (lines) and chlorophyll concentration (columns), sun zenith angle: 30°, no Raman emission

Table 4-7: total absorption coefficients a_1 (m⁻¹), computed as function of *chl* and λ through Equation 7 to Equation 12, with μ_d from Table 4-6.

	0.03	0.1	0.3	1	3	10
412.5	0.0115643	0.0228673	0.0445606	0.095627	0.194528	0.425296
442.5	0.0126095	0.0223262	0.0415189	0.0877143	0.179471	0.399036
490.0	0.0173563	0.0234732	0.0358357	0.0663681	0.128137	0.280947
510.0	0.0325	0.0372764	0.0470969	0.0713008	0.120455	0.244057
560.0	0.0619	0.0619	0.0672771	0.0807731	0.106826	0.174669
620.0	0.2755	0.2755	0.2755	0.276348	0.301871	0.375383
665.0	0.429	0.429	0.429	0.429	0.467546	0.58095
681.25	0.4715	0.4715	0.4715	0.4715	0.504934	0.617897
708.5	0.7915	0.7915	0.7915	0.7915	0.7915	0.7915

4.5.2 NORMALISED VSF, TOTAL SCATTERING, AND BACKSCATTERING COEFFICIENTS

4.5.2.1 Pure Sea Water

See Section 4.4 above.

4.5.2.2 Case 1 Waters Particles (phytoplankton and its retinue)

The normalised VSF for Case 1 waters particles is obtained as a mixture of two separately computed VSFs (Figure 4-2). The first one (Table 4-8) corresponds to a population of "small" non-absorbing particles of spheroidal shape, with a relative index of refraction equal to 1.06, and assumed to obey Junge's law with an exponent v equal to -4.2. The second population corresponding to "large" particles (Table 4-9) is identical except that v is equal to -3. The weighted sum of these two VSFs provides,

$$\widetilde{\beta}_{p1}(\theta, chl) = w_s[chl] \,\widetilde{\beta}_{p1,s}(\theta) + w_l[chl] \,\widetilde{\beta}_{p1,l}(\theta)$$
 Equation 13

where the subscripts s and l stand for small and large particles, respectively, and where the weights w_s and w_l are such that :

$$w_s[chl] + w_1[chl] = 1$$
 Equation 14
 $w_s[chl] = 0.855(0.5 - 0.25\log_{10}[chl])$ Equation 15

The normalised VSF computed through Equation 13 are assumed to be wavelength independent (no change in shape).

The backscattering efficiency for Case 1 water particles that derives from the use of the above chlorophyll-varying normalised VSF exactly matches the following expression (from Morel and Maritorena, 2000):

$$\widetilde{b}_{bp1}(\lambda) = 0.002 + [0.01 \ [0.5 - 0.25 \log_{10}[chl]]]$$
 Equation 16

At 550 nm, the particle scattering coefficient, $b_{pl}(550)$, is taken from Loisel and Morel (1998):

$$b_{p1}(550) = A_{bp1}[chl]^{b_{p1}}$$
 Equation 17

where A_{bp1} and b_{p1} equal 0.416 and 0.766, respectively. The factor of variation in A_{bp1} equals 1.3.

Reference Model for Third MERIS Level 2 reprocessing: Ocean branch

 Doc. No
 :PO-TN-MEL-GS-0026

 Issue
 : 5

 Date
 : July 2011

 Page
 : 25 of 106

θ	$\widetilde{eta}(heta)$	θ	$\widetilde{oldsymbol{eta}}(heta)$	θ	$\widetilde{oldsymbol{eta}}(heta)$	θ	$\widetilde{eta}(heta)$
0.	42.282829537580	47.0	2.2451516277360D-02	94.0	2.7766892922530D-03	141.0	2.0547500762672D-03
1.0	34.958732391211	48.0	2.1023504641344D-02	95.0	2.7211555064079D-03	142.0	2.0626834742451D-03
2.0	23.065450213275	49.0	1.9706560577018D-02	96.0	2.6576883225850D-03	143.0	2.0626834742451D-03
3.0	15.406801674179	50.0	1.8492750686405D-02	97.0	2.6021545367400D-03	144.0	2.0706168722230D-03
4.0	10.720368953898	51.0	1.7382074969504D-02	98.0	2.5545541488728D-03	145.0	2.0706168722230D-03
5.0	7.6237177877997	52.0	1.6358666630359D-02	99.0	2.5069537610056D-03	146.0	2.0785502702008D-03
6.0	5.5174720252582	53.0	1.5406658873015D-02	100.0	2.4593533731384D-03	147.0	2.0785502702008D-03
7.0	4.0755214089952	54.0	1.4533985095450D-02	101.0	2.4196863832490D-03	148.0	2.0864836681787D-03
8.0	3.0647033724414	55.0	1.3716845103730D-02	102.0	2.3800193933597D-03	149.0	2.0944170661566D-03
9.0	2.3450331082773	56.0	1.2971105693810D-02	103.0	2.3482858014483D-03	150.0	2.0944170661566D-03
10.0	1.8249354036444	57.0	1.2272966671758D-02	104.0	2.3165522095368D-03	151.0	2.1023504641344D-03
11.0	1.4415460129661	58.0	1.1622428037573D-02	105.0	2.2848186176253D-03	152.0	2.1023504641344D-03
12.0	1.1551186123732	59.0	1.1019489791255D-02	106.0	2.2530850257139D-03	153.0	2.1102838621123D-03
13.0	0.93748963904439	60.0	1.0464151932805D-02	107.0	2.2292848317803D-03	154.0	2.1102838621123D-03
14.0	0.76994420714985	61.0	9.9405476662657D-03	108.0	2.2054846378467D-03	155.0	2.1182172600901D-03
15.0	0.63911454109686	62.0	9.4566103896159D-03	109.0	2.1896178418909D-03	156.0	2.1182172600901D-03
16.0	0.53574236544527	63.0	9.0044067048776D-03	110.0	2.1658176479573D-03	157.0	2.1261506580680D-03
17.0	0.45312395890378	64.0	8.5760032140728D-03	111.0	2.1499508520016D-03	158.0	2.1340840560459D-03
18.0	0.38633268132813	65.0	8.1793333151796D-03	112.0	2.1340840560459D-03	159.0	2.1340840560459D-03
19.0	0.33187783760806	66.0	7.7985302122420D-03	113.0	2.1182172600901D-03	160.0	2.1420174540237D-03
20.0	0.28700653864525	67.0	7.4494607012159D-03	114.0	2.1023504641344D-03	161.0	2.1420174540237D-03
21.0	0.24977510193512	68.0	7.1162579861456D-03	115.0	2.0944170661566D-03	162.0	2.1499508520016D-03
22.0	0.21861271467807	69.0	6.7989220670309D-03	116.0	2.0785502702008D-03	163.0	2.1499508520016D-03
23.0	0.19234523397335	70.0	6.5053863418499D-03	117.0	2.0706168722230D-03	164.0	2.1499508520016D-03
24.0	0.17006031905353	71.0	6.2277174126246D-03	118.0	2.0626834742451D-03	165.0	2.1578842499795D-03
25.0	0.15102809730463	72.0	5.9579818813772D-03	119.0	2.0547500762672D-03	166.0	2.1578842499795D-03
26.0	0.13469323086820	73.0	5.7041131460855D-03	120.0	2.0468166782894D-03	167.0	2.1658176479573D-03
27.0	0.12058764926356	74.0	5.4661112067495D-03	121.0	2.0468166782894D-03	168.0	2.1658176479573D-03
28.0	0.10834641618371	75.0	5.2360426653914D-03	122.0	2.0388832803115D-03	169.0	2.1658176479573D-03
29.0	9.7675995903483D-02	76.0	5.0218409199890D-03	123.0	2.0388832803115D-03	170.0	2.1737510459352D-03
30.0	8.8330453085557D-02	77.0	4.8235059705424D-03	124.0	2.0309498823336D-03	171.0	2.1737510459352D-03
31.0	8.0119386178466D-02	78.0	4.6331044190736D-03	125.0	2.0309498823336D-03	172.0	2.1737510459352D-03
32.0	7.2868260426697D-02	79.0	4.4506362655827D-03	126.0	2.0309498823336D-03	173.0	2.1816844439131D-03
33.0	6.6442208064625D-02	80.0	4.2840349080475D-03	127.0	2.0230164843558D-03	174.0	2.1816844439131D-03
34.0	6.0730161520562D-02	81.0	4.1253669484902D-03	128.0	2.0230164843558D-03	175.0	2.1816844439131D-03
35.0	5.5636920018772D-02	82.0	3.9746323869107D-03	129.0	2.0230164843558D-03	176.0	2.1816844439131D-03
36.0	5.1091082977455D-02	83.0	3.8397646212870D-03	130.0	2.0230164843558D-03	177.0	2.1816844439131D-03
37.0	4.7005383018854D-02	84.0	3.7048968556633D-03	131.0	2.0309498823336D-03	178.0	2.1896178418909D-03
38.0	4.3332219755103D-02	85.0	3.5858958859953D-03	132.0	2.0309498823336D-03	179.0	2.1896178418909D-03
39.0	4.0016059400355D-02	86.0	3.4748283143052D-03	133.0	2.0309498823336D-03	180.0	2.1975512398688D-03
40.0	3.7025168362699D-02	87.0	3.3637607426151D-03	134.0	2.0309498823336D-03		
41.0	3.4311946254269D-02	88.0	3.2606265689028D-03	135.0	2.0388832803115D-03		
42.0	3.1852592881131D-02	89.0	3.1654257931684D-03	136.0	2.0388832803115D-03		
43.0	2.9615374651373D-02	90.0	3.0781584154119D-03	137.0	2.0388832803115D-03		
44.0	2.7576491371061D-02	91.0	2.9988244356332D-03	138.0	2.0468166782894D-03		
45.0	2.5712142846263D-02	92.0	2.9194904558546D-03	139.0	2.0468166782894D-03		
46.0	2.4014395679000D-02	93.0	2.8480898740538D-03	140.0	2.0547500762672D-03		

Table 4-8: Normalised VSF for small particles (see text)

46.0

5.9042003363558D-03

93.0

5.1444104807390D-04

140.0

1.8994746390421D-04

Reference Model for Third MERIS Level 2 reprocessing: Ocean branch

 Doc. No
 :PO-TN-MEL-GS-0026

 Issue
 : 5

 Date
 : July 2011

 Page
 : 26 of 106

θ	$\widetilde{eta}(heta)$	θ	$\widetilde{oldsymbol{eta}}(heta)$	θ	$\widetilde{eta}(heta)$	θ	$\widetilde{eta}(heta)$
0.	99.652707830456	47.0	5.4847330202340D-03	94.0	4.9069761508587D-04	141.0	1.8994746390421D-04
1.0	73.481769997167	48.0	5.1127525700883D-03	95.0	4.6695418209784D-04	142.0	1.8994746390421D-04
2.0	36.927670628662	49.0	4.7803445082559D-03	96.0	4.5112522677249D-04	143.0	1.8203298624153D-04
3.0	20.353147764054	50.0	4.4795943570742D-03	97.0	4.2738179378447D-04	144.0	1.8203298624153D-04
4.0	12.851924552535	51.0	4.2184165942059D-03	98.0	4.1155283845912D-04	145.0	1.8203298624153D-04
5.0	8.5125509962107	52.0	3.9809822643257D-03	99.0	3.9572388313377D-04	146.0	1.8203298624153D-04
6.0	5.7523452534420	53.0	3.7752058450961D-03	100.0	3.7989492780842D-04	147.0	1.8203298624153D-04
7.0	4.0082080674853	54.0	3.5852583811919D-03	101.0	3.7198045014574D-04	148.0	1.8203298624153D-04
8.0	2.8410204741822	55.0	3.4269688279384D-03	102.0	3.5615149482039D-04	149.0	1.8203298624153D-04
9.0	2.0484251086536	56.0	3.2765937523476D-03	103.0	3.4823701715771D-04	150.0	1.8203298624153D-04
10.0	1.5064337638360	57.0	3.1499621097448D-03	104.0	3.3240806183236D-04	151.0	1.8203298624153D-04
11.0	1.1225736827185	58.0	3.0312449448046D-03	105.0	3.2449358416969D-04	152.0	1.8203298624153D-04
12.0	0.85049768410875	59.0	2.9283567351899D-03	106.0	3.1657910650701D-04	153.0	1.8203298624153D-04
13.0	0.65265948597486	60.0	2.8333830032378D-03	107.0	3.0866462884434D-04	154.0	1.8203298624153D-04
14.0	0.50766625519465	61.0	2.7463237489483D-03	108.0	3.0075015118166D-04	155.0	1.8203298624153D-04
15.0	0.39944368763522	62.0	2.6671789723216D-03	109.0	2.9283567351899D-04	156.0	1.8203298624153D-04
16.0	0.31787708084369	63.0	2.5880341956948D-03	110.0	2.8492119585631D-04	157.0	1.8203298624153D-04
17.0	0.25567720089273	64.0	2.5168038967308D-03	111.0	2.8492119585631D-04	158.0	1.8203298624153D-04
18.0	0.20747803192703	65.0	2.4455735977667D-03	112.0	2.7700671819364D-04	159.0	1.8203298624153D-04
19.0	0.17005838153790	66.0	2.3664288211399D-03	113.0	2.6909224053096D-04	160.0	1.8203298624153D-04
20.0	0.14039491925820	67.0	2.2872840445132D-03	114.0	2.6909224053096D-04	161.0	1.8203298624153D-04
21.0	0.11692057851070	68.0	2.2081392678864D-03	115.0	2.6117776286829D-04	162.0	1.8203298624153D-04
22.0	9.8052463762885D-02	69.0	2.1210800135970D-03	116.0	2.5326328520561D-04	163.0	1.8203298624153D-04
23.0	8.2753778440933D-02	70.0	2.0340207593076D-03	117.0	2.5326328520561D-04	164.0	1.8203298624153D-04
24.0	7 0351791943521D-02	71.0	1 9390470273555D-03	118.0	2.4534880754293D-04	165.0	1 8203298624153D-04
25.0	6.0102543370356D-02	72.0	1.8361588177407D-03	119.0	2.4534880754293D-04	166.0	1.8203298624153D-04
26.0	5.1681539137270D-02	73.0	1.7332706081259D-03	120.0	2.3743432988026D-04	167.0	1.8203298624153D-04
27.0	4.4661397450477D-02	74.0	1.6303823985111D-03	121.0	2.3743432988026D-04	168.0	1.8203298624153D-04
28.0	3.8780940547109D-02	75.0	1.5274941888963D-03	122.0	2.3743432988026D-04	169.0	1.8203298624153D-04
29.0	3.3858135440925D-02	76.0	1.4246059792816D-03	123.0	2.2951985221758D-04	170.0	1.8203298624153D-04
30.0	2.9663462279707D-02	77.0	1.3296322473295D-03	124.0	2.2951985221758D-04	171.0	1.8203298624153D-04
31.0	2.6125690764491D-02	78.0	1.2425729930400D-03	125.0	2.2160537455491D-04	172.0	1.8203298624153D-04
32.0	2.3094445819687D-02	79.0	1.1555137387506D-03	126.0	2.2160537455491D-04	173.0	1.8203298624153D-04
33.0	2.0490582668666D-02	80.0	1.0842834397865D-03	127.0	2.2160537455491D-04	174.0	1.8203298624153D-04
34.0	1.8258699967792D-02	81.0	1.0130531408224D-03	128.0	2.1369089689223D-04	175.0	1.8203298624153D-04
35.0	1.6319652940437D-02	82.0	9.4973731952104D-04	129.0	2.1369089689223D-04	176.0	1.8994746390421D-04
36.0	1.4641783675949D-02	83.0	8.9433597588231D-04	130.0	2.1369089689223D-04	177.0	1.8994746390421D-04
37.0	1.3185519786017D-02	84.0	8.3893463224358D-04	131.0	2.0577641922956D-04	178.0	1.8994746390421D-04
38.0	1.1903374404664D-02	85.0	7.9144776626753D-04	132.0	2.0577641922956D-04	179.0	1.8994746390421D-04
39.0	1.0787433054226D-02	86.0	7.5187537795416D-04	133.0	2.0577641922956D-04	180.0	2.1369089689223D-04
40.0	9.8060378240547D-03	87.0	7.0438851197810D-04	134.0	1.9786194156688D-04		
41.0	8.9433597588231D-03	88.0	6.6481612366473D-04	135.0	1.9786194156688D-04	-	
42.0	8.1756554255436D-03	89.0	6.2524373535135D-04	136.0	1.9786194156688D-04	1	
43.0	7 5029248242162D-03	90.0	5 9358582470065D-04	137.0	1 8994746390421D-04	1	
44.0	6 9093389995156D-03	91.0	5 6192791404995D-04	138.0	1 8994746390421D-04	1	
45.0	6 3790689961163D-03	92.0	5 3818448106192D-04	139.0	1 8994746390421D-04	1	

Table 4-9: Normalised VSF for large particles (see text)

Figure 4-2: Normalised VSFs of large, small particles (blue curves; tables 4.5.2-1 & 4.5.2-2), and of mixed populations following a mixing rule depending on chl (Eqs. (12) & (13)). These "mixed VSFs" are shown as red curves, and the corresponding chl concentration is indicated in the green box on the side of the figure. In insert is shown the resulting backscattering probability, as a function of the chl concentration (Equation 16)

Equation 18

At any other wavelength, the particle scattering coefficient, $b_{p_l}(\lambda)$, is expressed from its value at 550 nm according to :

$$b_{p1}(\lambda) = b_{p1}(550) \left(\frac{\lambda}{550}\right)^{-\nu}$$

where:
$$v = 0.5 [0.3 - \log_{10}(chl)]$$
 when $[chl] < 2 \text{ mg m}^{-3}$
and: $v = 0$ when $[chl] \ge 2 \text{ mg m}^{-3}$

From the above equations, it results that the backscattering coefficient for Case 1 water particles is expressed as :

$$b_{bp1}(\lambda) = \left[0.002 + 0.01 \cdot \left(0.5 - 0.25 \log_{10}(chl)\right)\right] b_{p1}(550) \left(\frac{\lambda}{550}\right)^{-\nu}$$
 Equation 19

4.5.3 TOTAL IOPS IN CASE 1 WATERS

Case 1 water absorption and backscattering coefficients, denoted $a_1(\lambda)$ and $b_{b1}(\lambda)$, respectively, can be expressed as:

$$a_1(\lambda)$$
 as per section 4.5.1
 $b_{b1}(\lambda) = 0.5b_w(\lambda) + b_{bp1}(\lambda)b_{p1}(\lambda)$ Equation 20

where the normalised VSF for these waters is denoted $\tilde{\beta}(\theta)$:

$$\widetilde{\beta}_{1}(\theta,\lambda) = \eta(\lambda)\widetilde{\beta}_{w}(\theta) + (1-\eta(\lambda))\widetilde{\beta}_{p1}(\theta)$$
 Equation 21

and where:

$$\eta(\lambda) = b_{w}(\lambda) / (b_{w}(\lambda) + b_{p1}(\lambda))$$
 Equation 22

4.5.4 WARNING CONCERNING THE USE OF THE MODEL FOR CASE 1 WATERS IOPS: STATE-OF-THE-ART AND UNCERTAINTIES

4.5.4.1 Raman Emission

The Raman emission by water molecules is a trans-spectral (or inelastic) scattering process by which absorbed energy at a given wavelength λ' is re-emitted as radiation at longer wavelengths around λ . The Raman VSF $\beta^{R}(\theta)$ is symmetrical with respect to $\theta = \pi/2$ and expresses as :

$$\beta^{R}(\theta) = 0.067(1 + 0.55\cos^{2}(\theta))$$
 Equation 23

The Raman emission undergoes a frequency shift that is independent on the incident frequency and thus occurs within the whole (visible) spectrum. According to Walrafen (1967), the shape of the redistribution function $f^{R}(\kappa_{R})$ is the sum of four Gaussian functions (*i* = 1 to 4):

$$f^{R}(\kappa_{R}) = \left[\left(\frac{\pi}{4 \ln(2)} \right)^{1/2} \sum_{i=1}^{4} A_{i} \right]^{-1} \sum_{i=1}^{4} A_{i} \frac{1}{\Delta \kappa_{i}} \exp \left(-\frac{(\kappa_{R} - \kappa_{i})^{2}}{\Delta \kappa_{i}^{2}} \right)$$
Equation 24

where $\kappa_{\rm R}$ is the wavenumber shift of the Raman emission, $\kappa_{\rm i}$ is the centre of the *i*th Gaussian function, $\Delta \kappa_{\rm i}$ the width at half maximum of this function and the A_i 's are the weights of each function (see Table 4-10).

i	A _i	$\kappa_i (cm^{-1})$	$\Delta \kappa_{i}(cm^{-1})$
1	0.41	3250	210
2	0.39	3425	175
3	0.10	3530	140
4	0.10	3625	140

Table 4-10: Data from Walrafen (1967)

To an incident (exciting) radiation with a wavelength λ' and a wavenumber κ' will correspond a Raman emission within a spectral band described by Equation (5) such as $\kappa = \kappa' - \kappa^R$, leading to redistribution functions expressed in terms of wavelengths $f^R(\lambda' \rightarrow \lambda)$ as shown in Figure 4-3 below.

The magnitude of the phenomenon is expressed through the Raman coefficient $a^{R}(\lambda')$ through:

$$a^{R}(\lambda') = \int_{\lambda'}^{\infty} b^{R}(\lambda' \to \lambda) \, d\lambda$$
 Equation 25

where b^R is the Raman scattering coefficient for an exciting wavelength λ' and an emission at wavelength λ ($\lambda > \lambda'$). This coefficient, according to recent determinations at 488 nm, is :

$$a^{R}(448) = 2.610^{-4} m^{-1}$$
 Equation 26

it varies according to a law in λ^{-5} .

This phenomenon is important in clear Case 1 waters (low [*chl*]) to the extent that the elastic scattering is low, in the red part of the spectrum in particular. With an almost isotropic function (Equation 23), it strongly modifies the upward radiance distribution and thus affects the Q (and f/Q) behaviour.

Figure 4-3: the Raman wavelength redistribution function $f^{R}(\lambda' \rightarrow \lambda)$, for selected incident wavelengths λ' . Figure reproduced from Mobley (1994). Conversely the Raman emission at a fixed wavelength λ is excited by a spectral band centred on λ' , the shape of which is approximately the reverse image of those shown in this figure.

wavelength λ (nm)

4.5.4.2 Fluorescence by Phytoplankton

The emission of fluorescence by phytoplankton is isotropic ($\tilde{\beta}^{F}(\theta)$ =constant). Its intensity depends on the chlorophyll-*a* concentration and on the quantum yield for fluorescence, ϕ_{f} . This yield ϕ_{f} is defined as the number of photons emitted divided by the number of photons absorbed by the algal cells. It is known as being varying within a factor of 10, approximately with the lower values observed near the surface (Maritorena *et al.* 2000). If ϕ_{f} is fixed, this emission can be (but has not been) incorporated into the IOP model for Case 1 waters. Any radiation within the 380-680 nm domain, after being weighted by the algal absorption spectrum, is able to excite the *chl-a* fluorescence around 683 nm. In contrast, the emission spectrum is independent from the excitation spectrum and is currently modelled (*e.g.*, see Gordon, 1979; Kattawar and Valerio, 1982; Kishino *et al.*, 1984; Sathyendranath and Platt, 1998) as a Gaussian spectral distribution, peaked around 683 nm, and with a standard deviation $\sigma = 10.64$ nm, corresponding to a width of about 25 nm at half maximum (see Figure 4-4). This curve, modelled through $\exp(-(\lambda-683)/2\sigma^2)$ accounts very well for observations for natural populations as well as for algae grown in culture, except beyond 710 nm where a weak shoulder (around 730 nm) often appears.

Figure 4-4: Typical Gaussian spectral distribution for the chl-a fluorescence, peaked around 683 nm, and with a standard deviation $\sigma = 10.64$ nm, corresponding to a width of about 25 nm at half maximum

4.5.4.3 Fluorescence by Endogenous Yellow Substance

This term, which may be important in presence of high amount of yellow substance, is less documented than the chlorophyll-*a* fluorescence and depends on the chemical composition of the organic matter collectively forming the "yellow substance". This emission is believed to be negligible in Case 1 waters, and has not been incorporated within the IOP model for Case 1 waters.

4.5.4.4 Other Warnings and Limitations

The Case 1 waters IOP model include some uncertainties in its parameterization or even some assumptions. These properties with their corresponding uncertainties are listed in Table 4-11 below. The column "Expectation" indicates which scientific evolutions are foreseen.

IOP	Equation number or table	Comment	Expectation
$a_w(\lambda)$	Table 4-2	Known with sufficient accuracy	Will not evolve
a ^R (A)	Equation 25 and Table 4-10	Known with sufficient accuracy	Will not evolve
<i>a</i> ₁ (λ)	Equation 7 to Equation 12, Table 4-5 and Table 4-7	Well documented for world ocean (but see the large variation factor). Seasonal variability under investigation.	Will not evolve significantly
$b_w(\lambda)$	Equation 5 and Equation 6	Known with sufficient accuracy	Will not evolve
$b_{pl}(\lambda)$	Equation 17 and Equation 18	Well documented for world ocean (but see the large variation factor)	Will not evolve significantly
$b_{bp1}(\lambda)$	Equation 16 and Equation 19	Best guess	Could evolve
$\widetilde{oldsymbol{eta}}_{\scriptscriptstyle w}(heta)$	Equation 3 and Equation 4	Slight uncertainty on <i>p</i> ; very weak influence on the result	Will not evolve
$\beta^{\mathrm{R}}(\theta)$	Equation 23 and Equation 24	Known with sufficient accuracy	Will not evolve
$\widetilde{eta}_p(heta)$	Equation 13 to Equation 15, Table 4-8 and Table 4-9		Could evolve

Table 4-11: Comments on model parameterization

As a general warning, the present model is based on statistical relationships (between K_d or b_p and [chl]) that represent "average" situations. Therefore, its use as a predictive tool leads to various results when the large standard errors associated with each input parameters are taken into account; it may fail when compared case by case to actual data (as reflectance for instance).

4.6 CASE 2 WATERS IOPS

4.6.1 INTRODUCTION

This section describes the bio-optical model which is used to simulate a set of water leaving radiance reflectances, which in turn is used to train the neural network (NN) algorithm for the standard processing of MERIS data of case 2 waters (Doerffer & Schiller, 2007).

Water constituents comprise a large number of different substances, which include mineralic dissolved and particulate compounds, a large variety of organic macromolecules, living organisms such as phytoplankton, zooplankton, bacteria etc. and their debris and excrements. All of these constituents of water exhibit different optical properties concerning scattering and absorption.

For the purpose of optical remote sensing this diversity of substances has to be grouped into a small number of classes each of which includes constituents with similar optical properties and / or correlated concentrations. For the majority of the world ocean areas it is sufficient to comprise all substances into one group using phytoplankton chlorophyll-*a* as a proxy. This type of waters is so-called the Case 1 waters. The concentration of this class of substances (in terms of chlorophyll-*a*) can be derived from the blue to green shift of the water colour. In many coastal waters one needs more than one class of substances to describe the variability of water colour. By tradition and experience three classes are defined: (1) phytoplankton pigment with chlorophyll-*a* as a proxy, (2) the dry weight of all particles (total suspended matter, TSM) and (3) the absorption caused by the dissolved fraction of all water constituents (gelbstoff or yellow substance). Dissolved particulate is defined by the pore size of the filter used for separation, which was traditionally about 0.45 μ m and nowadays about 0.2 μ m.

However, each of the three groups of substances is variable with respect to their composition and thus their chemical, physical and in particular optical properties. Any remote sensing system and retrieval algorithm has to take this variability into account.

4.7 THE MERIS CASE 2 ALGORITHM (NEURAL NETWORK).

The bio-optical model consists of three optical components, which are cartooned in Figure 4-5. Gelbstoff is defined as the absorption, a_y , by all substances in water, which pass a filter with a pore size of 0.2 µm. Total suspended matter (TSM) is defined as all substances, which remain on this filter. The absorption a of TSM, which is measured using the filter pad method by Tassan & Ferrari (1995), is split into two fractions by a bleaching process. The bleachable fraction, i.e. the difference between the TSM absorption before and after bleaching, is defined as phytoplankton pigment absorption, a_{pig} , while the absorption of TSM after bleaching is defined as particle absorption, a_{bp} . The scattering component b was determined in-situ by measuring b = c - a, i.e. the difference between the beam attenuation c and absorption coefficient a using an AC-9 instrument. The four components were reduced, as required by the MERIS level 2 product processor, to three by combining the absorption coefficient of Gelbstoff, a_y , and of particles, a_{bp} .

Figure 4-5: Scheme of the bio-optical model used for development of the MERIS Case 2 water algorithm

4.7.1 COMPONENTS

All concentrations are measured according to the MERIS Validation Team (MVT) protocols (PO-TN MEL-GS 0043).

4.7.2 PURE WATER ABSORPTION

The spectral absorption coefficients for pure water were taken from Pope & Fry (1997). For the relevant MERIS bands the following values were used:

Band no.	Wavelength (nm)	$a (m^{-1})$
1	412.5	4.597e-003
2	442.5	6.884e-003
3	490.0	1.492e-002
4	510.0	3.250e-002
5	560.0	6.167e-002
6	620.0	2.746e-001
7	665.0	4.263e-001
9	708.75	8.147e-001

Table 4-12: Absorption coefficients of pure water (Pope & Fry, 1997) for MERIS bands 1-7 and band 9.

4.7.3 PURE WATER SCATTERING

The spectral scattering coefficients of pure water are calculated according to Morel (1974) using:

$$b_w = 0.00288 \left(\frac{\lambda}{500}\right)^{-4.32}$$
 Equation 27

with λ in nm.

4.7.4 GELBSTOFF AND PARTICLE ABSORPTION

The spectral absorption of both components show similar shapes, i.e. nearly exponential decreases with increasing wavelength. This decrease is described by the spectral exponent s, so that:

$$a(\lambda) = a(\lambda_{ref}) \exp(-s(\lambda - \lambda_{ref}))$$
 Equation 28

The two exponents for gelbstoff s_g and particle absorption s_p were determined from the COLORS time series. Since the exponents depend on the wavelength range, which is used for their determination, the interval 400 – 550 nm was used, which is about the most important for remote sensing. The exponents were fitted to each measurements using a non linear fit routine. No subtraction of the absorption at a red wavelength, e.g. at 750 nm, was performed, in contrast to many procedures reported in literature.

The variability of the slopes of the 2 years timeseries at Helgoland are plotted in Figure 4-6. The time series themselves do not show any obvious seasonal patterns, which would require special seasonal treatment.

Figure 4-6: Spectral exponent of bleached TSM (left) and gelbstoff (after passing a filter with a pore size of $0.2 \mu m$) for a two years time series of measurements around the island of Helgoland (German Bight, North Sea).

Mean slopes and standard deviations found for this series are for the dissolved part $s_g = 0.0138 \pm 0.00284$ and for the particulate part $s_p = 0.0072 \pm 0.00108$.

4.7.5 PHYTOPLANKTON PIGMENT ABSORPTION

The pigment absorption component is determined from measurements of filter pad absorption. It is the absorption of the bleachable fraction of the material, which does not pass the filter, i.e. the difference between the absorption of the filter pad before and after bleaching.

The time series of Helgoland shows two different types of spectra with all transitions, a typical summer spectrum with a clear maximum around 440 nm and a winter spectrum without a clear maximum but with a nearly exponential decrease in the blue-green spectral range. Since it is assumed that the winter spectra are dominated by detritus, which contain degradation products of chlorophyll, only the summer spectrum have been used for the component model. In order to include the variance of these summer spectra, a set of 77 spectra haven been selected with a clear absorption peak at 442 nm (Figure 4-7). One of these spectra is selected randomly for the computation of the reflectances. The 77 spectra (denoted by a_{pig_n} where n is the spectrum number) were selected after normalisation by $a_{pig}(442)$ according to the following criteria:

 $a_{pign}(442) / a_{pign}(412) > 0.98$

$$a_{pign}(442) / a_{pign}(448) > 1.0$$

Figure 4-7: Normalized pigment absorption spectra selected from the data base of site Helgoland

This set was complemented by absorption spectra (Figure 4-8) measured from samples of different cruises in the North Sea and from the Skagerrak and North Sea water off the coast of

Norway, which have been provided by K. Sorensen, NIVA. Altogether 221 different spectra were used.

Figure 4-8: Normalized absorption spectra of pigments from the North Sea / German Bight (left) and from waters in the Skagerrak and the North Sea off Norway (right)

4.7.6 PARTICLE SCATTERING

The optical component particles are assumed to be non-absorbing. Their spectral scattering shape is described by:

$$b_p(\lambda) = b_{p(442)} \left(\frac{\lambda}{442}\right)^{-s_b}$$
 Equation 29

with s_b , the spectral exponent and $b_{p(442)}$ the scattering at 442 nm. An exponent of $s_b = 0.4$ is used with a standard deviation of 0.2 according to the measurements of COASTLOOC (Babin *et al.*, 2003) and COLORS (measurements of GKSS).

Particle scattering is not varied independently from the absorption of particles and phytoplankton in order to exclude unrealistic combinations of high particle absorption without any scattering. Thus, the minimum scattering of the range from which particle scattering is randomly sampled depends on the absorption by particles and phytoplankton, which are sampled first, while the maximum of the particle scattering range is fixed.

Since no measurements of the phase function of particle scattering is available for our reference sites, the phase function of Petzold (1972) as described in Mobley (1994, Table 4-13) is used. This phase function has a backscattering probability:

$$\tilde{b}_{bp} = \frac{b_{bp}}{b_p} = 0.02$$

The value of 0.02 about is the mean backscattering factor of the Helgoland time series measured with the BB-4 backscatterometer instrument, and corresponds to the value for scattering phase function of Petzold (1972).

The total volume scattering b [m-1] of all particles has been measured in-situ at 9 wavelength with an AC-9 instrument, which determines absorption and beam attenuation. The spectral exponent was then determined from all wavelengths using a nonlinear fit. Furthermore, the results were checked against data of the COASTLOOC project (Babin 2003), which covered coastal and off shore areas of the Mediterranean, the Atlantic, North and Baltic Sea, and compared to results of Siegel *et al.* (2005) for the Baltic area.

In addition a white scatterer (spectral exponent of 0) was introduced to include the effects of coccolithophorides, which often occurs in the North Sea and Celtic Sea during summer months. However, due to the restrictions of the MERIS products format, the white scatterer is not a separate variable, only the optical effect was introduced so that the NN learned that this kind of material may be present in the water. For this component also the scattering phase function of Petzold (1972) was used (Table 4-13).

θ	$\widetilde{\beta}_{p1}(\theta)$	θ	$\widetilde{\beta}_{p1}(\theta)$
0.1	1767	50	0.02275
0.12589	1296	55	0.01699
0.15849	950.2	60	0.01313
0.19953	699.1	65	0.01046
0.25119	513.7	70	0.008488
0.31623	376.4	75	0.006976
0.39811	276.3	80	0.005842
0.50119	201.2	85	0.004953
0.63096	144.4	90	0.004292
0.79443	102.2	95	0.003782
1	71.61	100	0.003404
1.2589	49.58	105	0.003116
1.5849	33.95	110	0.002912
1.9953	22.81	115	0.002797
2.5119	15.16	120	0.002686
3.1623	10.02	125	0.002571
3.9811	6.58	130	0.002476
5.0119	4.295	135	0.002377
6.3096	2.807	140	0.002329
7.9433	1.819	145	0.002313
10	1.153	150	0.002365
15	0.4893	155	0.002506
20	0.2444	160	0.002662
25	0.1472	165	0.002835
30	0.08608	170	0.00303
35	0.05931	175	0.003092
40	0.0421	180	0.003154
45	0.03067		0.02275

 Table 4-13: Normalised volume scattering function for marine particles as derived by Mobley (1994) from Petzold's measurements.

The concentrations of all particles are determined as the dry weight per volume of water.

4.7.7 CONVERSION FACTORS

Although the prime products of the MERIS Case 2 water algorithm are the IOP coefficients at a wavelength of 442 nm, mean conversion factors were provided to present these properties also in form of concentrations of TSM and chlorophyll *a*. For TSM only the scattering coefficient is used and for phytoplankton only the pigment absorption. However, a combination of scattering and absorption might be more appropriate in some cases.

The conversion factor for TSM was derived from measurements in the German Bight (Figure 4-9) and confirmed by COASTLOOC data (Babin, 2003) and determined as:

$$< TSM >= b_p (442) / bp * (442)$$
 Equation 30
where $1/b_p^*(442) = 1.73$, i.e. $b_p^*(442) = 0.578$.

The conversion factors for chlorophyll *a* from the measurements in the German Bight and in Norwegian waters are:

$$[chl] = 21.0 [a_{pig}(442)]^{-1.04}$$
 Equation 31

The chlorophyll conversion factors are in good agreement with those found by Bricaud *et al.* (1998) for mainly Case 1 waters.

Figure 4-9: Relationship between the scattering coefficient of particles in the North Sea at 440 nm and the dry weight of total suspended matter, used for determining the conversion factor.

Figure 4-10: Relationship between the pigment absorption at 443 nm and the chlorophyll concentration. Data is from cruise 187 of RV "Heincke". The blue regression line is $chl = 23 (a_pig)^{1.02}$, red line is the algal_2 model for MEGS 7.3: $algal_2 = 21 (a_pig)^{1.04}$

4.7.8 SPECTRAL VARIABILITY

The spectral variability, which was found in the Helgoland time series and COASTLOOC data set, as well as the expected measurement error of MERIS and of the atmospheric correction procedure were included into the NN by training in the following way: For the computation of each spectrum of the training set, the spectral exponents for scattering, s_b , and absorption of gelbstoff, s_g , and particles, s_p , were randomly varied according to a Gaussian distribution. The standard deviation was determined from the field measurements. For pigment absorption one of the set of 221 spectra (see above) was randomly selected. The simulated reflectance spectrum was then varied for each band according to a Gaussian distribution with the expected (pre launch) MERIS radiometric and atmospheric correction covariance.

4.7.9 RANGE AND CO-VARIANCES

According to the data from North Sea Water and the concentration ranges in Case 1 water (ATBD: Morel and Antoine 2000) the range for pigment and gelbstoff absorption (a_{pig} and a_y) as well as particle and white particle scattering b_{pw} (442 nm) was set as listed in Table 4-14.

Although all variables should vary as independently as possible within the given ranges, we have introduced some restrictions concerning the minimum scattering associated with the absorption coefficients of phytoplankton pigments and bleached particles in order not produce unrealistic low reflectances.

These minima were determined from the co-variations between absorption and scattering.

The following relationships were determined:

$$b_{tsm \min} = 0.25 a_{pig} (442)$$
 Equation 32

The co-variation between the absorption coefficient of bleached particles (a_{tsm_bl}) and the scattering coefficient of total suspended matter scattering was determined as:

$$a_{tsm_{bl}}(442) = 0.1 b_p(442) + ran_{gauss} 0.03 b_p(442)$$
 Equation 33

where ran gauss is a random number of a N(0,1) Gaussian probability distribution.

Note that this coupling excludes some extreme combinations, which however might occur in nature.

COMPONENT / PROPERTY	VALUE RANGE
Gelbstoff absorption wavelength exponent	0.014 ± 0.002
Bleached particle absorption wavelength exponent	0.008 ± 0.005
Particle scattering wavelength exponent	0.4 ± 0.4
White particle scattering wavelength exponent	0.0
Phytoplankton pigment absorption	Random selection from > 200 absorption spectra, normalised at 442 nm.
Gelbstoff absorption, a_gelb at 442 nm	$0.005 - 5.0 \text{ m}^{-1}$
Particle scattering b _p at 442 nm	$0.005 - 30.0 \text{ m}^{-1}$
White particle scattering b _{pw} at 442 nm	$0.005 - 30 \text{ m}^{-1}$
Phytoplankton pigment absorption a_pig at 442 nm	$0.001 - 2.0 \text{ m}^{-1}$
Minimum particle scattering at 442 nm	Equation 32
Bleached particle absorption	Equation 33
Sun zenith angle	0-180°
Viewing zenith angle	0-180°
Difference between sun and viewing azimuth angle	0-180°

 Table 4-14: Variability of the optical properties and range used for the simulation of water reflectance spectra.

4.7.10 Environmental conditions

The environment as well as further optical properties were defined in the following way: infinite deep water (no bottom effect), vertical homogenous distribution of all water constituents, rough sea surface according to a wind speed of 3 ms^{-1} .

The downwelling radiance distribution above water has been simulated with Hydrolight, which was adapted for this purpose to simulate an atmosphere with 50 layers for 17 solar zenith angels ranging from 0 to 80 degree.

Furthermore no inelastic scattering (fluorescence or Raman scattering) as well as no polarisation effects have been considered in the simulation.

4.8 SIMULATION OF WATER REFLECTANCES

Following Antoine and Morel, (1999), the directional water reflectance $\rho_w(\theta_v, \phi_v)$ associated with the water-leaving radiance $L_w(\theta, \phi)$ and the downwelling irradiance above the sea surface E_s is defined to be:

$$\rho_w(\theta_v, \phi_v) = \pi L_w(\theta_v, \phi_v) / E_s(\theta_s)$$
 Equation 34

where θ_v and ϕ_v are the zenith and azimuth observation angles respectively. E_s depends on the solar zenith angle, θ_s , for the pixel under examination and corresponds to $E_d(0+)$. For convenience we denote the wavelength dependence in the following only where necessary.

Since simultaneous measurements of concentrations and water leaving radiance reflectance spectra are rare and, thus, do not cover the data space with sufficient density, the construction of the NN is based on a large table (~550K entries) of simulated data generated by our forward model which was built from the Hydrolight (v3.0) radiative transfer code (Mobley 1994) plus a bio-optical model relating scattering and absorption coefficients to concentrations.

For given concentrations / IOPs of water constituents the forward model calculates the angular distribution of water leaving radiance in eight visible MERIS bands. These angular distributions are sampled in the appropriate angle ranges to derive the entries of the training / test tables for building the NN: three concentrations, three angles and eight water leaving radiance reflectances. The concentrations of the water constituents are randomly sampled from an exponential distribution in order to disentangle small concentration differences in regions of small concentrations. In order to get roughly constant relative concentration errors the logarithm of the IOP's was used as NN output.

4.9 BRIGHT PIXEL ATMOSPHERIC CORRECTION REFLECTANCE MODEL

With even modest concentrations of TSM (>0.2 g m⁻³), there is significant backscatter and/or coccolithophore reflectance that results in reflectance at near infra-red wavelengths (NIR) that negates the 'dark pixel' atmospheric correction (AC) procedures, which assume zero water leaving at NIR wavelengths (> 700 nm). These 'bright pixel' waters require a modified bright pixel atmospheric correction (BPAC). Yellow substance has little effect on the atmospheric correction ('dark pixel'), as it primarily absorbs due to its dissolved nature and will be ignored.

The BPAC model is detailed further in ATBD 2.6, and outlined here in the following sections. It is parameterised entirely using particulate IOPs; the algorithm uses the IOPs of pure water $(a_w \text{ and } bb_w)$ and particulates $(bb_p \text{ and } a_p)$ with the final value of bb_p used to estimate TSM for Case 2 flagging.

The solution relies on providing estimates from a low band set {709nm, 779nm, 865nm} and a high band set {779nm, 865nm, 885nm}. For the initial estimates, the first two wavelengths of the band sets are used. *Note that 709 and 779 are shorthand notations for MERIS bands at 708.75 and 779.75*.

All parameters are described in Table 4-15.

Table 4-15: BPAC	parameters
------------------	------------

Symbol	Descriptive Name	I/O	Range/Reference/Remarks
$t([709,779,865,885], \theta_{v}, \theta_{s}, \Delta_{\phi})$ Atmospheric diffuse		Ι	From Rayleigh Correction
- ,,	transmittance		
$F(\lambda, a, bb_w, bb_p, \theta_v, \theta_s, \Delta_{\phi})^1$	Water reflectance above surface	Ι	Database Lookup Table
	factor - polynomials		
a(TSM)	TSM absorption	Ι	Database Lookup Table
b(TSM)	TSM backscatter	Ι	Database Lookup Table
С	Aerosol extrapolation parameter	-	Calculated Internally
$\rho_{as}([709,779,865],\theta_{v},\theta_{s},\Delta_{\phi})$	Single scattering reflectance	Ι	From Rayleigh Correction
$\rho_{as}([709,779,865], \theta_{v}, \theta_{s}, \Delta_{\phi})$	Single scattering corrected	0	From Iterative Procedure
	reflectance		
ε(709,865, <i>θ</i>)	ρ_{rc} Ratio	-	Calculated Internally
<i>ɛ</i> (779,865, <i>θ</i>)	ρ_{rc} ratio	-	Calculated Internally
TSM	TSM load	-	From Procedure
$ heta_s$	Solar zenith angle	Ι	From Navigation
Δ_{ϕ}	Azimuth difference	Ι	From Navigation
θ_{v}	Viewing angle	Ι	From Navigation
$\boldsymbol{\theta} = \left[\boldsymbol{\theta}_{v}, \boldsymbol{\theta}_{s}, \boldsymbol{\Delta}_{\phi} \right]$	Viewing / solar angles	_	Naming Convention

4.9.1 BPAC HYDROLOGICAL MODEL

The hydrological optics depends on the IOPs of the TSM, which varies according to wavelength. Parameterisation of reflectance for waters dominated by TSM involves knowledge of three IOPs and their spectral properties: particulate specific absorption, $a_s(TSM, \lambda)$; particulate specific scattering, $b_s(TSM, \lambda)$; particulate backscattering ratio, \tilde{b} .

Assuming fixed viewing geometry and wind speed, the quasi-linear relationship between sediment concentration and the reciprocal of remote sensed reflectance allows $\rho_w(\theta_s, \theta_v, \Delta_{\phi})$ to be expressed as:

$$\rho_{w} = F' \left(\frac{bb_{w} + bb_{p}}{a_{w} + a_{p} + bb_{w} + bb_{p}} \right)$$
 Equation 35

F' is a function that includes the terms Q, \Re and π and implies geometry. \Re is defined as in Equation 58.

Q is the ratio of upwelling irradiance to radiance (Section 5.1.1).

 a_w , bb_w are the absorption and backscatter of water, bb_p is the combined backscatter of TSM, that is phytoplankton, detritus and sediment; a_p is the combined absorption of phytoplankton, detritus, and sediment.

The BPAC aims to include waters with very high turbidities and thus reflectances. The limiting values for these alternative reflectance expressions are important in terms of numerical stability. For a non or very low absorbing sediment, such as coccoliths, the limit is:

$$\frac{\lim}{bb_{pds} \to \infty} F' \left(\frac{bb_w + bb_p}{a_w + a_p + bb_w + bb_p} \right) = F'$$
 Equation 36

Where: bb_{pds} is equivalent to bb_p (the case 2 model does not differentiate).

ATBD 2.6 explains the distinction; in the NIR there is no differentiation between any of the particulate components.

Thus, the $\frac{bb}{(a+bb)}$ variant is more useable since it provides a defined limiting reflectance of *F*' for high reflectance waters, which can be used as an error check for computing look-up tables (LUT's) and for their implementation.

The limit for absorbing sediment is also of interest. Here, a_{bb}^* is defined as the specific absorption of the sediment backscatter, or the absorption to backscatter ratio, for a particular sediment and in this case Equation 35 becomes:

$$\rho_{w} = F' \left(\frac{bb_{w} + bb_{p}}{a_{w} + bb_{w} + bb_{p}(1 + a_{bb}^{*})} \right)$$
 Equation 37

And the limiting value becomes:

$$\frac{\lim}{bb_{pds} \to \infty} F'\left(\frac{bb_w + bb_p}{a_w + bb_w + bb_p(1 + a_{bb}^*)}\right) = \frac{F'}{(1 + a_{bb}^*)}$$
 Equation 38

This limit permits the estimation of sediment absorption from above water reflectance in tank experiments and highly turbid water where analytical and *in situ* methods may be problematic.

F' values were computed using Hydrolight 3.0 (Mobley, 1995). The refractive index, and phase functions of pure water and particles are as specified in Table 3-2, and Petzold (1972) respectively (Table 4-13), introducing the notations $a = a_w + a_p$ and $b_b = b_{bw} + b_{bp}$.

The tables were run for four wind speeds (0.25 ms⁻¹, 1.00 ms⁻¹, 2.75 ms⁻¹ and 5.00 ms⁻¹) corresponding to sea-state values recorded in MERMAID (MERis MAtchup In-situ Database, http://hermes.acri.fr/mermaid/) metadata, and for solar angles (θ_s) of 0, 15, 30, 45 and 60

degrees that encompasses the MERIS useful viewing geometry. θ_v and Δ_{Φ} are implicit in the Hydrolight runs and the 'quads' were set to give the following viewing geometry:

 $\theta_{\nu} = \{0, 15, 30, 45, 60\}$ $\Delta_{\Phi} = \{0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180\}$

The absorption values were run from a range of a_w values that were below the minimum found in literature, when adjusted for smile and temperature effects, and to the similar greatest value. Thereafter, a log ramp was applied to an absorption value of 30.0 m⁻¹. From the absorption, scattering values were calculated according to a ramp of single scattering albedo (ω) from zero to 0.9999 with the highest density of values at the high ω . In all, for each band around 10,000 table runs were computed according to the number of candidate a_w values. The f' determined from the Hydrolight runs was then fitted to η , where:

$$\eta = \frac{bb_w}{bb_w + bb_p}$$
 Equation 39

The relationship with η proved to be linear for low turbidities. The residuals from the fit to η , were expected to relate to ω from previous work on Case I waters (Morel and Gentili, 1993). This however proved unsuccessful, and instead a polynomial relationship was fitted with *F*' being a function of $b_b/(a+bb)$.

For any view geometry *F* ' can be expressed as:

$$F' = A0 + C\eta + \sum \left(\frac{b_b}{(a+b_b)}\right) ii$$
 Equation 40

where A0 and C are the linear coefficients for η , and $\underline{a_i}$ represents the coefficients of a 4th order polynomial. The F' factors are provided as LUTs containing the polynomials for each band, wind speed and viewing geometry, with the terms varying slowly so that a simple nearest neighbour lookup is sufficient.

4.9.1.1 Hydrological model parameters

At present no account is taken of the effect of increased surface albedo on the atmospheric path radiance, and with the BPAC the figure of merit is the correct retrieval of the $\rho_w(NIR)$. The TSM product is qualitative since it's a scaled $bb_p(NIR)$ product and the relationship between TSM and scattering is known to be highly variable.

Since, in the NIR, there is little difference between the optical properties of phytoplankton, detritus and sediment for Case 1 waters the TSM figures will represent a dry weight or organic material that is closely coupled to chlorophyll concentration. The absorption of CDOM is assumed to be negligible in the NIR.

4.9.1.2 Pure water absorption and scattering

The values of pure water absorption, scattering and the temperature dependence of pure water absorption are taken from Section 4.

4.9.1.3 Particulate properties

In common with the Case 2 model a the spectral slope in the NIR is assumed to be 0.4 (4.7.6, Equation 29). The BPAC uses both an absorbing and non-absorbing sediment model where the model is chosen according to the white scatterer flag. The absorbing sediment model is described in terms of the ratio b_{bp} : a_p and is given in Table 4-16 below. This ratio has been derived by considering the maximum observed reflectance in turbid waters, and the derivation of the figures is described further in the ATBD.

Band	λ	$b_{bp}:a_p$
9	708.75	0.982987
10	753.75	0.88159
12	778.75	0.829859
13	865	0.673561
14	885	0.641754

Table 4-16:	BPAC	sediment	absorption	properties
	-			

4.9.2 TSM ESTIMATES

The BPAC is an IOP model, and as such does not use the value of TSM internally. TSM is derived from $b_b(779)$ in order to set the turbid water flag. The derivation is according to the case 2 model. First the backscattering at 779 is transformed into backscattering at 442:

$$bp(442) = \frac{b_{bp}(779)}{\widetilde{b}_{bp}}(779/442)^{s_b}$$
 Equation 41

where $s_b = 0.4$

TSM is finally derived from the scattering at 442

$$< TSM >= b_p(442)/b_p * (442)$$
 Equation 42
with $b_p^* (442) = 0.578$.

5. Bidirectionality conversions for AOPs

The conversions outlined in this section allow for comparison of MERIS products with in-situ data, as can be done with the MERMAID (MERis Matchup Insitu Database; http://hermes.acri.fr/mermaid).

5.1.1 RADIATIVE TRANSFER SIMULATIONS/CALCULATIONS

Using the ocean part of the reference model, one should be able to calculate the directional reflectance just below the sea surface, $\rho_u^{0^-}(\lambda, \theta_s, \theta', \Delta \phi)$ (or other AOPs or derived quantities), using geophysical parameters as inputs ([*chl*] only for Case-1 waters, and [*chl*], *SPM* and $a_{y2}(443)$ for Case 2 waters).

A first approach consists in using the parameterizations presented in Sections 4.2 to 4.6 to derive IOPs and introduce them into radiative transfer simulations with the relevant boundary conditions (sea state, barometric pressure, etc.). The output of these simulations are radiances in all directions, which can be integrated in different manners to derive various plane or scalar irradiances, from which various quantities can be derived, such as $f'(\lambda, \theta_s)$, which is commonly defined as (Morel *et al.*, 2002):

$$f'(\lambda, \theta_s) = \left(\frac{E_u(\lambda, \theta_s)}{E_d(\lambda, \theta_s)}\right) \left(\frac{b_b(\lambda) + a(\lambda)}{b_b(\lambda)}\right)$$
 Equation 43

 $f(\lambda, \theta_s)$, which is defined as:

$$f(\lambda, \theta_s) = \left(\frac{E_u(\lambda, \theta_s)}{E_d(\lambda, \theta_s)}\right) \left(\frac{a(\lambda)}{b_b(\lambda)}\right)$$
 Equation 44

In Equations 43 and 44, the E_d is $E_d(0-)$, the downwelling irradiance just below the water-air interface.

 $Q(\lambda, \theta', \theta_{\rm s}, \Delta \phi)$, which is defined as:

$$Q(\lambda, \theta_s, \theta', \Delta\phi) = \frac{E_u(\lambda, \theta_s)}{L_u(\lambda, \theta_s, \theta', \Delta\phi)}$$
 Equation 45

and the directional reflectance just below the sea surface, which is:

$$\rho_u^{0^-}(\lambda,\theta_s,\theta',\Delta\phi) = \pi \frac{R(\lambda)}{Q(\lambda,\theta_s,\theta',\Delta\phi)}$$
 Equation 46

where $R(\lambda)$ is the irradiance reflectance just below sea surface [defined as the ratio of upward to downward irradiance, $E_u(\lambda)/E_d(\lambda)$, and $Q(\lambda, \theta_s, \theta', \Delta \phi)$ is the bi-directionality factor. Equation 46 is obtained when considering that :

$$\rho_u^{0^-}(\lambda,\theta_s,\theta',\Delta\phi) = \pi \frac{L_u(\lambda,\theta_s,\theta',\Delta\phi)}{E_d^{(0+)}(\lambda,\theta_s)}$$
 Equation 47

The water reflectance, $\rho_w^{0+}(\lambda, \theta_s, \theta_v, \Delta\phi)$, (i.e., above the sea surface) is expressed as:

$$\rho_w^{0+}(\lambda,\theta_s,\theta_v,\Delta\phi) = \frac{1-\rho_F(W,\theta')}{n^2} \rho_u^{0^-}(\lambda,\theta_s,\theta',\Delta\phi)$$
 Equation 48

where $\rho_F(W,\theta)$ is interpolated bi-linearly from Table 5-1.

Table 5-1: Values of $\rho_F(W, \theta)$, the mean Fresnel reflection coefficient for the water-air interface, as
function of wind speed W and view angle θ' , (Austin, 1974).

w _s (m/s)	0	4	10	16
θ' (deg)				
0	0.0211	0.0211	0.0213	0.0217
10	0.0211	0.0213	0.0218	0.0228
20	0.0218	0.0227	0.0255	0.0334
30	0.0265	0.0325	0.0613	0.0961
35	0.0350	0.0602	0.1234	0.1686
40	0.0588	0.1559	0.2367	0.2741
45	0.1529	0.3801	0.4065	0.4131
50	1.0000	0.6718	0.5988	0.5629
55	1.0000	0.8905	0.7715	0.7055
60	1.0000	0.9807	0.8967	0.8277

When the Raman scattering is ignored, the functions $f(\lambda)$, $f'(\lambda)$ and $Q(\lambda, \theta_s, \theta_v, \Delta \phi)$ are obtained through monochromatic radiative transfer calculations using $a_1(\lambda)$ and $b_1(\lambda)$ or $a_2(\lambda)$ and $b_2(\lambda)$ as calculated using the parameterization presented in Sections 4.4 (pure sea water), Section 4.5 (Case 1 waters) and 4.6 (Case 2 waters), and a normalised volume scattering function. When the Raman scattering is accounted for, radiative transfer calculations must include the wavelength domain involved for the excitation of the Raman emission.

In case f'/Q (or f/Q) lookup tables are developed, they should have the following entries:

- the molecular to total scattering ratio (b_w/b) as derived from parameterizations in Section 4.
- the single scattering albedo (b/[a+b]) as derived from parameterizations in Section 4
- the solar zenith angle $\theta_{\rm s}$.
- the view zenith angle θ
- the relative azimuth angle $\Delta \phi$

The atmospheric optical thickness $\tau(550)$ should be specified (it is not necessarily an entry to the look-up table).

5.1.2 SEMI-ANALYTICAL CALCULATIONS

When the reflectance $R(\lambda)$ is replaced by :

$$R(\lambda) = f'(\lambda) \frac{b_b(\lambda)}{a(\lambda) + b_b(\lambda)}$$
 Equation 49

or by:

$$R(\lambda) = f(\lambda) \frac{b_b(\lambda)}{a(\lambda)} \text{ (only usable when } b_b \ll a)$$
 Equation 50

Then $\rho_w^{0+}(\lambda, \theta_s, \theta_v, \Delta\phi)$ can be expressed as :

$$\rho_{w}^{0+}(\lambda,\theta_{s},\theta',\Delta\phi) = \pi \Re(\theta') \left(\frac{f(\lambda,\theta_{s})}{Q(\lambda,\theta_{s},\theta',\Delta\phi)}\right) \left(\frac{b_{b}(\lambda)}{a(\lambda)}\right)$$
Equation 51

which is also obtained by combining the following basic equations (see also the table of symbols in Section 2.5):

$R = \frac{E_u}{E_d} = f \frac{b_b}{a}$	Equation 52
$Q = \frac{E_u}{L_u}$	Equation 53

$$L_w = L_u \frac{1 - \rho_F}{n^2}$$
 Equation 54

$$E_d(0^-) = E_d(0^+) \frac{1 - \overline{\rho}}{1 - \overline{r} R}$$
 Equation 55

The semi-analytical Equation 51 can be used along with the parameterizations developed in section 4.2 to 4.6.1. In that case, $a(\lambda)$ and $b_b(\lambda)$ can be broken into individual contributions by the different water constituents, following the "analytical approach" (but see introduction to Section 4.5.1).

Equation 56

Equation 57

$$b_b(\lambda) = \sum_{n=1}^N \widetilde{b}_{bn}(\lambda) b_n(\lambda)$$

 $a(\lambda) = \sum_{n=1}^{N} a_n(\lambda)$

where the subscript n indicates a given optically significant seawater constituent, $b_n(\lambda)$ is the scattering coefficient of the n^{th} substance and $\tilde{b}_{bn}(\lambda)$ is the ratio of backscattering to scattering (or backscattering efficiency) of the n^{th} substance.

In Equation 51 above, the "gothic" R factor (Morel and Gentili, 1996) is defined by:

$$\Re(\theta') = \left[\frac{(1-\overline{\rho})}{(1-\overline{r}R)} \frac{(1-\rho_{\rm F}(\theta'))}{n^2}\right]$$
 Equation 58

where:

n is the refractive index of sea water (dimensionless)

 $\rho_{\rm F}(\theta)$ is the Fresnel reflectance at the air-sea interface for the scattering angle θ

(dimensionless)

- $\overline{\rho}$ is the mean reflection coefficient for the downwelling irradiance at the sea surface (dimensionless)
- \overline{r} is the average reflection for upwelling irradiance at the water-air interface (dimensionless)
- \Re is to be interpolated from Table 5-2.

Table 5-2: Values of \Re as function of wind speed W and view angle θ'

W (m.s ⁻¹) θ' (deg) \	0	4	8	16
0	0.5287	0.5287	0.5287	0.5287
1	0.5287	0.5287	0.5287	0.5287
2	0.5287	0.5287	0.5287	0.5287
3	0.5287	0.5287	0.5287	0.5287
4	0.5287	0.5287	0.5287	0.5287
5	0.5287	0.5287	0.5287	0.5287
6	0.5287	0.5287	0.5287	0.5287
7	0.5287	0.5287	0.5287	0.5287
8	0.5287	0.5287	0.5287	0.5287
9	0.5287	0.5287	0.5287	0.5287
10	0.5287	0.5287	0.5287	0.5287
11	0.5287	0.5287	0.5287	0.5287
12	0.5287	0.5287	0.5287	0.5286
13	0.5287	0.5287	0.5287	0.5286

0

0.5287

0.5287

W (m.s⁻¹) θ' (deg) \

14

15

Reference Model for Third MERIS Level 2 reprocessing: Ocean branch

4

Doc. No :PO-TN-MEL-GS-0026 : 5 : July 2011 : 51 of 106 Issue Date Page

16

0.5287	0.5287	0.5286
0.5287	0.5286	0.5286
0.5286	0.5286	0.5286
0.5286	0.5286	0.5285
0.5286	0.5286	0.5285
0.5286	0.5286	0.5285
0.5286	0.5285	0.5284
0.5285	0.5285	0.5284

8

16	0.5287	0.5286	0.5286	0.5286
17	0.5287	0.5286	0.5286	0.5285
18	0.5286	0.5286	0.5286	0.5285
19	0.5286	0.5286	0.5286	0.5285
20	0.5286	0.5286	0.5285	0.5284
21	0.5286	0.5285	0.5285	0.5284
22	0.5285	0.5285	0.5284	0.5283
23	0.5285	0.5284	0.5284	0.5283
24	0.5285	0.5284	0.5283	0.5282
25	0.5284	0.5283	0.5283	0.5282
26	0.5283	0.5283	0.5282	0.5281
27	0.5283	0.5282	0.5281	0.528
28	0.5282	0.5281	0.5281	0.5279
29	0.5281	0.528	0.528	0.5278
30	0.528	0.5279	0.5279	0.5276
31	0.5279	0.5278	0.5277	0.5275
32	0.5278	0.5277	0.5276	0.5274
33	0.5277	0.5276	0.5274	0.5272
34	0.5275	0.5274	0.5273	0.527
35	0.5274	0.5272	0.5271	0.5268
36	0.5272	0.527	0.5269	0.5265
37	0.527	0.5268	0.5266	0.5263
38	0.5267	0.5266	0.5264	0.526
39	0.5265	0.5263	0.5261	0.5257
40	0.5262	0.526	0.5258	0.5253
41	0.5259	0.5257	0.5254	0.5249
42	0.5255	0.5253	0.525	0.5245
43	0.5251	0.5249	0.5246	0.524
44	0.5247	0.5244	0.5241	0.5235
45	0.5242	0.5239	0.5236	0.5229
46	0.5237	0.5233	0.523	0.5223
47	0.5231	0.5227	0.5223	0.5216
48	0.5224	0.522	0.5216	0.5208
49	0.5217	0.5212	0.5208	0.52
50	0.5209	0.5204	0.52	0.5191
51	0.52	0.5195	0.519	0.518
52	0.519	0.5184	0.5179	0.5169
53	0.5179	0.5173	0.5168	0.5157
54	0.5167	0.5161	0.5155	0.5144
55	0.5153	0.5147	0.5141	0.5129
56	0.5138	0.5131	0.5125	0.5113
57	0.5122	0.5115	0.5108	0.5096
58	0.5103	0.5096	0.5089	0.5077
59	0.5083	0.5076	0.5068	0.5056
60	0.5061	0.5053	0.5045	0.5034

Doc. No :PO-TN-MEL-GS-0026 : 5 : July 2011 : 52 of 106 Issue Date

	5
Page	: 52 of

W (m.s ⁻¹) θ' (deg) \	0	4	8	16
61	61 0.5037		0.502	0.5009
62	0.5009	0.5001	0.4993	0.4983
63	0.4979	0.4971	0.4964	0.4953
64	0.4946	0.4938	0.4932	0.4923
65	0.491	0.4901	0.4896	0.4889
66	0.4869	0.4861	0.4857	0.4853
67	0.4825	0.4818	0.4815	0.4813
68	0.4775	0.4771	0.4769	0.4771
69	0.4721	0.4719	0.4719	0.4726
70	0.4662	0.4662	0.4666	0.468
71	0.4596	0.46	0.4607	0.4631
72	0.4524	0.4532	0.4544	0.4578
73	0.4446	0.4461	0.4478	0.4523
74	0.4359	0.4381	0.4407	0.4467
75	0.4265	0.4295	0.4333	0.4405
76	0.4161	0.4204	0.4254	0.4341
77	0.405	0.411	0.4172	0.4279
78	0.3929	0.4009	0.4086	0.4212
79	0.3797	0.3903	0.3994	0.4142
80	0.3659	0.3793	0.3905	0.4072
81	0.3514	0.3676	0.3809	0.4
82	0.3362	0.3563	0.371	0.3928
83	0.3206	0.344	0.3613	0.3853
84	0.3049	0.3321	0.3515	0.378
85	0.2884	0.32	0.3416	0.3702
86	0.2728	0.3082	0.3316	0.3628
87	0.2572	0.296	0.3219	0.3554
88	0.2421	0.2847	0.312	0.3476
89	0.2276	0.2732	0.3021	0.3394
90	0.5287	0.5287	0.5287	0.5287

6. Sea surface state

6.1 SPECULAR REFLECTIONS

The effect of the *air-sea* interface shape i.e., the water surface roughness) on the Fresnel reflection and refraction are accounted for by applying statistics from Cox and Munk (1954), assuming an isotropic distribution of wave facet slopes and a variable wind-speed above sea level.

The radiative transfer codes (RTCs) from , used in the algorithms for extracting information about atmospheric and oceanic constituents from MERIS signal, account for these multiple specular reflections (so-called "sunglint") at sea surface level in the TOA radiance (or reflectance) computation. When generating the look-up table (LUT) with the polynomial coefficients for linking $[\rho_{path}/\rho_R]$ to the total aerosol optical thickness (τ_a) for atmospheric corrections of MERIS data over ocean, the sunglint contribution has to be removed from reflectances computed over pure Rayleigh atmospheres (ρ_R) as well as over realistic atmospheres (molecules + aerosols, ρ_{path}) before to make the ratio between these two reflectances and to relate it to the total aerosol optical thickness. Two RTCs are available for generating the LUTs over wind-roughened sea surface: (1) RTC/SO (Successive Orders code from the Laboratoire Interdiscipli-naire en Sciences de l'Environnement (LISE) in France, Deuzé *at al.*, 1989) in which a flag can be activated to remove or not the sunglint contribution from the TOA reflectances, and (2) RTC/MOMO (Matrix-Operator MethOd code from Freie Universität Berlin (FUB) in Germany), in which the sunglint is included in the TOA reflectances. Both these two RTCs use the Cox-Munk model to compute the sunglint contribution.

In this model, the wave facet slopes are assumed to be normally distributed independently of the wind direction. The probability density function of facet slopes $p(\theta_s, \theta_v, \Delta \phi)$ for the illumination and viewing configurations $(\theta_s, \theta_v, \Delta \phi)$ is expressed as:

$$p(\theta_s, \theta_v, \Delta \phi) = \frac{1}{\pi \sigma^2} \exp\left(\frac{-\tan^2 \beta}{\sigma^2}\right)$$
 Equation 59

where β is the angle between the local normal and the normal to the facet:

$$\cos\beta = \frac{\cos\theta_v + \cos\theta_s}{2\cos\omega}$$
 Equation 60

with, $\cos 2\omega = \cos \theta_s (\cos \theta_v - \sin \theta_s) \sin \theta_v . \cos \Delta \phi$

and σ is the root mean square of slopes function of the wind speed (w_s) just above sea level:

$$\sigma^2 = 0.003 + 5.12 \ 10^{-3} \ w_s$$
 Equation 61

Shadowing effects are not accounted for. The sun glint ρ_G (i.e., the specular reflection of the sunlight over the ocean waves) just above sea level is then computed as:

$$\rho_{G} = \rho_{F}(\omega) \frac{\pi \ p(\theta_{s}, \theta_{v}, \Delta \phi)}{4 \cos \theta_{s} \cos \theta_{v} \cos^{4} \beta}$$
 Equation 62

where $\rho_F(\omega)$ is the Fresnel reflectance at the air-sea interface.

$$\begin{cases} \rho_F(\omega) = \frac{1}{2} \left[\left(\frac{\sin(\omega - \vartheta_t)}{\sin(\omega + \vartheta_t)} \right)^2 + \left(\frac{\tan(\omega - \vartheta_t)}{\tan(\omega + \vartheta_t)} \right)^2 \right] & \text{for } \omega \neq \vartheta_t \\ \rho_F(\omega) = \left(\frac{n_w - 1}{n_w + 1} \right)^2 & \text{for } \omega = \vartheta_t \end{cases}$$

with $\mathcal{G}_t = \arcsin(\sin \omega / n_w)$

Finally, the sun glint contribution at TOA is expressed as follows:

$$\rho_G T(\theta_s) T(\theta_v)$$
 Equation 64

where $T(\theta_s)$ and $T(\theta_v)$ are respectively for the direct downward and upward atmospheric transmittances. The latter are expressed as follows:

$$T(\theta_s) = \exp(-\tau/\mu_s)$$
 and $T(\theta_v) = \exp(-\tau/\mu_v)$

with τ the total optical thickness (Rayleigh + aerosols + absorbing gases when applicable).

6.2 WHITE CAPS

White caps are not accounted for.

7. Atmosphere

Atmosphere shall be assumed to be plane and its optical properties shall be provided at least for the following MERIS bands (see wavelengths in Section 3):

- 1, 2, 3, 4, 5, 6, 7, 8, 9, 12 and 13 for all ocean-related processing.
- 11 and 12 for correction of the slight O2 gaseous absorption in band#12 over Ocean.
- 9 and 10 for correction of the slight H_2O gaseous absorption in band 9.

7.1 CONSTITUENTS

The atmosphere shall be considered to be composed of:

- 1. molecules (Rayleigh scattering).
- 2. aerosols (scattering and absorption).
- 3. ozone (O_3) gas (absorption).
- 4. oxygen (O_2) gas (absorption).
- 5. water-vapour (H_2O) gas (absorption).
- 6. clouds (scattering and absorption).

All the other atmospheric constituents (N_2 , Ar, CO_2 , Ne, He, CH_4 , Kr, H_2 , N_2O , Xe, NO_2 , CO and NH_3) are neglected.

The atmospheric gaseous absorption, mainly O_2 , O_3 and H_2O but also other gases when relevant, may be separately treated from the rest of the atmospheric constituents (aerosols and molecules). This approach allows to generate a set of absorption coefficients used as inputs to the RTC for estimating the gaseous transmission function. Although the interactions of multiple scattering and the gaseous absorption are accurately accounted for in the radiative transfer computations, this assumption needs to be validated. This particular treatment is used in the RTC/FUB(MOMO) implemented in the MERIS Ground Segment (GS).

7.2 POLARISATION

The radiative transfer within the coupled "*Atmosphere-Land/Ocean*" system should be treated by including the polarization processes. Among the RTCs used in the MERIS-GS, only the RTC/SO (LISE) accounts for polarization.

7.3 SAMPLING

In the RTCs implemented in the MERIS-GS, the radiance field is numerically computed with an angular discretization of the space and the computation with respect to the optical thickness (vertical integration) is accomplished by dividing the atmosphere into sub-layers. Consequently, it shall be possible to parameterize in the RTC:

• the number of discrete directions (zenith and azimuth angles), knowing that the set of zenith angles is derived from a Gauss-Lobatto quadrature in the RTC/FUB(MOMO) and from a Gauss quadrature in the RTC/LISE(SO), and that the set of azimuth angles is specified on a regular grid.

For MOMO, an input 2D matrix corresponding to the number of types of scatterers (3 aerosols + 3 clouds) by the number of layers (user defined value) has to be filled for each sub-layer with the type and the density $(1/dz, m^{-1})$ of aerosols and/or cloud particles. This code presents some flexibilities to compute radiative transfer with more than 3 major aerosol layers by using the clouds layers. This is especially dedicated for the treatment of dusts assemblages (4 aerosols layers).

• For the SO code, a mixing rate between molecules and aerosols is precomputed for each of the atmospheric sub-layers For three major aerosol layers (boundary + troposphere + stratosphere over ocean), the aerosols are assumed to be homogeneously distributed. The atmosphere is discretized into 100 elementary sub-layers and to assure the continuity of the light extinction between two consecutive major aerosol layers, an infinitesimal sub-layer is introduced at the transition (see Figure 7-1).

Figure 7-1: Schematic representation of the «3 aerosol-layers» atmosphere

7.4 SURFACE PROPERTIES

The surface below the atmosphere shall be modelled by a water body with optical properties including the Fresnel reflection contribution at the air-sea interface as described in Sections 4 and 6. The surface will be considered as infinite and homogeneous.

7.5 PRESSURE AT GROUND LEVEL

The surface pressure at sea level (elevation of 0 km) shall be equal to 1013.25 hPa.

7.6 RAYLEIGH SCATTERING

The vertical profile of molecules shall be taken from Elterman (1968), scaled so that the total optical thickness (τ_R) has the values from Table 6-1. The sea level pressure is 1013.25 hPa.

The Rayleigh optical thickness (τ_R) shall be taken from Table 7-1. These values are computed with the following approximation from Hansen and Travis (1974):

$$\tau^{R} = \frac{P_{s}}{P_{o}} \left[8.524 \ 10^{-3} \ \lambda^{-4} + 9.63 \ 10^{-5} \ \lambda^{-6} + 1.1 \ 10^{-6} \ \lambda^{-8} \right]$$
 Equation 66

where P_s is the surface pressure (hPa), P_o the pressure in the STP conditions, and λ the wavelength expressed as μm .

λ	412.5	442.5	490	510	560	620	665	681.25
$ au_R$	0.315280	0.235910	0.155155	0.131714	0.089912	0.059433	0.044730	0.040562
λ	708.75	753.75	761.875	778.75	865	885	900	
$ au_{ m D}$	0.034558	0.026944	0.025802	0.023617	0.015459	0.014099	0.013176	

Table 7-1: Rayleigh optical thickness in the 15 MERIS bands

Considering the molecular anisotropy, the Rayleigh scattering phase function should be computed as:

$$P(\Theta) = \frac{1}{4\pi} \frac{3}{4(1+2\gamma)} \left[(1-\gamma) \cos^2 \Theta + (1+3\gamma) \right] \text{ with } \gamma = \frac{\delta}{2-\delta}$$
 Equation 67

where Θ represents the scattering angle and δ the molecular depolarization factor taken to be equal to 0.0279, whatever the wavelength.

7.7 OXYGEN

The vertical distribution of oxygen follows the pressure and temperature profile of the atmosphere. The latter differs between arctic or tropical atmospheres. The spectral O_2 absorption coefficients shall be computed with a Neural Network tool (NN) combining a Line By Line (LBL) code and the spectroscopic HITRAN database (see Rothman *et al*, 2009) for different states of sea surface, in order to account for O_2 atmospheric-Fresnel transmittances in the residual MERIS absorption bands at 778.75 nm.

7.8 OZONE

The vertical distribution of ozone varies significantly with atmospheric dynamical processes. The impact of different profiles shall be investigated, although the major part of the ozone content is located in the upper atmospheric layers. The spectral O_3 absorption coefficients shall be computed with a LBL code and the spectroscopic HITRAN database (see Rothman *et al*, 2009).

7.9 WATER VAPOUR

Because the vertical distribution of water-vapour is strongly dependent on the temperaturepressure profiles, and the latter has to be considered in the radiative transfer computations. The spectral H_2O absorption coefficients shall be computed with a NN tool combined with LBL code and the spectroscopic HITRAN database (see Rothman *et al*, 2009) for different states of sea surface (i.e., surface roughness levels) to account for the coupling term between the atmospheric scattering and the Fresnel reflection at sea surface.

7.10 AEROSOLS

7.10.1 MODELS AND PROPERTIES

A set of aerosol models shall be taken from ATBD 2.7: Atmospheric corrections over case-1 waters, Section 3.1.1.5.2.

Atmospheric corrections over water rely on a good definition of the aerosol optical properties. Some basic constituents are mixed homogeneously to build-up models which are listed hereafter. Vertical profile of models defines assemblages, as described in Section 12.

Aerosol models shall be defined each as a homogeneous mixture of basic constituents. Each basic constituent shall be a population of spherical particles characterized by:

- its complex refractive index at all wavelengths (see Section 10),
- its particle size distribution function: log-normal, Junge's power-law or modified Gamma distribution (see below),
- the parameters of its particle size distribution (see below).

The 6 basic constituents are the following:

- 1. sea salt solution in water (oceanic),
- 2. water soluble particles,
- 3. dust-like particles,
- 4. desert dust aerosols (mixing of clay, silt and sand),
- 5. soot-like particles,
- 6. sulphuric acid solution in water

An additional constituent, using several models, is built with combination of two constituents from above:

7. rural aerosol mixture (70% of water soluble particles and 30% of dust-like particles)

The standard aerosol models (SAMs) are listed as follows:

- 1) Maritime model (Shettle and Fenn, 1979)
- 2) Coastal model (Shettle and Fenn, 1979)
- 3) Rural model (Shettle and Fenn, 1979)
- 4) Continental model (WCRP, 1986)
- 5) Stratospheric model (WCRP, 1986)
- 6) Desert dust model (Moulin *et al.*, 2001)¹
- 7) Blue-IOP models composed with a single component from which particles are considered as spherical and from which the size distribution follows a Log-Normal law. The latter are detailed in Section 7.10.2.

Table 7-2 indicates the proportions of constituents in each model, and Figure 7-2 displays the principle of the aerosol assemblages. Distinction between components and models for Desert Dust models from (Moulin *et al*, 2001) is less easy: essential components combine 3 categories of particle sizes (see Table 7-3) associated with two sets of refractive indices (see Table 9-1), referred to as BDS and BDW. Three different combinations (in terms of proportions) of the 3 ranges of particle sizes together with the 2 sets of refractive indices result in 6 elementary models BDS1 to BDS3 (first set of refractive indices) and BDW1 to BDW3 (second set).

 Table 7-2: Aerosol components and their respective contributions (as percent of the volume, or as percent of the number of particles) in the composition of the aerosol models. The principle of «external mixing» is applied when calculating the optical properties of the aerosol models. ‡ 70% of water soluble particles, and 30% of dust-like particles.

Aerosol model	Components	Volume [%]	Particle [%]
Maritime	Rural aerosol mixtures [‡]	-	99.0
(Shettle and Fenn, 1979)	Oceanic (Sea-salt solution in	water) -	1.0
Coastal	Rural aerosol mixtures [‡]	-	99.5
(Shettle and Fenn, 1979)	Oceanic (Sea-salt solution in	water) -	0.5
Continental	Water soluble	29	93.876773
	Dust-like	70	2.27 10-4
(WCRP, 1986)	Soot	1	6.123
Blue-IOP	Small particles	-	100
(Santer and Zagolski, 2010)	(accumulation mode)	1	

Table 7-2 cont.

Desert	-dusts

BDS-1 & BDW-1	Large particles	-	3.861 10 ⁻⁵
	Medium particles	-	45.78573545
(Moulin et al, 2001)	Small particles	-	54.21422594
BDS-2 & BDW-2	Large particles	-	3.861 10-4
	Medium particles	-	45.785561705
(Moulin et al, 2001)	Small particles	-	54.214052195
BDS-3 & BDW-3	Large particles	-	7.722 10-4
	Medium particles	-	45.785368655
(Moulin et al, 2001)	Small particles	-	54.213859145
H ₂ SO ₄	75% solution of	100	100
(WCRP, 1986)	Sulphuric acid in water		

Figure 7-2: Principle of aerosol assemblages

Aerosol model or aerosol o	Parameters of the	log-normal dist	tribution	
	-	r _{mean} [µm]	$\sigma/ln(10)$ [µm]	$exp(\sigma)$
Rural	RH 50%	0.02748	0.35	2.238721
(water soluble + dust-like)	RH 70%	0.02846	0.35	2.238721
``````````````````````````````````````	RH 90%	0.03884	0.35	2.238721
(Shettle and Fenn, 1979)	RH 99%	0.05215	0.35	2.238721
Oceanic	RH 50%	0.17110	0.40	2.511886
(sea-salt solution in water)	RH 70%	0.20410	0.40	2.511886
	RH 90%	0.38030	0.40	2.511886
(Shettle and Fenn, 1979)	RH 99%	0.75050	0.40	2.511886
Continental		0.00500	0.475671	2.99
(water soluble, dust-like		0.50000	0.475671	2.99
soot) (WCRP, 1986)		0.01180	0.301030	2.00
Desert Dust	Large particles	6.240	0.276462	1.89
	Medium particles	0.022	0.505150	3.20
( <i>Moulin et al., 2001</i> )	Small particles	0.001	0.328380	2.13
		Parameters of the Mod	lified Gamma size	e distribution
		A	α	γ b
$75\% H_2 SO_4 \qquad (WCRP,$	1986)	324	1	1 18

#### Table 7-3: Parameters defining the size distribution of the aerosol models

Tables from Section 9 gives the refractive indices (m) of the aerosol models.

## 7.10.2 BLUE AEROSOLS

Because of the high temporal and spatial variability of the small particles, the atmospheric correction is a crucial step in the processing of ocean colour satellite imagery. In a classic atmospheric correction scheme, the aerosol reflectance is first estimated at 865 nm. Then a spectral extrapolation from the NIR to the blue region is performed to correct the measured TOA radiance. Accuracy of the atmospheric correction is directly related to the ability of the aerosol model to describe the spectral dependence between the NIR and the blue region.

In the first MERIS processing, a set of four blue aerosol models characterized by a Junge size distribution and a non-absorbing refractive index (m=1.44) was introduced in the set of the 16 SAM's over ocean. They were spectrally described by four Angström exponents ( $\alpha = -1.5$ , -2.0, -2.5, -3.0). Results derived from the first MERIS validation phase stressed that the first blue model ( $\alpha = -1.5$ ) was whiter than expected. Although the QWG recommendation was to replace this blue model by a more absorbing aerosol (i.e., a maritime model with RH=99%), the atmospheric correction in the second MERIS reprocessing remained unsatisfying.

Furthermore, it clearly appeared that the Junge models do not reproduce accurately the spectral dependence for the small particles. While the normalized extinction coefficient is overestimated with these blue Junge models for the short wavelengths the latter was slightly underestimated for larger wavelengths toward the NIR region. An alternative issue to redefine the blue models was proposed by LISE/ParBleu to the MERIS QWG based on an approach combining the micro-physical properties of these small particles with their IOPs derived from



CIMEL measurements (sky / sun radiances) acquired over ocean sites. A set of 3 blue-IOP models have been proposed then to replace the 3 Junge models from the last set of 16 SAMs. The latter are characterized by a complex refractive index (m=1.44; k=0.003) and a log-normal size distribution (Table 7-4) with a spectral dependence defined by  $\alpha = -0.3$ .

Aerosol model or aerosol co	Parame	ters of the log- distribution	normal	
		r _{mean} [µm]	$\sigma/ln(10)$ [µm]	$exp(\sigma)$
BLUE	IOP-01	0.039971	2.302585	1.349859
$(S_{22}, 1, 2, 2, 2, 1, 1; 2010)$	IOP-02	0.034958	2.302585	1.349859
(Santer and Zagolski, 2010)	IOP-03	0.029829	2.302585	1.349859

### Table 7-4: Parameters defining the size distribution of the blue aerosol models.

## 7.10.3 PHASE FUNCTION AND SINGLE SCATTERING ALBEDO

Aerosol phase function, extinction and scattering coefficients, single scattering albedo, asymmetry factor shall be computed according to Mie theory (Mie, 1908), based on the parameters identified in Section 7.10.1.

Table 10-1 summarizes the results of the Mie computations. For each aerosol model and each wavelength, are displayed the extinction coefficients ( $Q_{ext}$ ) and the single scattering albedo ( $\omega_0$ ).

The plots in Section 12 display the scattering phase function at 550 nm for the land-aerosol models and at the 15 MERIS wavelengths for the ocean-aerosol assemblages.

## 7.10.4 VERTICAL PROFILES

Aerosol assemblages over ocean shall be specified by the following 3 major aerosol layers:

- a boundary layer (model, AOT-550) from 0 to 2 km altitude,
- a tropospheric layer (model, AOT-550) from 2 to 12 km altitude,
- a stratospheric layer (model, AOT-550) above 12 km altitude..

34 aerosol assemblages (16 SAMs + 18 Dusts) are available for the atmospheric corrections over oceans. The latter are fully described in Section 11.

## 7.11 **REFERENCE ATMOSPHERE OVER OCEANS**

For the purposes of validation and of LUTs computation (i.e., those which do not require variations of the atmosphere properties), a reference atmosphere over ocean has been defined with the following parameters:

- Rayleigh scattering as defined in Section 6.6, with a sea level pressure of 1013.25 hPa,
- boundary aerosol layer: maritime model with a relative humidity = 99%,  $\tau_a(550)=0.2$ ,
- free aerosols both in tropospheric and stratospheric layers,
- no ozone absorption
- no water vapour absorption



#### 7.12 ATMOSPHERIC TRANSMITTANCES OVER OCEAN

### 7.12.1 GASEOUS ABSORPTION

In the atmospheric correction algorithm over ocean, the first step consists of removing the gaseous absorption. While the ozone absorbs in all the MERIS ocean-related spectral bands (Table 7-5) a slight water-vapour (H₂O) and oxygen (O₂) absorption occurs respectively at 708.75nm (band #9) and at 778.75nm (band #12).

For the first correction, the ozone layer being located above the aerosols, the absorption and scattering processes can be decoupled thanks to the weakness of the coupling between Rayleigh scattering and gaseous absorption at this pressure level. The ozone transmissivity  $(T_{O3})$  is then expressed as:

$$T_{O_1} = \exp(-M \cdot \tau_{O_1} \cdot u_{O_1})$$
 Equation 68

where:

$$M = \frac{1}{\cos(\theta_s)} + \frac{1}{\cos(\theta_v)}$$
 Equation 69

and:

 $u_{O3}$  the total amount of ozone (in *cm*-*atm*)  $\tau_{O3}$  the ozone optical thickness *M* the airmass.

The actual value of the ozone is provided by the European Centre for Medium range Weather Forecast (ECMWF).

For water vapour (mostly located in the lower troposphere), the correction within a slightly contaminated spectral band is achieved by estimating the water vapour content ( $u_{H2O}$ ) with a polynomial fit of the ratio of radiances at 900 nm (with absorption) and at 885 nm (without absorption) MERIS wavelengths (Santer *et al.*, 1999). This approach is used to estimate the total water vapour transmittance ( $T_{H2O}$ ) and accounts for the coupling between scattering and gaseous absorption. To account for the coupling term between the atmospheric scattering and the Fresnel reflection at sea surface, a NN tool (FUB) is then used to get these polynomial coefficients of water-vapour retrieval.



Table 7-5: Ozone optical thickness for a standard amount of 0.32 cm-atm and ozone transmis	sivities
within each of the 15 MERIS spectral bands.	

Band	$\lambda(nm)$	$\Delta\lambda(nm)$	$ au_{o_3}$	Absorbers	$T_{O_3}$
1	412.50	10	2.1785 10-4	O ₃	0.99985
2	442.50	10	2.8136 10-3	$O_3$	0.99806
3	490.00	10	2.0057 10-2	$O_3$	0.98627
4	510.00	10	4.0809 10 ⁻²	$H_2O+O_3$	0.97225
5	560.00	10	1.0399 10 ⁻¹	O ₃	0.93081
6	620.00	10	1.0903 10-1	$O_3$	0.92758
7	665.00	10	5.0504 10-2	O ₃	0.96578
8	681.25	7.5	3.5258 10-2	$H_2O+O_3$	0.97598
9	708.75	10	1.8808 10-2	$H_2O+O_3$	0.98712
10	753.75	7.5	8.8966 10 ⁻³	$H_2O^*+O_3$	0.99388
11	761.875	3.75	6.6342 10 ⁻³	$O_2 + O_3$	0.99544
12	778.75	15	7.6933 10 ⁻³	$H_2O^*+O_2$	0.99471
13	865.00	20	2.1922 10 ⁻³	$H_2O^*$	0.99849
14	885.00	10	1.2107 10-3	$H_2O$	0.99917
15	900.00	10	1.5167 10 ⁻³	$H_2O$	0.99895

Before applying atmospheric corrections over the ocean, TOA radiance (*L*), measured by MERIS and delivered as the level-1 product, needs to be converted into normalized radiances ( $L_n$ ) by an extraterrestrial solar irradiance equal to  $\pi$ :

$$L_n = L \cdot \frac{\pi d^2}{F_0}$$
, Equation 70

 $F_0$  is the Thuillier *et al.* (2003) mean extraterrestrial solar irradiance, corrected for the Sun-Earth distance *d* (in AU).  $F_0(\lambda)$  can be extracted from the Thuillier database (Thuillier *et al.*, 2003). The corrective factor *d* depends on the position of the Earth on its orbit and is computed with the following approximation:

$$d = \frac{1}{A - B\cos(\gamma_J \pi / 180) - \varepsilon \cos(\gamma_J \pi / 90)},$$
 Equation 71

where:

 $\varepsilon$  is the eccentricity of the Earth's elliptic orbit ( $\varepsilon$ =0.00014)  $\gamma_J = C \cdot J - D$   $A = 1 + \varepsilon$  B = 0.01671 C = 0.9856002831 D = 3.4532868J = Julian day



A simpler corrective formulation also exists but note that it is *not* applied in the atmospheric correction:

$$d = \frac{1}{(1 - 0.01673.\cos M)}$$
 Equation 72

with:

$$M = 0.9856.(J-4).\frac{\pi}{180}$$
 Equation 73

The TOA normalized radiance  $(L_n)$  is then corrected for the gaseous absorption as:

$$\rho^* = \frac{L_n}{\mu_s \cdot T_g},$$
 Equation 74

where:

 $\rho^*$  is the apparent reflectance at TOA,

 $T_{\rm g}$  the total gaseous transmittance (T_{H2O} X T_{O3}),

 $\mu_s$  the cosine of the solar zenith angle.

#### 7.12.2 MARINE REMOTE SENSING REFLECTANCE

In ocean colour remote sensing,  $\rho^*$  corrected for gaseous absorption can be linearized as:

$$\rho^* = \rho_{atm} + T \cdot \frac{\rho_w}{1 - \rho_w \cdot S} + \rho_G \cdot e^{-M \cdot \tau}, \qquad \text{Equation 75}$$

where:

- $\rho_{atm}$  stands for the intrinsic atmospheric contribution (multiple scattering contributions from the molecules, the aerosols and the Rayleigh-aerosol coupling, as well as from the coupling between atmospheric scattering and Fresnel surface reflection).
- T is the total atmospheric transmittance (Rayleigh + aerosol) exclusive of gaseous absorption
- *S* is the spherical albedo relating to the molecules and the aerosols.
- $\tau$  is the total optical thickness (Rayleigh + aerosol).
- M is the airmass.
- $\rho_{w}$  is the water reflectance..
- $\rho_G$  is the direct sun glint reflectance.



The Fresnel reflection is accounted for in the computation of the coupling terms between specular reflections and atmospheric scattering.

The following step in the atmospheric correction algorithm over ocean is to characterize the aerosols. Over case-1 waters, the water body is assumed to be black ( $\rho_w=0$ ) at 778.75 nm and 865 nm. Moreover, below a wind-speed threshold and outside of the specular direction, the foam and direct sun glint contributions can be neglected. Thus, the signal at TOA corresponds to the intrinsic atmospheric scattering ( $\rho_{atm}$ ). Consequently, from the two atmospheric path radiances acquired at 778.75 nm and 865 nm we can retrieve the aerosol type and the aerosol optical thickness (AOT) at 865 nm (Antoine and Morel, 1999).

A last step consists of the removal of the atmospheric path reflectance ( $\rho_{atm}$ ). Because the latter includes also the coupling term between atmospheric scattering and Fresnel surface reflection, its estimation relies on a radiative transfer code (RTC/SO) in which the Fresnel reflection is accounted for with a wind-roughened black sea surface. The apparent contribution of the water body ( $\rho_w^*$ ) is then expressed as:

$$\rho_w^* = \rho^* - \rho_{atm}.$$
 Equation 76

 $\rho_w^*$  includes three different contributions:

- the water body as seen through the atmosphere,
- the direct sun glint,
- the foam for which no correction is applied..

Moreover, the reflection of the sky dome is accounted for in  $\rho_{atm}$ .

In order to derive the water reflectance at sea level (bottom of atmosphere, BOA) from  $\rho_w^*$ , a total (diffuse + direct) atmospheric transmittance in upward direction  $T(\mu_v)$  is introduced. Following the 5S code (Vermote *et al.*, 1997), this upwelling transmittance corresponds to the ratio between BOA and TOA irradiances for a solar zenith angle ( $\theta_v$ ) measured over a dark surface (without Fresnel reflection). The water reflectance is then computed as:

$$\rho_w = \rho_w^* / T(\mu_v).$$
 Equation 77

 $\rho_w$  is the geophysical output from atmospheric correction based on a decoupled "atmosphereocean" system.

#### 7.12.3 UPWARD AND DOWNWARD ATMOSPHERIC TRANSMITTANCES

Total upwelling  $(T(\mu_s))$  and downwelling  $(T(\mu_v))$  transmittances have been computed with the RTC/SO for several maritime atmospheres over a black surface, respectively with and without Fresnel reflection, for all illumination/viewing  $(\mu_s, \mu_v)$  configurations defined by a Gauss quadrature (24 discrete directions + nadir) in all the 15 MERIS spectral bands. Scattering


atmospheres are characterized by a set of 16 SAMs (corresponding to maritime, coastal, rural and blue-IOP assemblages from Table 7-2 and a set of and a set of 7 AOTs at 550 nm including the case of a pure Rayleigh atmosphere (i.e.,  $\tau_a(550) = 0$ , 0.04, 0.06, 0.13, 0.33, 0.53, 2.03).

The Fresnel reflection at the air-sea surface is modelled with a Cox-Munk surface with 3 wind-speeds (1.5, 5.0, and 10 m⁻¹). However, the wind-speed was found to have no impact on the transmittance computation and the following figures show only the aerosol and Rayleigh transmittances for a mean wind-speed of  $5.0 \text{ ms}^{-1}$ .

Figure 7-3 to Figure 7-6 show the logarithm (log) of the total atmospheric transmittance  $(T(\mu_s) \ge T(\mu_v))$  using  $\theta_s = \theta_v$ , for a purely Rayleigh atmosphere (AOT=0) and a purely aerosol atmosphere, plotted as function of the total airmass, for the 442.5 nm MERIS wavelength, and 3 SAMs (MAR90, COA90, RUR90, BLU-IOP1).



Figure 7-3: Total atmospheric transmittance at 442.5 nm for a purely Rayleigh atmosphere (AOT=0) and a purely aerosol atmosphere for a set of 6 AOTs at 550 nm, as function of the air mass (no unit), using a MAR90 assemblage.



COA-90 - MERIS Band#2 (442.5nm) - ws =5.0m/s

Figure 7-4: Total atmospheric transmittance at 442.5 nm for a purely Rayleigh atmosphere (AOT=0) and a purely aerosol atmosphere for a set of 6 AOTs at 550 nm, as function of the air mass, using a COA90 assemblage.





Figure 7-5: Total atmospheric transmittance at 442.5 nm for a purely Rayleigh atmosphere (AOT=0) and a purely aerosol atmosphere for a set of 6 AOTs at 550 nm, as function of the air mass, using a RUR90 assemblage.





BLUE-IOP1 - MERIS Band#2 (442.5nm) - ws =5.0m/s

Figure 7-6: Total atmospheric transmittance at 442.5 nm for a purely Rayleigh atmosphere (AOT=0) and a purely aerosol atmosphere for a set of 6 AOTs at 550 nm, as function of the air mass, using a BLUE-IOP1 assemblage.



# 8. Clouds

#### 8.1 WATER CLOUDS

Cloud types shall be taken from ATBD volume 1, Cloud albedo and optical thickness, Section 3.1.2.1. Each cloud type is specified as a population of water droplets with a modified gamma-function for the vertical distribution, characterized by its effective radius ( $\mu$ m).

The cloud scattering phase function, extinction and scattering coefficients, shall be computed according to the Mie's theory, based on the cloud parameters mentioned above.

Clouds shall be specified by a type and an extinction coefficient  $(m^{-1})$  in each atmospheric layer.

#### 8.2 CIRRUS CLOUDS

It shall be possible to specify layer(s) of cirrus cloud, whose optical properties: scattering phase function, extinction and scattering coefficients, shall be taken from Brogniez *et al.* (1995). At least 1 layer in the atmosphere between 8500m and 9000m should be defined for the radiative transfer simulations.



## 9. Refractive indices

Table 9-1 provides the complex refractive index of the ocean aerosol models at the 15 MERIS wavelengths ( $n_r$ : real part,  $n_i$ : imaginary part).

OCEANIC (Shettle and Fenn, 1979)										
Wavelength	RH=50%		RH=70%		RH=90%		RH=99%			
(nm)	$n_r$	n _i								
412.50	1.471	-2.403E-08	1.417	-1.468E-08	1.350	-3.750E-09	1.340	-2.000E-09		
442.50	1.471	-2.177E-08	1.416	-1.281E-08	1.349	-3.190E-09	1.339	-1.650E-09		
490.00	1.470	-1.774E-08	1.415	-9.750E-09	1.347	-2.350E-09	1.337	-1.160E-09		
510.00	1.470	-1.012E-08	1.414	-6.220E-09	1.348	-1.930E-09	1.336	-1.240E-09		
560.00	1.469	-9.800E-09	1.412	-7.200E-09	1.345	-4.060E-09	1.335	-3.570E-09		
620.00	1.462	-1.738E-08	1.409	-1.544E-08	1.344	-1.308E-08	1.334	-1.274E-08		
665.00	1.461	-5.481E-08	1.408	-4.170E-08	1.343	-2.584E-08	1.333	-2.334E-08		
681.25	1.461	-7.289E-08	1.408	-5.407E-08	1.343	-3.131E-08	1.333	-2.770E-08		
708.75	1.460	-2.995E-07	1.407	-1.997E-07	1.343	-7.863E-08	1.333	-5.944E-08		
753.75	1.458	-9.602E-07	1.406	-6.223E-07	1.342	-2.123E-07	1.332	-1.474E-07		
761.875	1.458	-1.052E-06	1.406	-6.810E-07	1.342	-2.309E-07	1.332	-1.596E-07		
778.75	1.457	-1.327E-06	1.405	-8.570E-07	1.341	-2.866E-07	1.331	-1.962E-07		
865.00	1.453	-1.156E-05	1.402	-4.042E-06	1.340	-9.848E-07	1.330	-4.981E-07		
885.00	1.452	-4.771E-05	1.401	-1.373E-05	1.340	-2.812E-06	1.330	-1.071E-06		
900.00	1.451	-7.482E-05	1.401	-2.100E-05	1.339	-4.182E-06	1.329	-1.500E-06		

Table 9-1	: R	Refractive	index	of	aerosol	com	ponents/models	
14010 / 1	• •		mach	•••		com	Ponenco, mouch	·

BLUE-IOP (Santer and Zagolski, 2010)											
Wavelength	1	OP-1	1	OP-1	IOP-1						
(nm)	$n_r$	n _r	$n_r$	n _r	$n_r$	$n_i$					
412.50	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
442.50	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
490.00	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
510.00	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
560.00	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
620.00	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
665.00	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
681.25	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
708.75	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
753.75	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
761.875	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
778.75	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
865.00	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
885.00	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					
900.00	1.440	-3.00 E-03	1.440	-3.00 E-03	1.440	-3.00 E-03					



MISCELLANEOUS (WRCP, 1986)										
Wavelength	Wate	er soluble	Dust-like		Soot		75 % H2SO4 solution			
(nm)	n _r	n _i	n _r	n _i	n _r	n _i	n _r	$n_i$		
412.50	1.530	-5.000E-03	1.530	-8.000E-03	1.750	-4.590E-01	1.439	-1.000E-08		
442.50	1.530	-5.000E-03	1.530	-8.000E-03	1.750	-4.551E-01	1.436	-1.000E-08		
490.00	1.530	-5.000E-03	1.530	-8.000E-03	1.750	-4.500E-01	1.432	-1.000E-08		
510.00	1.530	-5.000E-03	1.530	-8.000E-03	1.750	-4.500E-01	1.431	-1.000E-08		
560.00	1.530	-6.000E-03	1.530	-8.000E-03	1.750	-4.388E-01	1.430	-1.057E-08		
620.00	1.530	-6.000E-03	1.530	-8.000E-03	1.750	-4.316E-01	1.429	-1.396E-08		
665.00	1.530	-6.525E-03	1.530	-8.000E-03	1.750	-4.300E-01	1.428	-1.743E-08		
681.25	1.530	-6.791E-03	1.530	-8.000E-03	1.750	-4.300E-01	1.428	-1.881E-08		
708.75	1.529	-7.444E-03	1.529	-8.000E-03	1.750	-4.300E-01	1.428	-3.404E-08		
753.75	1.526	-8.800E-03	1.526	-8.000E-03	1.750	-4.300E-01	1.427	-7.717E-08		
761.875	1.526	-9.007E-03	1.526	-8.000E-03	1.750	-4.300E-01	1.427	-8.376E-08		
778.75	1.525	-9.553E-03	1.525	-8.000E-03	1.750	-4.300E-01	1.426	-1.011E-07		
865.00	1.520	-1.213E-02	1.520	-8.000E-03	1.750	-4.303E-01	1.425	-2.120E-07		
885.00	1.520	-1.263E-02	1.520	-8.000E-03	1.750	-4.313E-01	1.424	-3.441E-07		
900.00	1.520	-1.300E-02	1.520	-8.000E-03	1.750	-4.320E-01	1.424	-4.432E-07		

<b>DUSTS</b> (Moulin et al., 2001)									
Wavelength		BDS	BDW						
(nm)	$n_r$	$n_i$	$n_r$	$n_i$					
412.50	1.530	-1.200E-02	1.530	-8.000E-03					
442.50	1.530	-9.100E-03	1.530	-4.500E-03					
490.00	1.530	-7.900E-03	1.530	-4.000E-03					
510.00	1.530	-7.300E-03	1.530	-3.000E-03					
560.00	1.530	-5.352E-03	1.530	-1.957E-03					
620.00	1.530	-4.778E-03	1.530	-1.435E-03					
665.00	1.530	-4.348E-03	1.530	-1.043E-03					
681.25	1.530	-4.173E-03	1.530	-9.421E-04					
708.75	1.530	-3.860E-03	1.530	-8.000E-04					
753.75	1.530	-3.339E-03	1.530	-5.632E-04					
761.875	1.530	-3.258E-03	1.530	-5.263E-04					
778.75	1.530	-2.940E-03	1.530	-5.000E-04					
865.00	1.530	-1.200E-03	1.530	-5.000E-04					
885.00	1.530	-1.200E-03	1.530	-5.000E-04					
900.00	1.530	-1.200E-03	1.530	-5.000E-04					



# **10.** Aerosols optical properties (ATBD 2.7)

Optical properties (scattering phase function, extinction coefficient and single scattering albedo) of a mixing of aerosols are computed with the Mie's theory, assuming the particles as homogeneous isotropic spheres for which the sizes are comparable or larger than the incident wavelength. Each particle size distribution in the aerosols mixing is characterized by a complex refractive index  $(n_r, n_i)$  which is assumed to be identical for all the scatterers within the same distribution, and a component mixing ratio.

For each aerosol model used in the assemblage over ocean (see Section 11), single scattering albedo ( $\omega_o$ ) and extinction coefficient ( $Q_{ext}$ ) at each MERIS wavelength are given in Table 10-1 to Table 10-7.

RURAL (Shettle and Fenn, 1979)										
Wavelength	RI	H=50%	RI	RH=70%		RH=90%		RH=99%		
(nm)	ω _o	$Q_{ext}$								
412.50	0.958	1.267E-03	0.967	1.362E-03	0.984	2.787E-03	0.992	5.854E-03		
442.50	0.959	1.178E-03	0.967	1.267E-03	0.985	2.609E-03	0.993	5.552E-03		
490.00	0.959	1.051E-03	0.968	1.128E-03	0.985	2.353E-03	0.993	5.092E-03		
510.00	0.959	1.002E-03	0.968	1.076E-03	0.985	2.250E-03	0.993	4.906E-03		
560.00	0.961	8.908E-04	0.964	9.581E-04	0.983	2.022E-03	0.992	4.486E-03		
620.00	0.961	7.763E-04	0.964	8.357E-04	0.983	1.788E-03	0.992	4.034E-03		
665.00	0.958	7.024E-04	0.961	7.566E-04	0.982	1.629E-03	0.992	3.737E-03		
681.25	0.957	6.780E-04	0.960	7.305E-04	0.982	1.577E-03	0.992	3.636E-03		
708.75	0.954	6.377E-04	0.957	6.873E-04	0.980	1.495E-03	0.991	3.472E-03		
753.75	0.948	5.764E-04	0.952	6.228E-04	0.978	1.363E-03	0.990	3.212E-03		
761.875	0.947	5.668E-04	0.951	6.110E-04	0.977	1.342E-03	0.990	3.169E-03		
778.75	0.944	5.463E-04	0.948	5.889E-04	0.976	1.296E-03	0.990	3.073E-03		
865.00	0.931	4.551E-04	0.936	4.920E-04	0.970	1.100E-03	0.987	2.666E-03		
885.00	0.928	4.380E-04	0.933	4.736E-04	0.969	1.062E-03	0.987	2.584E-03		
900.00	0.926	4.258E-04	0.931	4.604E-04	0.968	1.034E-03	0.986	2.515E-03		

Table 10-1: Aerosol optical properties (single scattering albedo and scattering coefficient) at the 15MERIS wavelengths for rural model (RH=50, 70, 90, 99%).



Table 10-2: Aerosol optical properties (single scattering albedo and scattering coefficient)	at the 15
MERIS wavelengths for maritime model (RH=50, 70, 90, 99%).	

OCEANIC (Shettle and Fenn, 1979)										
Wavelength	RH=50%		RH=70%		RH=90%		RH=99%			
(nm)	$\omega_o$	$Q_{ext}$	$\omega_o$	$Q_{ext}$	$\omega_o$	$Q_{ext}$	$\omega_o$	$Q_{ext}$		
412.50	0.979	2.481E-03	0.985	3.064E-03	0.995	8.369E-03	0.998	2.656E-02		
442.50	0.980	2.400E-03	0.986	2.982E-03	0.995	8.230E-03	0.998	2.635E-02		
490.00	0.981	2.287E-03	0.987	2.862E-03	0.996	8.035E-03	0.999	2.603E-02		
510.00	0.982	2.244E-03	0.988	2.818E-03	0.996	7.955E-03	0.999	2.590E-02		
560.00	0.984	2.143E-03	0.987	2.715E-03	0.996	7.788E-03	0.999	2.563E-02		
620.00	0.985	2.037E-03	0.989	2.607E-03	0.996	7.616E-03	0.999	2.535E-02		
665.00	0.985	1.969E-03	0.989	2.535E-03	0.996	7.500E-03	0.999	2.518E-02		
681.25	0.985	1.945E-03	0.989	2.511E-03	0.996	7.463E-03	0.999	2.513E-02		
708.75	0.985	1.906E-03	0.988	2.471E-03	0.996	7.403E-03	0.999	2.503E-02		
753.75	0.984	1.845E-03	0.988	2.410E-03	0.996	7.308E-03	0.999	2.490E-02		
761.875	0.984	1.837E-03	0.988	2.398E-03	0.996	7.294E-03	0.999	2.488E-02		
778.75	0.983	1.816E-03	0.987	2.377E-03	0.996	7.260E-03	0.999	2.483E-02		
865.00	0.982	1.720E-03	0.986	2.278E-03	0.995	7.118E-03	0.999	2.465E-02		
885.00	0.981	1.701E-03	0.986	2.258E-03	0.995	7.091E-03	0.999	2.462E-02		
900.00	0.980	1.687E-03	0.986	2.243E-03	0.995	7.071E-03	0.999	2.459E-02		

Table 10-3: Aerosol optical properties (single scattering albedo and scattering coefficient) at the 15MERIS wavelengths for coastal model (RH=50, 70, 90, 99%).

COASTAL (Shettle and Fenn, 1979)										
Wavelength	RI	H=50%	RH=70%		RH=90%		RH=99%			
(nm)	$\omega_o$	$Q_{ext}$	$\omega_o$	$Q_{ext}$	$\omega_o$	$Q_{ext}$	$\omega_o$	$Q_{ext}$		
412.50	0.972	1.874E-03	0.980	2.213E-03	0.992	5.578E-03	0.997	1.621E-02		
442.50	0.973	1.789E-03	0.981	2.124E-03	0.993	5.420E-03	0.997	1.595E-02		
490.00	0.974	1.669E-03	0.982	1.995E-03	0.993	5.194E-03	0.998	1.556E-02		
510.00	0.975	1.623E-03	0.982	1.947E-03	0.993	5.103E-03	0.998	1.540E-02		
560.00	0.977	1.517E-03	0.981	1.837E-03	0.993	4.905E-03	0.998	1.506E-02		
620.00	0.978	1.407E-03	0.982	1.721E-03	0.994	4.702E-03	0.998	1.469E-02		
665.00	0.978	1.336E-03	0.982	1.646E-03	0.994	4.564E-03	0.998	1.446E-02		
681.25	0.978	1.312E-03	0.982	1.621E-03	0.994	4.520E-03	0.998	1.438E-02		
708.75	0.977	1.272E-03	0.982	1.579E-03	0.993	4.449E-03	0.998	1.425E-02		
753.75	0.975	1.211E-03	0.980	1.516E-03	0.993	4.335E-03	0.998	1.406E-02		
761.875	0.975	1.202E-03	0.980	1.505E-03	0.993	4.318E-03	0.998	1.403E-02		
778.75	0.974	1.181E-03	0.979	1.483E-03	0.993	4.278E-03	0.998	1.395E-02		
865.00	0.971	1.088E-03	0.977	1.385E-03	0.992	4.109E-03	0.997	1.366E-02		
885.00	0.970	1.070E-03	0.977	1.366E-03	0.992	4.077E-03	0.997	1.360E-02		
900.00	0.969	1.057E-03	0.976	1.352E-03	0.992	4.053E-03	0.997	1.355E-02		



Table 10-4:	Aerosol optical properties (single scattering albedo and scattering coefficient) at the	15
	MERIS wavelengths for dust-like particles (BDS-1, 2 &3).	

BLUE-IOP (Santer and Zagolski, 2010)										
Wavelength	Ι	OP-1	1	OP-2	IOP-3					
(nm)	$\omega_o$	$Q_{ext}(m^{-1})$	$\omega_o$	$Q_{ext}(m^{-1})$	$\omega_o$	$Q_{ext}(m^{-1})$				
412.50	0.9798	3.712E-03	0.9794	2.359E-03	0.9785	1.345E-03				
442.50	0.9796	3.377E-03	0.9791	2.124E-03	0.9780	1.196E-03				
490.00	0.9793	2.916E-03	0.9784	1.806E-03	0.9769	9.991E-04				
510.00	0.9791	2.739E-03	0.9781	1.690E-03	0.9765	9.282E-04				
560.00	0.9784	2.363E-03	0.9772	1.436E-03	0.9751	7.763E-04				
620.00	0.9775	1.984E-03	0.9760	1.190E-03	0.9734	6.326E-04				
665.00	0.9768	1.753E-03	0.9749	1.039E-03	0.9719	5.461E-04				
681.25	0.9765	1.674E-03	0.9745	9.904E-04	0.9714	5.185E-04				
708.75	0.9760	1.556E-03	0.9738	9.143E-04	0.9704	4.757E-04				
753.75	0.9751	1.382E-03	0.9726	8.049E-04	0.9688	4.147E-04				
761.875	0.9749	1.353E-03	0.9724	7.870E-04	0.9685	4.048E-04				
778.75	0.9745	1.295E-03	0.9719	7.512E-04	0.9678	3.850E-04				
865.00	0.9726	1.044E-03	0.9694	5.960E-04	0.9643	3.012E-04				
885.00	0.9721	9.950E-04	0.9687	5.672E-04	0.9634	2.851E-04				
900.00	0.9717	9.599E-04	0.9682	5.460E-04	0.9627	2.738E-04				

Table 10-5: Aerosol optical properties (single scattering albedo and scattering coefficient) at the 15MERIS wavelengths for dust-like particles (BDS-1, 2 &3).

DUST-BDS (Moulin et al., 2001)										
Wavelength	В	BDS-1	E	BDS-2	BDS-3					
(nm)	$\omega_o$	$Q_{ext}(m^{-1})$	$\omega_o$	$Q_{ext}(m^{-1})$	$\omega_o$	$Q_{ext}(m^{-1})$				
412.50	0.861	2.355E-03	0.837	2.552E-03	0.814	2.771E-03				
442.50	0.890	2.329E-03	0.864	2.526E-03	0.839	2.745E-03				
490.00	0.907	2.281E-03	0.879	2.479E-03	0.853	2.698E-03				
510.00	0.914	2.261E-03	0.886	2.458E-03	0.860	2.678E-03				
560.00	0.936	2.209E-03	0.907	2.407E-03	0.881	2.627E-03				
620.00	0.945	2.144E-03	0.916	2.342E-03	0.889	2.563E-03				
665.00	0.951	2.096E-03	0.922	2.295E-03	0.895	2.516E-03				
681.25	0.953	2.078E-03	0.924	2.277E-03	0.898	2.499E-03				
708.75	0.957	2.049E-03	0.929	2.248E-03	0.903	2.470E-03				
753.75	0.963	2.000E-03	0.936	2.200E-03	0.911	2.422E-03				
761.875	0.964	1.991E-03	0.937	2.191E-03	0.912	2.413E-03				
778.75	0.967	1.974E-03	0.941	2.173E-03	0.917	2.396E-03				
865.00	0.986	1.887E-03	0.970	2.087E-03	0.955	2.310E-03				
885.00	0.986	1.867E-03	0.970	2.068E-03	0.956	2.291E-03				
900.00	0.986	1.852E-03	0.970	2.053E-03	0.956	2.276E-03				



Table 10-6: Aerosol optical properties (single scattering albedo and scattering coefficient) at	t the 15
MERIS wavelengths for dust-like particles (BDW-1, 2 & 3).	

<b>DUST-BDW</b> (Moulin et al., 2001)							
Wavelength	В	BDW-1		BDW-2		BDW-3	
(nm)	$\omega_o$	$Q_{ext}(m^{-1})$	$\omega_o$	$Q_{ext}(m^{-1})$	$\omega_o$	$Q_{ext}(m^{-1})$	
412.50	0.897	2.359E-03	0.871	2.556E-03	0.846	2.774E-03	
442.50	0.937	2.333E-03	0.909	2.530E-03	0.884	2.749E-03	
490.00	0.946	2.285E-03	0.918	2.482E-03	0.893	2.702E-03	
510.00	0.959	2.264E-03	0.932	2.462E-03	0.908	2.682E-03	
560.00	0.973	2.212E-03	0.950	2.410E-03	0.929	2.630E-03	
620.00	0.981	2.146E-03	0.961	2.345E-03	0.943	2.565E-03	
665.00	0.986	2.098E-03	0.970	2.297E-03	0.955	2.518E-03	
681.25	0.987	2.081E-03	0.973	2.280E-03	0.959	2.501E-03	
708.75	0.989	2.051E-03	0.976	2.250E-03	0.964	2.472E-03	
753.75	0.993	2.002E-03	0.983	2.201E-03	0.974	2.423E-03	
761.875	0.993	1.993E-03	0.984	2.193E-03	0.975	2.415E-03	
778.75	0.994	1.975E-03	0.985	2.175E-03	0.977	2.397E-03	
865.00	0.994	1.887E-03	0.985	2.088E-03	0.978	2.311E-03	
885.00	0.994	1.867E-03	0.986	2.068E-03	0.978	2.291E-03	
900.00	0.994	1.853E-03	0.986	2.053E-03	0.978	2.277E-03	

 Table 10-7: Aerosol optical properties (single scattering albedo and scattering coefficient) at the 15

 MERIS wavelengths for continental model and H2SO4.

MISCELLANEOUS (WRCP, 1986)							
Wavelength	Con	ntinental	75 % H2	SO4 solution			
(nm)	$\omega_o$	$Q_{ext}(m^{-1})$	$\omega_o$	$Q_{ext}(m^{-1})$			
412.50	0.903	7.556E-05	1.000	1.482E-02			
442.50	0.902	7.016E-05	1.000	1.399E-02			
490.00	0.900	6.257E-05	1.000	1.262E-02			
510.00	0.899	5.969E-05	1.000	1.206E-02			
560.00	0.892	5.311E-05	1.000	1.076E-02			
620.00	0.888	4.623E-05	1.000	9.318E-03			
665.00	0.881	4.184E-05	1.000	8.337E-03			
681.25	0.879	4.038E-05	1.000	8.017E-03			
708.75	0.872	3.796E-05	1.000	7.501E-03			
753.75	0.860	3.431E-05	1.000	6.703E-03			
761.875	0.858	3.375E-05	1.000	6.572E-03			
778.75	0.853	3.256E-05	1.000	6.285E-03			
865.00	0.827	2.723E-05	1.000	5.092E-03			
885.00	0.821	2.624E-05	1.000	4.836E-03			
900.00	0.817	2.553E-05	1.000	4.668E-03			



## 11. Definition of the aerosol assemblages over ocean (ATBD 2.7)

Table 11-1 gives the description of the aerosol assemblages defined for the MERIS atmospheric corrections over waters. The latter results from different mixtures in aerosol components (i.e. desert dust particles, dust-like particles, oceanic particles, rural aerosol mixtures, soot-like particles, water soluble particles, and  $H_2SO_4$ ) for each of the 3 aerosol layers (boundary, troposphere and stratosphere). Among these 34 assemblages, the first one, defined for a free aerosol both in the troposphere and the stratosphere, is used for the reference atmosphere (see Section 7.11).

 Table 11-1: Description of the 34 aerosol assemblages (*iaer*) defined over oceans (4 maritime + 4 coastal + 4 rural assemblages with 4 relative humidities RH, 18 dust assemblages with 3 scale heights and 4 blue assemblages).

iaer	Model	RH	Boundary		Stratosphere		
		(%)	[0-2 km]	[2 - 5 km]	[5 - 7 km]	[7 - 12 km]	[ 12 - 50 km ]
0	MAR-99	99	Maritime	-	-	-	-
1	MAR-50	50	Maritime	Continental	Continental	Continental	H2SO4
2	MAR-70	70	Maritime	Continental	Continental	Continental	H2SO4
3	MAR-90	90	Maritime	Continental	Continental	Continental	H2SO4
4	MAR-99	99	Maritime	Continental	Continental	Continental	H2SO4
5	COA-50	50	Coastal	Continental	Continental	Continental	H2SO4
6	COA-70	70	Coastal	Continental	Continental	Continental	H2SO4
7	COA-90	90	Coastal	Continental	Continental	Continental	H2SO4
8	COA-99	99	Coastal	Continental	Continental	Continental	H2SO4
9	RUR-50	50	Rural	Continental	Continental	Continental	H2SO4
10	<b>RUR-70</b>	70	Rural	Continental	Continental	Continental	H2SO4
11	RUR-90	90	Rural	Continental	Continental	Continental	H2SO4
12	RUR-99	99	Rural	Continental	Continental	Continental	H2SO4
13	MAR-BDS1-1	90	Maritime	Continental	Continental	Continental	H2SO4
			Dust-BDS1	-	-	-	-
14	MAR-BDS1-2	90	Maritime	Continental	Continental	Continental	H2SO4
			Dust-BDS1	Dust-BDS1	-	-	-
15	MAR-BDS1-3	90	Maritime	Continental	Continental	Continental	H2SO4
			Dust-BDS1	Dust-BDS1	Dust-BDS1	-	-
16	MAR-BDS2-1	90	Maritime	Continental	Continental	Continental	H2SO4
			Dust-BDS2	-	-	-	-
17	MAR-BDS2-2	90	Maritime	Continental	Continental	Continental	H2SO4
10		0.0	Dust-BDS2	Dust-BDS2	-	-	-
18	MAR-BDS2-3	90	Maritime	Continental	<i>Continental</i>	Continental	H2SO4
10		00	Dust-BDS2	Dust-BDS2	Dust-BDS2	-	-
19	MAK-BDS3-1	90	Maritime	Continental	Continental	Continental	H2SO4
20		00	Dust-DD55	- Continental	- Continental	- Continental	-
20	MAR-DD55-2	90	Dust_RDS3	Dust_BDS3	Commentat	Commental	112304
21	MAR-BDS3-3	90	Maritime	Continental	Continental	 Continental	- H2SO4
<i>2</i> 1	14174K-DD93-3	70	Dust-RDS3	Dust-RDS3	Dust-RDS3	-	-
22	MAR-BDW1-1	90	Maritime	Continental	Continental	Continental	H2SO4
		20	Dust-BDW1	-	-	-	-
23	MAR-BDW1-2	90	Maritime	Continental	Continental	Continental	H2SO4

C	Cesa Argans		<u> Acri</u>	Reference Model for Third MERIS Level 2 reprocessing: Ocean branch		Doc. No :PO-TN Issue : 5 Date : July 20 Page : 78 of 1	I-MEL-GS-0026 011 06
			Dust-BDW1	Dust-BDW1	-	-	-
24	MAR-BDW1-3	90	Maritime	Continental	Continental	Continental	H2SO4
			Dust-BDW1	Dust-BDW1	Dust-BDW1	-	-
25	MAR-BDW2-1	90	Maritime	Continental	Continental	Continental	H2SO4
			Dust-BDW2	-	-	-	-
26	MAR-BDW2-2	90	Maritime	Continental	Continental	Continental	H2SO4
			Dust-BDW2	Dust-BDW2	-	-	-
27	MAR-BDW2-3	90	Maritime	Continental	Continental	Continental	H2SO4
			Dust-BDW2	Dust-BDW2	Dust-BDW2	-	-
28	MAR-BDW3-1	90	Maritime	Continental	Continental	Continental	H2SO4
			Dust-BDW3	-	-	-	-
29	MAR-BDW3-2	90	Maritime	Continental	Continental	Continental	H2SO4
			Dust-BDW3	Dust-BDW3	-	-	-
30	MAR-BDW3-3	90	Maritime	Continental	Continental	Continental	H2SO4
			Dust-BDW3	Dust-BDW3	Dust-BDW3	-	-
31	BLUE-IOP1	-	Blue aerosol	Blue aerosol	Blue aerosol	Blue aerosol	H2SO4
32	BLUE-IOP2	-	Blue aerosol	Blue aerosol	Blue aerosol	Blue aerosol	H2SO4
33	BLUE-IOP3	-	Blue aerosol	Blue aerosol	Blue aerosol	Blue aerosol	H2SO4

Optical properties (aerosol optical thickness at 550 nm) of each aerosol layers (boundary, dust, troposphere, and stratosphere) are summarized in the Table 11-2.

Table 11-2: Aerosol optical thickness at 550 nm for each of the 4 aerosol layers (i.e., boundary, dust,
troposphere, and stratosphere) and for each of the 34 aerosol assemblages ( <i>iaer</i> ).

Aerosols Assemblage		Boundary Layer	Dust Layer	Troposphere	Stratosphere	
iaer	Assemblage	RH(%)	${ au}^a_{550,bound}$	$ au^a_{550,dust}$	$ au^{a}_{550, tropo}$	$ au^a_{550,strato}$
0	MAR-99	99	0.01,0.03,0.1,0.3,0.5,0.8	0	0	0
1	MAR-50	50	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
2	MAR-70	70	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
3	MAR-90	90	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
4	MAR-99	99	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
5	COA-50	50	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
6	COA-70	70	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
7	COA-90	90	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
8	COA-99	99	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
9	RUR-50	50	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
10	RUR-70	70	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
11	RUR-90	90	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
12	RUR-99	99	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
13	MAR-BDS1-1	90	0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
14	MAR-BDS1-2	90	0.05,0.05,0.05,0.05,0.05,0.05,0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
15	MAR-BDS1-3	90	0.05,0.05,0.05,0.05,0.05,0.05,0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
16	MAR-BDS2-1	90	0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
17	MAR-BDS2-2	90	0.05,0.05,0.05,0.05,0.05,0.05	0.01, 0.05, 0.2, 0.5, 0.8, 2	0.025	0.005
18	MAR-BDS2-3	90	0.05,0.05,0.05,0.05,0.05,0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
19	MAR-BDS3-1	90	0.05,0.05,0.05,0.05,0.05,0.05	0.01, 0.05, 0.2, 0.5, 0.8, 2	0.025	0.005

Cesa argans	ACRI
-------------	------

Reference Model for Third MERIS Level 2 reprocessing: Ocean branch

 Doc. No
 :PO-TN-MEL-GS-0026

 Issue
 : 5

 Date
 : July 2011

 Page
 : 79 of 106

1	Aerosols Assemblage		Boundary Layer	Dust Layer	Troposphere	Stratosphere
iaer	Assemblage	RH(%)	${ au}^a_{550,bound}$	$ au^a_{550,dust}$	${ au}^a_{550, tropo}$	$ au^a_{550,strato}$
20	MAR-BDS3-2	90	0.05,0.05,0.05,0.05,0.05,0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
21	MAR-BDS3-3	90	0.05,0.05,0.05,0.05,0.05,0.05,0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
22	MAR-BDW1-1	90	0.05,0.05,0.05,0.05,0.05,0.05,0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
23	MAR-BDW1-2	90	0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
24	MAR-BDW1-3	90	0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
25	MAR-BDW2-1	90	0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
26	MAR-BDW2-2	90	0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
27	MAR-BDW2-3	90	0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
28	MAR-BDW3-1	90	0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
29	MAR-BDW3-2	90	0.05,0.05,0.05,0.05,0.05,0.05,0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
30	MAR-BDW3-3	90	0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05	0.01,0.05,0.2,0.5,0.8,2	0.025	0.005
31	BLUE-IOP1	-	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
32	BLUE-IOP2	-	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005
33	BLUE-IOP3	-	0.01,0.03,0.1,0.3,0.5,0.8	0	0.025	0.005



# **12.** Aerosol phase functions

#### **12.1 OCEAN MODELS**

Figure 12-1 to Figure 12-7 below display the scattering phase functions for the 23 ocean models in the 15 MERIS bands; CONTI, 4 COA, 4 MAR, 4 RUR, H2SO4, 3 BDS, 3 BDW, and 3 BLU.



Figure 12-1: Scattering phase functions for the Conti and H2SO4 models in the 15 MERIS bands.





Figure 12-2: Scattering phase functions for the COA models in the 15 MERIS bands.





Figure 12-3: Scattering phase functions for the MAR models in the 15 MERIS bands.



Figure 12-4: Scattering phase functions for the RUR models in the 15 MERIS bands.



Figure 12-5: Scattering phase functions for the DBDS models in the 15 MERIS bands.



Figure 12-6: Scattering phase functions for the DBDW models in the 15 MERIS bands.





Figure 12-7: Scattering phase functions for the BLU-IOP models in the 15 MERIS bands



# **13.** Spectral dependence of the aerosol optical thickness

#### 13.1 - OCEAN-AEROSOLS

For the 34 aerosol assemblages listed in Table 11-1, the spectral dependence of the optical thickness is tabulated at 13 MERIS wavelengths (2 strongly absorbing bands being discarded here, *i.e.*, band#11 for O₂ absorption and band#15 for H₂O absorption) for a set of 6 aerosol optical thicknesses at 550 nm ( $\tau_a(550)$ ) in Table 13-1.

Spectral dependence of optical thickness for assemblage #0							
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00		
412.50	0.03102	0.10339	0.31017	0.51694	2.06777		
442.50	0.03077	0.10256	0.30769	0.51281	2.05125		
490.00	0.03040	0.10133	0.30399	0.50664	2.02657		
510.00	0.03025	0.10082	0.30247	0.50411	2.01644		
560.00	0.02994	0.09979	0.29936	0.49894	1.99576		
620.00	0.02961	0.09870	0.29610	0.49349	1.97397		
665.00	0.02941	0.09804	0.29413	0.49022	1.96086		
681.25	0.02935	0.09782	0.29347	0.48911	1.95646		
708.75	0.02924	0.09746	0.29238	0.48729	1.94918		
778.75	0.02900	0.09666	0.28999	0.48331	1.93324		
865.00	0.02879	0.09597	0.28791	0.47986	1.91943		
1	Spectral depen	ndence of optica	l thickness for	assemblage #1			
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00		
412.50	0.07593	0.15627	0.38582	0.61537	2.33700		
442.50	0.07194	0.14967	0.37176	0.59384	2.25949		
490.00	0.06625	0.14031	0.35189	0.56348	2.15036		
510.00	0.06408	0.13674	0.34433	0.55193	2.10890		
560.00	0.05906	0.12846	0.32673	0.52500	2.01203		
620.00	0.05377	0.11974	0.30823	0.49671	1.91036		
665.00	0.05036	0.11411	0.29626	0.47841	1.84452		
681.25	0.04922	0.11221	0.29220	0.47218	1.82208		
708.75	0.04733	0.10905	0.28542	0.46180	1.78457		
778.75	0.04303	0.10182	0.26980	0.43778	1.69763		
865.00	0.03871	0.09441	0.25355	0.41269	1.60626		

#### Table 13-1: Spectral dependence of AOT for assemblages #0 through to #33



2	Spectral dependence of optical thickness for assemblage #2								
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.07510	0.15353	0.37759	0.60165	2.28213				
442.50	0.07134	0.14765	0.36570	0.58375	2.21911				
490.00	0.06591	0.13915	0.34842	0.55768	2.12719				
510.00	0.06385	0.13597	0.34203	0.54809	2.09353				
560.00	0.05910	0.12860	0.32716	0.52572	2.01491				
620.00	0.05409	0.12081	0.31142	0.50203	1.93163				
665.00	0.05084	0.11572	0.30109	0.48647	1.87677				
681.25	0.04977	0.11404	0.29769	0.48134	1.85871				
708.75	0.04797	0.11121	0.29190	0.47259	1.82776				
778.75	0.04391	0.10474	0.27854	0.45235	1.75590				
865.00	0.03982	0.09812	0.26469	0.43125	1.68050				
1	Spectral depen	dence of optica	l thickness for a	ussemblage #3					
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.07361	0.14856	0.36269	0.57682	2.18282				
442.50	0.07022	0.14392	0.35451	0.56510	2.14450				
490.00	0.06535	0.13731	0.34290	0.54850	2.09044				
510.00	0.06347	0.13471	0.33827	0.54182	2.06846				
560.00	0.05921	0.12895	0.32821	0.52748	2.02195				
620.00	0.05473	0.12294	0.31782	0.51270	1.97429				
665.00	0.05182	0.11899	0.31090	0.50281	1.94213				
681.25	0.05086	0.11770	0.30865	0.49961	1.93179				
708.75	0.04928	0.11558	0.30499	0.49440	1.91499				
778.75	0.04570	0.11071	0.29647	0.48223	1.87541				
865.00	0.04216	0.10590	0.28802	0.47015	1.83607				
1	Spectral depen	dence of optica	l thickness for a	assemblage #4					
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.07251	0.14488	0.35166	0.55844	2.10926				
442.50	0.06940	0.14119	0.34632	0.55144	2.08988				
490.00	0.06491	0.13584	0.33850	0.54116	2.06109				
510.00	0.06318	0.13376	0.33540	0.53705	2.04938				
560.00	0.05926	0.12911	0.32868	0.52826	2.02508				
620.00	0.05511	0.12420	0.32159	0.51899	1.99947				
665.00	0.05245	0.12108	0.31716	0.51325	1.98390				
681.25	0.05156	0.12004	0.31569	0.51133	1.97867				
708.75	0.05011	0.11833	0.31325	0.50816	1.97005				
778.75	0.04683	0.11450	0.30782	0.50115	1.95108				
865.00	0.04363	0 11081	0.30275	0 49470	1 93426				

#### Table 12-1 Continued: Spectral dependence of AOT for assemblages #2, 3 & 4



2	Spectral dependence of optical thickness for assemblage #5							
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00			
412.50	0.07808	0.16345	0.40735	0.65126	2.48055			
442.50	0.07356	0.15505	0.38791	0.62076	2.36714			
490.00	0.06709	0.14311	0.36031	0.57750	2.20645			
510.00	0.06462	0.13855	0.34976	0.56097	2.14508			
560.00	0.05893	0.12803	0.32545	0.52286	2.00349			
620.00	0.05296	0.11704	0.30013	0.48321	1.85634			
665.00	0.04911	0.10995	0.28377	0.45759	1.76124			
681.25	0.04782	0.10757	0.27829	0.44900	1.72933			
708.75	0.04570	0.10364	0.26919	0.43473	1.67633			
778.75	0.04089	0.09468	0.24838	0.40208	1.55480			
865.00	0.03607	0.08561	0.22715	0.36870	1.43026			
1	Spectral deper	ndence of optica	l thickness for	assemblage #6				
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00			
412.50	0.07723	0.16062	0.39888	0.63713	2.42403			
442.50	0.07293	0.15298	0.38167	0.61036	2.32557			
490.00	0.06673	0.14191	0.35669	0.57147	2.18235			
510.00	0.06438	0.13774	0.34736	0.55697	2.12907			
560.00	0.05898	0.12819	0.32592	0.52365	2.00663			
620.00	0.05329	0.11815	0.30344	0.48873	1.87841			
665.00	0.04961	0.11162	0.28880	0.46598	1.79483			
681.25	0.04839	0.10947	0.28397	0.45847	1.76725			
708.75	0.04637	0.10587	0.27586	0.44586	1.72083			
778.75	0.04178	0.09765	0.25729	0.41693	1.61422			
865.00	0.03720	0.08939	0.23848	0.38757	1.50575			
2	Spectral deper	ndence of optica	l thickness for	assemblage #7				
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00			
412.50	0.07537	0.15440	0.38021	0.60603	2.29962			
442.50	0.07154	0.14832	0.36772	0.58711	2.23256			
490.00	0.06605	0.13965	0.34991	0.56018	2.13716			
510.00	0.06392	0.13622	0.34279	0.54936	2.09864			
560.00	0.05910	0.12860	0.32716	0.52571	2.01490			
620.00	0.05405	0.12067	0.31102	0.50137	1.92899			
665.00	0.05075	0.11542	0.30020	0.48498	1.87081			
681.25	0.04967	0.11371	0.29669	0.47967	1.85203			
708.75	0.04788	0.11091	0.29101	0.47110	1.82177			
778.75	0.04381	0.10442	0.27760	0.45078	1.74962			
865.00	0.03979	0.09801	0 26435	0 43069	1 67823			

## Table 12-1 Continued: Spectral dependence of AOT for assemblages #5, 6 & 7



Spectral dependence of optical thickness for assemblage #8									
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.07364	0.14863	0.36291	0.57719	2.18426				
442.50	0.07026	0.14407	0.35494	0.56582	2.14741				
490.00	0.06538	0.13739	0.34313	0.54887	2.09194				
510.00	0.06349	0.13476	0.33842	0.54207	2.06947				
560.00	0.05919	0.12888	0.32800	0.52712	2.02053				
620.00	0.05464	0.12264	0.31693	0.51121	1.96834				
665.00	0.05172	0.11864	0.30984	0.50105	1.93508				
681.25	0.05074	0.11730	0.30746	0.49762	1.92383				
708.75	0.04914	0.11510	0.30356	0.49202	1.90547				
778.75	0.04550	0.11007	0.29454	0.47900	1.86251				
865.00	0.04193	0.10514	0.28575	0.46636	1.82090				
	Spectral depen	ndence of optica	l thickness for	assemblage #9					
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.08319	0.18046	0.45840	0.73634	2.82089				
442.50	0.07738	0.16782	0.42619	0.68456	2.62238				
490.00	0.06909	0.14976	0.38025	0.61074	2.33943				
510.00	0.06591	0.14283	0.36262	0.58241	2.23084				
560.00	0.05863	0.12702	0.32241	0.51780	1.98324				
620.00	0.05104	0.11064	0.28091	0.45119	1.72826				
665.00	0.04615	0.10007	0.25415	0.40823	1.56380				
681.25	0.04453	0.09658	0.24530	0.39403	1.50946				
708.75	0.04185	0.09081	0.23070	0.37058	1.41971				
778.75	0.03581	0.07775	0.19759	0.31743	1.21620				
865.00	0.02981	0.06475	0.06475 0.16457		1.01302				
S	Spectral depen	dence of optica	l thickness for a	ssemblage #10					
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.08317	0.18041	0.45824	0.73608	2.81983				
442.50	0.07739	0.16782	0.42621	0.68459	2.62249				
490.00	0.06904	0.14960	0.37977	0.60994	2.33620				
510.00	0.06587	0.14270	0.36223	0.58175	2.22818				
560.00	0.05863	0.12703	0.32245	0.51788	1.98354				
620.00	0.05107	0.11072	0.28117	0.45162	1.72997				
665.00	0.04618	0.10020	0.25452	0.40885	1.56629				
681.25	0.04457	0.09671	0.24571	0.39470	1.51214				
708.75	0.04190	0.09096	0.23113	0.37130	1.42259				
778.75	0.03585	0.07790	0.19802	0.31814	1.21905				
865.00	0.02989 0.06502		0.16537	0.26572	1.01837				

## Table 12-1 Continued: Spectral dependence of AOT for assemblages #8, 9 & 10



Spectral dependence of optical thickness for assemblage #11									
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.08200	0.17651	0.44655	0.71659	2.74188				
442.50	0.07654	0.16500	0.41773	0.67046	2.56597				
490.00	0.06871	0.14849	0.37644	0.60439	2.31403				
510.00	0.06564	0.14194	0.35993	0.57793	2.21289				
560.00	0.05870	0.12726	0.32315	0.51904	1.98820				
620.00	0.05148	0.11210	0.28529	0.45849	1.75746				
665.00	0.04670	0.10192	0.25969	0.41746	1.60074				
681.25	0.04514	0.09861	0.25139	0.40418	1.55005				
708.75	0.04259	0.09327	0.23806	0.38286	1.46882				
778.75	0.03667	0.08061	0.20616	0.33171	1.27333				
865.00	0.03083	0.06813	0.17470	0.28128	1.08059				
Spectral dependence of optical thickness for assemblage #12									
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.07997	0.16974	0.42622	0.68270	2.60632				
442.50	0.07512	0.16025	0.40351	0.64676	2.47115				
490.00	0.06798	0.14607 0.36917		0.59228	2.26557				
510.00	0.06518	0.14042	0.35537	0.57033	2.18250				
560.00	0.05880	0.12760	0.32416	0.52072	1.99494				
620.00	0.05201	0.11388	0.29065	0.46742	1.79318				
665.00	0.04760	0.10490	0.26863	0.43237	1.66036				
681.25	0.04611	0.10187	0.26117	0.42047	1.61523				
708.75	0.04369	0.09693	0.24905	0.40117	1.54206				
778.75	0.03803	0.08515	0.21977	0.35440	1.36410				
865.00	0.03236	0.07325	0.07325 0.19006 0.30		30687 1.18297				
S	pectral depen	dence of optica	l thickness for a	ssemblage #13					
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.11332	0.27248	0.59079	0.90910	2.18235				
442.50	0.11146	0.26884	0.58359	0.89834	2.15734				
490.00	0.10852	0.26267	0.57099	0.87930	2.11255				
510.00	0.10729	0.26006	0.56560	0.87114	2.09330				
560.00	0.10446	0.25374	0.55230	0.85086	2.04510				
620.00	0.10124	0.24609	0.53579	0.82550	1.98431				
665.00	0.09897	0.24058	0.52380	0.80703	1.93991				
681.25	0.09819	0.23863	0.51951	0.80039	1.92390				
708.75	0.09691	0.23534	0.51221	0.78908	1.89656				
778.75	0.09375	0.22711	0.49384	0.76056	1.82745				
865.00	865.00 0.09035 0.21785		0.47286	1.74790					

## Table 12-1 Continued: Spectral dependence of AOT for assemblages #11, 12 & 13



Spectral dependence of optical thickness for assemblage #14										
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00					
412.50	0.11332	0.27248	0.59079	0.90910	2.18235					
442.50	0.11146	0.26884	0.58359	0.89834	2.15734					
490.00	0.10852	0.26267	0.57099	0.87930	2.11255					
510.00	0.10729	0.26006	0.56560	0.87114	2.09330					
560.00	0.10446	0.25374	0.55230	0.85086	2.04510					
620.00	0.10124	0.24609	0.53579	0.82550	1.98431					
665.00	0.09897	0.24058	0.52380	0.80703	1.93991					
681.25	0.09819	0.23863	0.51951	0.80039	1.92390					
708.75	0.09691	0.23534	0.51221	0.78908	1.89656					
778.75	0.09375	0.22711	0.49384	0.76056	1.82745					
865.00	0.09035	0.21785	0.47286	0.72787	1.74790					
S	Spectral dependence of optical thickness for assemblage #15									
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00					
412.50	0.11332	0.27248	0.59079	0.90910	2.18235					
442.50	0.11146	0.26884	0.58359	0.89834	2.15734					
490.00	0.10852	0.26267	0.57099	0.87930	2.11255					
510.00	0.10729	0.26006	0.56560 0.87114		2.09330					
560.00	0.10446	0.25374	0.55230	0.85086	2.04510					
620.00	0.10124	0.24609	0.53579	0.82550	1.98431					
665.00	0.09897	0.24058	0.52380	0.80703	1.93991					
681.25	0.09819	0.23863	0.51951 0.80039		1.92390					
708.75	0.09691	0.23534	0.51221	0.78908	1.89656					
778.75	0.09375	0.22711	0.49384	0.76056	1.82745					
865.00	0.09035	0.21785	0.47286 0.72787		1.74790					
S	Spectral depen	dence of optical	l thickness for a	ssemblage #16						
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00					
412.50	0.11304	0.27137	0.58803	0.90469	2.17133					
442.50	0.11124	0.26795	0.58138	0.89480	2.14850					
490.00	0.10839	0.26218	0.56974	0.87731	2.10758					
510.00	0.10721	0.25973	0.56477	0.86981	2.08998					
560.00	0.10448	0.25383	0.55252	0.85120	2.04595					
620.00	0.10139	0.24670	0.53732	0.82794	1.99042					
665.00	0.09922	0.24158	0.52629	0.81100	1.94986					
681.25	0.09848	0.23977	0.52234	0.80492	1.93523					
708.75	0.09725	0.23671	0.51564	0.79456	1.91026					
778.75	0.09424	0.22908	0.49876	0.76843	1.84714					
865.00	0.09101	0.22051	0.47951	0.73851	1.77452					

## Table 12-1 Continued: Spectral dependence of AOT for assemblages #14, 15 & 16



Spectral dependence of optical thickness for assemblage #17									
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.11304	0.27137	0.58803	0.90469	2.17133				
442.50	0.11124	0.26795	0.58138	0.89480	2.14850				
490.00	0.10839	0.26218	0.56974	0.87731	2.10758				
510.00	0.10721	0.25973	0.56477	0.86981	2.08998				
560.00	0.10448	0.25383	0.55252	0.85120	2.04595				
620.00	0.10139	0.24670	0.53732	0.82794	1.99042				
665.00	0.09922	0.24158	0.52629	0.81100	1.94986				
681.25	0.09848	0.23977	0.52234	0.80492	1.93523				
708.75	0.09725	0.23671	0.51564	0.79456	1.91026				
778.75	0.09424	0.22908	0.49876	0.76843	1.84714				
865.00	0.09101	0.22051	0.47951	0.73851	1.77452				
S	pectral depen	dence of optica	l thickness for a	ssemblage #18					
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.11304	0.27137	0.58803	0.90469	2.17133				
442.50	0.11124	0.26795	0.58138	0.89480	2.14850				
490.00	0.10839	0.26218	0.56974	0.87731	2.10758				
510.00	0.10721	0.25973	0.56477	0.86981	2.08998				
560.00	0.10448	0.25383	0.55252	0.85120	2.04595				
620.00	0.10139	0.24670	0.53732	0.82794	1.99042				
665.00	0.09922	0.24158	0.52629	0.81100	1.94986				
681.25	0.09848	0.23977	0.52234	0.80492	1.93523				
708.75	0.09725	0.23671	0.51564	0.79456	1.91026				
778.75	0.09424	0.22908	0.49876	0.76843	1.84714				
865.00	0.09101	0.22051	0.47951	0.73851	1.77452				
S	pectral depen	dence of optica	l thickness for a	ssemblage #19					
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.11279	0.27034	0.58546	0.90057	2.16104				
442.50	0.11103	0.26712	0.57931	0.89150	2.14024				
490.00	0.10828	0.26171	0.56858	0.87545	2.10293				
510.00	0.10713	0.25942	0.56400	0.86858	2.08689				
560.00	0.10450	0.25391	0.55272	0.85152	2.04675				
620.00	0.10153	0.24727	0.53875	0.83022	1.99612				
665.00	0.09945	0.24250	0.52861	0.81472	1.95916				
681.25	0.09874	0.24083	0.52499	0.80916	1.94583				
708.75	0.09757	0.23799	0.51884	0.79968	1.92307				
778.75	0.09470	0.23092	0.50336	0.77580	1.86555				
865.00	0.09163	0.22300	0.48574	0.74847	1.79941				

## Table 12-1 Continued: Spectral dependence of AOT for assemblages #17, 18 & 19



Spectral dependence of optical thickness for assemblage #20									
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.11279	0.27034	0.58546	0.90057	2.16104				
442.50	0.11103	0.26712	0.57931	0.89150	2.14024				
490.00	0.10828	0.26171	0.56858	0.87545	2.10293				
510.00	0.10713	0.25942	0.56400	0.86858	2.08689				
560.00	0.10450	0.25391	0.55272	0.85152	2.04675				
620.00	0.10153	0.24727	0.53875	0.83022	1.99612				
665.00	0.09945	0.24250	0.52861	0.81472	1.95916				
681.25	0.09874	0.24083	0.52499	0.80916	1.94583				
708.75	0.09757	0.23799	0.51884	0.79968	1.92307				
778.75	0.09470	0.23092	0.50336	0.77580	1.86555				
865.00	0.09163	0.22300	0.48574	0.74847	1.79941				
S	pectral depen	dence of optical	thickness for a	ssemblage #21					
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30 0.50		2.00				
412.50	0.11279	0.27034	0.58546	0.90057	2.16104				
442.50	0.11103	0.26712	0.57931	0.89150	2.14024				
490.00	0.10828	0.26171	0.56858	0.87545	2.10293				
510.00	0.10713	0.25942	0.56400	0.86858	2.08689				
560.00	0.10450	0.25391	0.55272	0.85152	2.04675				
620.00	0.10153	0.24727	0.53875	0.83022	1.99612				
665.00	0.09945	0.24250	0.52861	0.81472	1.95916				
681.25	0.09874	0.24083	0.52499	0.80916	1.94583				
708.75	0.09757	0.23799	0.51884	0.79968	1.92307				
778.75	0.09470	0.23092	0.50336	0.77580	1.86555				
865.00	0.09163	0.22300	0.22300 0.48574		1.79941				
S	Spectral depen	dence of optical	l thickness for a	ussemblage #22					
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.11333	0.27252	0.59090	0.90927	2.18278				
442.50	0.11148	0.26893	0.58383	0.89872	2.15830				
490.00	0.10852	0.26270	0.57106	0.87941	2.11283				
510.00	0.10731	0.26012	0.56574	0.87136	2.09385				
560.00	0.10446	0.25373	0.55228	0.85082	2.04500				
620.00	0.10123	0.24605	0.53570	0.82535	1.98394				
665.00	0.09896	0.24054	0.52371	0.80688	1.93955				
681.25	0.09818	0.23859	0.51941	0.80022	1.92347				
708.75	0.09689	0.23528	0.51206	0.78884	1.89596				
778.75	0.09372	0.22699	0.49354	0.76009	1.82627				
865.00	0.09030	0.21766	0.47238	0 72710	1 74598				

## Table 12-1 Continued: Spectral dependence of AOT for assemblages #20, 21 & 22



Spectral dependence of optical thickness for assemblage #23									
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.11333	0.27252	0.59090	0.90927	2.18278				
442.50	0.11148	0.26893	0.58383	0.89872	2.15830				
490.00	0.10852	0.26270	0.57106	0.87941	2.11283				
510.00	0.10731	0.26012	0.56574	0.87136	2.09385				
560.00	0.10446	0.25373	0.55228	0.85082	2.04500				
620.00	0.10123	0.24605	0.53570	0.82535	1.98394				
665.00	0.09896	0.24054	0.52371	0.80688	1.93955				
681.25	0.09818	0.23859	0.51941	0.80022	1.92347				
708.75	0.09689	0.23528	0.51206	0.78884	1.89596				
778.75	0.09372	0.22699	0.49354	0.76009	1.82627				
865.00	0.09030	0.21766	0.47238	0.72710	1.74598				
S	pectral depen	dence of optica	l thickness for a	ssemblage #24					
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.11333	0.27252	0.59090	0.90927	2.18278				
442.50	0.11148	0.26893	0.58383	0.89872	2.15830				
490.00	0.10852	0.26270	0.57106	0.87941	2.11283				
510.00	0.10731	0.26012	0.56574	0.87136	2.09385				
560.00	0.10446	0.25373	0.55228	0.85082	2.04500				
620.00	0.10123	0.24605	0.53570	0.82535	1.98394				
665.00	0.09896	0.24054	0.52371	0.80688	1.93955				
681.25	0.09818	0.23859	0.51941	0.80022	1.92347				
708.75	0.09689	0.23528	0.51206	0.78884	1.89596				
778.75	0.09372	0.22699	0.49354	0.76009	1.82627				
865.00	0.09030	0.21766	0.47238	0.72710	1.74598				
S	pectral depen	dence of optical	l thickness for a	ssemblage #25					
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00				
412.50	0.11305	0.27141	0.58814	0.90486	2.17174				
442.50	0.11126	0.26804	0.58160	0.89516	2.14940				
490.00	0.10840	0.26220	0.56981	0.87742	2.10784				
510.00	0.10722	0.25978	0.56490	0.87002	2.09050				
560.00	0.10448	0.25382	0.55249	0.85117	2.04586				
620.00	0.10138	0.24666	0.53723	0.82780	1.99007				
665.00	0.09921	0.24154	0.52620	0.81086	1.94951				
681.25	0.09847	0.23973	0.52224	0.80476	1.93483				
708.75	0.09723	0.23665	0.51549	0.79433	1.90969				
778.75	0.09421	0.22897	0.49848	0.76799	1.84604				
865.00	0.09097	0.22033	0.47906	0.73779	1.77272				

## Table 12-1 Continued: Spectral dependence of AOT for assemblages #23, 24 & 25



Spectral dependence of optical thickness for assemblage #26								
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00			
412.50	0.11305	0.27141	0.58814	0.90486	2.17174			
442.50	0.11126	0.26804	0.58160	0.89516	2.14940			
490.00	0.10840	0.26220	0.56981	0.87742	2.10784			
510.00	0.10722	0.25978	0.56490	0.87002	2.09050			
560.00	0.10448	0.25382	0.55249	0.85117	2.04586			
620.00	0.10138	0.24666	0.53723	0.82780	1.99007			
665.00	0.09921	0.24154	0.52620	0.81086	1.94951			
681.25	0.09847	0.23973	0.52224	0.80476	1.93483			
708.75	0.09723	0.23665	0.51549	0.79433	1.90969			
778.75	0.09421	0.22897	0.49848	0.76799	1.84604			
865.00	0.09097	0.22033	0.47906	0.73779	1.77272			
S	Spectral depen	dence of optica	l thickness for a	ussemblage #27				
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00			
412.50	0.11305	0.27141	0.58814	0.90486	2.17174			
442.50	0.11126	0.26804	0.58160	0.89516	2.14940			
490.00	0.10840	0.26220	0.56981	0.87742	2.10784			
510.00	0.10722	0.25978	0.56490	0.87002	2.09050			
560.00	0.10448	0.25382	0.55249	0.85117	2.04586			
620.00	0.10138	0.24666	0.53723	0.82780	1.99007			
665.00	0.09921	0.24154	0.52620	0.81086	1.94951			
681.25	0.09847	0.23973	0.52224	0.80476	1.93483			
708.75	0.09723	0.23665	0.51549	0.79433	1.90969			
778.75	0.09421	0.22897	0.49848	0.76799	1.84604			
865.00	0.09097	0.22033	0.47906 0.73779		1.77272			
S	Spectral depen	dence of optica	l thickness for a	ussemblage #28				
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00			
412.50	0.11280	0.27038	0.58556	0.90073	2.16142			
442.50	0.11105	0.26721	0.57952	0.89183	2.14107			
490.00	0.10828	0.26174	0.56864	0.87555	2.10318			
510.00	0.10714	0.25947	0.56412	0.86877	2.08736			
560.00	0.10450	0.25390	0.55269	0.85149	2.04667			
620.00	0.10152	0.24724	0.53867	0.83009	1.99580			
665.00	0.09944	0.24247	0.52853	0.81459	1.95883			
681.25	0.09873	0.24079	0.52490	0.80901	1.94545			
708.75	0.09756	0.23794	0.51871	0.79947	1.92254			
778.75	0.09468	0.23082	0.50310	0.77539	1.86452			
865.00	0.09159	0.09159 0.22283		0.74780	1.79773			

## Table 12-1 Continued: Spectral dependence of AOT for assemblages #26, 27 & 28



Spectral dependence of optical thickness for assemblage #29								
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00			
412.50	0.11280	0.27038	0.58556	0.90073	2.16142			
442.50	0.11105	0.26721	0.57952	0.89183	2.14107			
490.00	0.10828	0.26174	0.56864	0.87555	2.10318			
510.00	0.10714	0.25947	0.56412	0.86877	2.08736			
560.00	0.10450	0.25390	0.55269	0.85149	2.04667			
620.00	0.10152	0.24724	0.53867	0.83009	1.99580			
665.00	0.09944	0.24247	0.52853	0.81459	1.95883			
681.25	0.09873	0.24079	0.52490	0.80901	1.94545			
708.75	0.09756	0.23794	0.51871	0.79947	1.92254			
778.75	0.09468	0.23082	0.50310	0.77539	1.86452			
865.00	0.09159	0.22283	0.48532	0.74780	1.79773			
S	Spectral depen	ndence of optic	al thickness for	assemblage #30	1			
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	2.00				
412.50	0.11280	0.27038	0.58556	0.90073	2.16142			
442.50	0.11105	0.26721	0.57952	0.89183	2.14107			
490.00	0.10828	0.26174	0.56864	0.87555	2.10318			
510.00	0.10714	0.25947	0.56412	0.86877	2.08736			
560.00	0.10450	0.25390	0.55269	0.85149	2.04667			
620.00	0.10152	0.24724	0.53867	0.83009	1.99580			
665.00	0.09944	0.24247	0.52853	0.81459	1.95883			
681.25	0.09873	0.24079	0.52490	0.80901	1.94545			
708.75	0.09756	0.23794	0.51871	0.79947	1.92254			
778.75	0.09468	0.23082	0.50310	0.77539	1.86452			
865.00	0.09159	0.22283	0.48532	0.74780	1.79773			
S	Spectral depen	ndence of optic	al thickness for	assemblage #31				
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00			
412.50	0.09477	0.21907	0.57423	0.92938	3.59304			
442.50	0.08494	0.19300	0.50173	0.81047	3.12599			
490.00	0.07230	0.16046	0.41234	0.66423	2.55336			
510.00	0.06782	0.14921	0.38176	0.61431	2.35842			
560.00	0.05826	0.12579	0.31872	0.51165	1.95863			
620.00	0.04912	0.10422	0.26165	0.41909	1.59986			
665.00	0.04357	0.09147	0.22834	0.36521	1.39173			
681.25	0.04178	0.08743	0.21785	0.34828	1.32645			
708.75	0.03895	0.08112	0.20163	0.32214	1.22594			
778.75	0.03281	0.06775	0.16758	0.26741	1.01614			
865.00	0.02698	0.02698 0.05530		0.21715	0.82409			

## Table 12-1 Continued: Spectral dependence of AOT for assemblages #29, 30 & 31



Spectral dependence of optical thickness for assemblage #32								
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00			
412.50	0.10279	0.24583	0.65449	1.06315	4.12813			
442.50	0.09013	0.21030	0.55363	0.89696	3.47197			
490.00	0.07449	0.16778	0.43431	0.70084	2.69980			
510.00	0.06913	0.15359	0.39489	0.63620	2.44598			
560.00	0.05801	0.12494	0.31617	0.50741	1.94166			
620.00	0.04777	0.09972	0.24817	0.39661	1.50996			
665.00	0.04174	0.08538	0.21006	0.33474	1.26985			
681.25	0.03983	0.08092	0.19833	0.31573	1.19628			
708.75	0.03683	0.07406	0.18045	0.28683	1.08471			
778.75	0.03045	0.05990	0.14403	0.22816	0.85913			
865.00	0.02455	0.04721	0.11196 0.17671		0.66231			
S	Spectral depen	dence of optical	l thickness for a	ssemblage #33				
$\lambda(nm) \setminus \tau_a(550)$	0.03	0.10	0.30	0.50	2.00			
412.50	0.11149	0.27480	0.74142	1.20803	4.70764			
442.50	0.09557	0.22845	0.60808	0.98772	3.83500			
490.00	0.07669	0.17511	0.45631	0.73751	2.84650			
510.00	0.07043	0.15790	0.40781	0.65773	2.53211			
560.00	0.05777	0.12414	0.31377	0.50341	1.92568			
620.00	0.04655	0.09568	0.23604	0.37641	1.42913			
665.00	0.04015	0.08007	0.19415	0.30822	1.16377			
681.25	0.03815	0.07532	0.18152	0.28772	1.08423			
708.75	0.03504	0.06810	0.16255	0.25700	0.96538			
778.75	0.02855	0.05355	0.12498	0.19642	0.73217			
865.00	0.02268	0.04099	0.09328	0.14558	0.53780			

## Table 12-1 Continued: Spectral dependence of AOT for assemblages #32 & 33



#### **13.2** –AEROSOL FORWARD SCATTERING PROPORTION

For the 18 dust aerosol assemblages only, the aerosol forward scattering proportion (determined by the individual phase functions in the 4 aerosol layers) is tabulated at 11 MERIS bands (Table 13-2). The latter are used for estimating the atmospheric transmittances with the Gordon and Wang formulation in the third MERIS reprocessing.

iaer	412.50	442.50	490.00	510.00	560.00	620.00	665.00	681.25	708.75	778.75	865.00
13	0.912848	0.910016	0.908475	0.907741	0.905519	0.904598	0.903993	0.903750	0.903315	0.902107	0.900172
14	0.912848	0.910016	0.908475	0.907741	0.905519	0.904598	0.903993	0.903750	0.903315	0.902107	0.900172
15	0.912848	0.910016	0.908475	0.907741	0.905519	0.904598	0.903993	0.903750	0.903315	0.902107	0.900172
16	0.884346	0.883083	0.882889	0.882751	0.882195	0.882647	0.883092	0.883236	0.883463	0.884002	0.884535
17	0.884346	0.883083	0.882889	0.882751	0.882195	0.882647	0.883092	0.883236	0.883463	0.884002	0.884535
18	0.884346	0.883083	0.882889	0.882751	0.882195	0.882647	0.883092	0.883236	0.883463	0.884002	0.884535
19	0.855882	0.856153	0.857348	0.857827	0.859029	0.860967	0.862548	0.863114	0.864063	0.866524	0.869886
20	0.855882	0.856153	0.857348	0.857827	0.859029	0.860967	0.862548	0.863114	0.864063	0.866524	0.869886
21	0.855882	0.856153	0.857348	0.857827	0.859029	0.860967	0.862548	0.863114	0.864063	0.866524	0.869886
22	0.909263	0.905280	0.904401	0.903100	0.901661	0.900826	0.900287	0.900136	0.899902	0.899391	0.899377
23	0.909263	0.905280	0.904401	0.903100	0.901661	0.900826	0.900287	0.900136	0.899902	0.899391	0.899377
24	0.909263	0.905280	0.904401	0.903100	0.901661	0.900826	0.900287	0.900136	0.899902	0.899391	0.899377
25	0.882100	0.880093	0.880324	0.879900	0.88001	0.880612	0.881157	0.881365	0.881708	0.882577	0.884053
26	0.882100	0.880093	0.880324	0.879900	0.88001	0.880612	0.881157	0.881365	0.881708	0.882577	0.884053
27	0.882100	0.880093	0.880324	0.879900	0.88001	0.880612	0.881157	0.881365	0.881708	0.882577	0.884053
28	0.854892	0.854906	0.856346	0.856913	0.858817	0.861077	0.862882	0.863500	0.864499	0.866919	0.869917
29	0.854892	0.854906	0.856346	0.856913	0.858817	0.861077	0.862882	0.863500	0.864499	0.866919	0.869917
30	0.854892	0.854906	0.856346	0.856913	0.858817	0.861077	0.862882	0.863500	0.864499	0.866919	0.869917

Table 13-2: Aerosol forward scattering proportion in 11 MERIS bands for each of the 18 dust assemblages defined over ocean (*iaer* = 0-12, 31-33 are land aerosols and not included here).



- END OF DOCUMENT -