

Title: REFERENCE MODEL FOR MERIS LEVEL 2 PROCESSING

Doc. no: PO-TN-MEL-GS-0026

Issue: 4

Revision: 1

Date: 13 July 2001

	<u>Function</u>	Name	<u>Company</u>	Signature	Date
Prepared :	Ocean Colour	F. Montagner	ACRI		
	Task Force				
Approved:	Project Manager	L. Bourg	ACRI		
Released :			ESA		

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: ii

Distribution

S. DELWART (ESTEC) J-P. GUIGNARD (ESRIN)

J. AIKEN (PML) C. BROCKMANN (SCICON) F. FELL (INFORMUS) J. FISCHER (FUB) R. DOERFFER (GKSS) A. MOREL (LPCM) M. BABIN (LPCM) D. ANTOINE (LPCM) R. SANTER (LISE)

Change Record

Revision	Date	Description	Change pages
0	13/03/98	Initial Draft	-
0	30/04/98	Reviewed and completed	
1	06/11/98	Update of water reflectance	2, 3, 7, 8
		model, additional aerosol	(additional page),
		properties tables, band	10, 16, 23, 24, 25,
		settings	29, 30, 31, 34 - 46
			(new pages)
2	08/01/99	Aerosol models presentation,	1, 4, 5, 6, 7, 10, 12,
		spectral dependencies, minor	15 to 19, 34 to 45
		corrections /clarifications	
Draft	25/06/99	Revision of water reflectance mo	odel
0	30/08/99	with comments from Task Force	
1	07/09/99	Clarification following	6, 7, 10, 13, 14, 18,
		inputs from Task Force	22 (pagin. change)
		Correction of a bug in table 14	37 to 48
2	17/12/99	Correction of errors in §6.6, 10,	18, 26-31
		11 following Task Force inputs	
Draft	26/01/00	Revision of Sections 4, 5 to take	all (pagin. change)
		Task Force results into account	
		New section 2.3, 5.3, 16	
0	21/07/00	with Task Force comments	
		(change bars refer to Iss.2.2)	
1	30/08/00	with tables 10.1, 11-1, 14-1 &	& 15-1 updated for
		bands 9 & 12 shifts: $705 \rightarrow 708.75$ & $775 \rightarrow 778.75$	
		(change bars refer to Iss.2.2)	
Draft	31/12/00	Section 4 is deeply revised, by se	parating more
		clearly a model for Case 1 waters	s IOPs and a model
		for Case 2 waters IOPs.	
0	05/06/01	Complete model, full revision	10 m
1	13/07/01	Various errata in sections 2, 3, 4.	4, 4.5
	Revision 0 0 1 2 Draft 0 1 Draft 0 1 Draft 0 1 Draft	Revision Date 0 13/03/98 0 30/04/98 1 06/11/98 2 08/01/99 2 08/01/99 Draft 25/06/99 0 30/08/99 1 25/06/99 0 30/08/99 1 26/01/00 1 26/01/00 1 30/08/00 1 30/08/00 1 30/08/00	RevisionDateDescription0 $13/03/98$ Initial Draft0 $30/04/98$ Reviewed and completed1 $06/11/98$ Update of water reflectance1 $06/11/98$ Update of water reflectance1 $06/11/98$ Update of water reflectance2 $08/01/99$ Aerosol models presentation, spectral dependencies, minor corrections /clarificationsDraft $25/06/99$ Revision of water reflectance model0 $30/08/99$ with comments from Task Force1 $07/09/99$ Clarification following inputs from Task Force2 $17/12/99$ Correction of errors in §6.6, 10, 11 following Task Force inputsDraft $26/01/00$ Revision of Sections 4, 5 to take Task Force results into account New section 2.3, 5.3, 160 $21/07/00$ with tables 10.1, 11-1, 14-1 & bands 9 & 12 shifts: 705 \rightarrow 708. (change bars refer to Iss.2.2)Draft $31/12/00$ Section 4 is deeply revised, by sec clearly a model for Case 1 waters for Case 2 waters IOPs.0 $05/06/01$ Complete model, full revision 11 $13/07/01$ Various errata in sections 2, 3, 4.

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: iii

Table of Contents

1.	- PURPOSE AND SCOPE	. 6
2.	- REFERENCES, ABBREVIATIONS, DEFINITIONS	.7
	2.1 - REFERENCE DOCUMENTS	7
	2.2 REFERENCES (OPEN LITERATURE)	7
	 2.2 ABBREVIATIONS AND DEFINITIONS 	9
	2.4 - NOTATIONS AND CONVENTIONS	9
	2.4 = NOTATIONS AND CONVENTIONS	11
	2.5 TABLE OF STRIBULS	
3.	- MERIS SPECTRAL BANDS	14
4.	- WATER OPTICAL PROPERTIES	15
	4.1 - REMOTELY SENSED LAYER	15
	4.2 - WATER CONSTITUENTS	15
	4.2.1 – Overview	15
	4.2.2 – Relationship with MERIS Level 2 products	17
	4.3 - VERTICAL DISTRIBUTION	18
	4.4 INHERENT OPTICAL PROPERTIES (IOPS) OF PURE SEA WATER	18
	4.4.1 Absorption coefficient	18
	4.4.2 Normalised VSF. total scattering and backscattering coefficients	20
	4.4.3 Emission	21
	4.5 CASE 1 WATERS IOPS.	21
	4.5.1 Total absorption coefficient (pure sea water and phytoplankton)	21
	4.5.2 Normalised VSF total scattering and backscattering coefficients	25
	4.5.2.1 Pure Sea Water	.25
	4.5.2.2 Case I Waters Particles (phytoplankton and its retinue)	25
	4.5.3 Total IOPs in Case 1 waters	29
	4.5.4 Warning concerning the use of the model for case 1 waters IOPs: State-of-the-Art and	
	uncertainties	30
	4.5.4.1 Raman Emission	.30
	4.5.4.2 Fluorescence by Phytoplankton	.31
	4.5.4.3 Fluorescence by Endogenous Yellow Substance	.32
	4.5.4.4 Other Warnings and Limitations	.32
	4.6 CASE 2 WATERS IOPS	34
	4.6.1 Introduction	34
	4.6.2 Components	35
	4.6.2.1 Scattering particles	.35
	4.6.2.2 Absorption of bleached particles and gelbstoff	.30
	4.0.2.5 Fighten Absorption anticles and phytoplankton	20
	4.0.2.4 Co-variations of scattering particles and phytoplankion	38
	4.6.3 L Relationship between particle scattering and TSM dry weight	30
	4.6.3.2 Relationship between pigment absorption and chlorophyll a concentration	39
	4.6.3.3 Conversion factors used in the bio-optical model	.40
	4.7 AOP CALCULATIONS (INCLUDING BIDIRECTIONALITY)	41
	4.7.1 Radiative transfer simulations/calculations	41
	4.7.2 Semi-analytical calculations	42
5.	SEA SURFACE STATE	46
	5.1 SPECIILAR REFLECTION	46
	5.2 WHITE CAPS	40
6	- ATMOSPHERE	42 12
0.		-10
	6.1 - CONSTITUENTS	48
	6.1 - CONSTITUENTS	48 48

Doc. No	: PO-TN-MEL-GS-0026		
Name	: Reference model for MERIS Level 2 processing		
Issue	:4 Rev.: 1		
Date	: 13 July 2001		
Page	: iv		

6.4 - SURFACE PROPERTIES	48
6.5 - AIR PRESSURE AT GROUND	48
6.6 - RAYLEIGH SCATTERING	49
6.7 - OXYGEN	49 40
6.9 - WATER VAPOUR	49 49
6.10 - AEROSOLS	
6.10.1 - Aerosol Models and Properties	49
6.10.2 - Aerosol phase function & single scattering albedo	53
6.10.3 - Aerosol vertical profiles	53
6.11 - REFERENCE ATMOSPHERE	53
7 CLOUDS	54
7.1 - WATER CLOUDS	54
7.2 - CIRRUS CLOUDS	54
8 LAND SURFACE	55
9 SUN IRRADIANCE	56
	57
10 TABLES OF REFRACTIVE INDICES	
11. – TABLES OF AEROSOLS OPTICAL PROPERTIES (ATBD 2.7)	60
12 TABLES DESCRIBING THE AEROSOL ASSEMBLAGES (ATBD 2.7)	63
13 AEROSOL PHASE FUNCTIONS	66
14 SPECTRAL DEPENDENCY OF AEROSOL OPTICAL THICKNESS	68
 14.1 – AEROSOL ASSEMBLAGES (ATM. COR. ABOVE WATER) 14.2 – AEROSOL MODELS (ATM. COR. ABOVE LAND) 	68 79
15 AEROSOL FORWARD SCATTERING PROBABILITY	80
List Of Figures	
Figure 2-1: Geometry notations (see table of symbols)	10
Figure 4-1: Schematic representation of IOP compartments	
Figure 4.2. \cdot normalised VSFs of large small particles (blue curves: tables 4.5.2-1 & 4.5	2-2)
and of mixed populations following a mixing rule depending on Chl (Eqs. (12) &	(13)).
Figure 4.3 : the Raman wavelength redistribution function $f^{R}(\lambda, \rightarrow \lambda)$ for selected inc	28 vident
wavelengths λ ' Figure reproduced from Mobley (1004)	31
wavelenguis X . Figure reproduced from Wooley (1994)	buund
Figure 4.4. Typical Gaussian spectral distribution for the chi-a multi-scenec, peaked at 682 nm, and with a standard deviation $\sigma = 10.64$ nm, corresponding to a width of	about
25 nm at half maximum	22
25 Init at half maximum.	32
Figure 4.6: Normalized nigment absorption spectral selected from the data base of	1155 f. cito
Holgoland	20
Figure 4.7: Relationship between abcomption at 442 nm and chloronhyll a concentration	00
Figure 6.1: principle of aerosol assemblages	4 0
Figure 13. 1: Scattering phase functions for the seroed models of ATPD 2.7	J I 66
Figure 13-1. Scattering phase functions for the across models of ATBD 2.1.	00 27
rigure 15-2. Scattering phase functions for the aerosol models of ATBD 2.15	0/
Table 3-1: MERIS spectral bands	14

Table 3-2: Refractive index of sea water	14
Table 4.4.1-1: Absorption coefficient of pure water, $a_w(\lambda)$, from Pope and Fry (1997)	19
Table 4.4.1-1: Continued	20
Table 4.4.1-2 : Imaginary part of the complex refractive index of water from Hale & Qu	erry
(1973), and for the 700-900 nm domain. The absorption coefficient of pure water, a_w	,(λ),
is computed as $4\pi k(\lambda)/\lambda$, with λ in meters	20
Table 4.5.1-1: Kw, x and e values. Values are reproduced from Morel and Maritorena (20	00),
and from Morel and Antoine (1994). Above 775nm, only $a(\lambda)$ is specified (see also T	able
4.4.1-1)	23
Table 4.5.1-2: mean cosines of the downwelling irradiance (μ_d) as a function of wavelen	ngth
(lines) and chlorophyll concentration (columns), sun zenith angle: 30°, no Rai	man
emission.	24
Table 4.5.1-3:total absorption coefficients a_1 (m ⁻¹), computed as function of Chl an	id λ
through eq. (8) to (11"), with μ_d from table 4.5.1-2 above	24
Table 4.5.2-1: normalised VSF for small particles (see text)	26
Table 4.5.2-2: normalised VSF for large particles (see text)	27
Table 4.5.4-1 : Data from Walrafen (1967)	30
Table 4.5.4-2: Comments on model parameterisation	33
Table 4.6.2.1-1. Normalised volume scattering function for marine particles as derived	d by
Mobley (1994) from Petzold's measurements	36
Table 4.6.3.3-1. Conversion factors used in the bio-optical model	40
Table 4.7-1: Values of $\rho_F(W, \theta')$, the mean Fresnel reflection coefficient for the water	r-air
interface, as function of wind speed W and view angle θ ', (Austin, 1974)	42
Table 4.7-2: Values of \Re as function of wind speed W and view angle θ'	45
Table 6.6-1: Optical thickness of Rayleigh scattering	49
Table 6.10.1-1: Aerosol components	51
Table 6.10.1-2: Parameters defining the size distribution of the various aerosol models	52
(separately for each component of the continental model)	52
Table 8-1 : Surface reflectances in MERIS simulator	55
Table 10-1: Refractive index of aerosol components/models	57
Table 10-2 : Refractive index of land aerosol models	59
Table 11-1: Optical properties of aerosol models	60
Table 12-1: Aerosol assemblages used in atmosphere corrections above ocean	63
Table 14-1: Spectral dependency of aerosol optical thickness	68
Table 14-2: Angström exponent of aerosol models	79
Table 15-1: Aerosol scattering probability	80

MERIS	ESL
--------------	------------

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 6

1. - Purpose and Scope

The specifications provided here define the parameters to be used to generate inherent optical properties for the ocean and atmosphere as a function of geophysical properties and wavelengths, which can be the basis upon which to generate test data and auxiliary parameters needed for operation and end-to-end tests of the MERIS ground segment processor (*i.e.*, mostly to generate water-leaving reflectances or total reflectances at the top of the atmosphere level). Parameters have been selected from various measurements and models in water, surface and atmosphere. The underlying geo-physical models are the same as those of the MERIS geo-physical algorithms, as described in the "MERIS Algorithms Theoretical Basis Document" (ATBD), PO-TN-MEL-GS-0005, Iss. 4.1.

Parts of the model might be subject to evolution in the future, thanks to more field and research work. In its current state, this model has severe limitations when used as a predictive tool. The inherent and/or apparent optical properties computed with this model for given geophysical properties may deviate from locally measured properties. This is due in general to deviation between parameter values or parameterisations adopted in the model and those that may be derived locally in any given water body.

This model is intended to apply to the generation of operational auxiliary parameters for the MERIS processing.

2. - References, Abbreviations, Definitions

2.1 - REFERENCE DOCUMENTS

- [RD1] Table Generation Requirements Document, PO-TN-MEL-GS-0012, Iss. 2.1
- [RD2] Algorithm Theoretical Basis Document, PO-TN-MEL-GS-0005, Iss. 4.1
- [RD3] MERIS Level 2 Detailed Processing Model, PO-TN-MEL-GS-0006, Iss .4.6

2.2 **REFERENCES (OPEN LITERATURE)**

- AHN, Y.-H. 1990 Propriétés optiques de particules biologiques et minérales présentes dans l'océan; Application: inversion de la réflectance. Thèse de Doctorat, Université Pierre et Marie Curie, Paris, 214 pp.
- AUSTIN, R.W., 1974, The remote sensing of spectral radiance from below the ocean surface, in « Optical aspects of Oceanography », Ed. N.G. Jerlov and E. Steemann Nielsen, Academic, London, 317-344.
- BRICAUD, A., A. MOREL, M. BABIN, K. ALLALI and H. CLAUSTRE, 1998, Variations of light absorption by suspended particles with Chlorophyll-a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models, J. Geo. Res 103: 31033-31044
- BROGNIEZ G., J-C. BURIEZ, V. GIRAUD, F. PAROL, C. VANBAUCE, 1995, *Monthly Weather Review*, **123**, 1025.
- CARDER K.L., S.K. HAWES, K.A. BAKER, R.C. SMITH, R.G. STEWARD and B.G. MITCHELL. 1991. Reflectance model for quantifying chlorophyll *a* in the presence of productivity degradation products. *Journal of Geophysical Research*, **96**: 20 599-20 611.
- CARDER K.L., R.G. STEWARD, J.H. PAUL and G. A. VARGO; 1986. Relationships between chlorophyll and ocean color constituents as they affect remote-sensing reflectance models. *Limnology and Oceanography*, **31**: 403-413.
- COX, C. and W. MUNK. 1954. Statistics of the sea surface derived from sun glitter. J. Mar. Res., 13: 198-227.
- COX, C. and W. MUNK. 1954. Some problems in optical oceanography. J. Mar. Res., 14: 63-78.
- ELTERMAN L. 1968. UV, visible, and IR attenuation for altitudes to 50 km, Air Force Cambridge Research Laboratories, Environmental Research papers, N° 285, AFCRL-68-0153, 49pp.
- GORDON, H.R., 1979, Diffuse reflectance of the ocean : the theory of its augmentation by Chl-a fluorescence, Applied Optics **18**, 1161-1166.
- GORDON, H. R. and W. R. McLUNEY. 1975. Estimation of the depth of sunlight penetration in the sea for remote sensing. *Appl. Opt.*, **14**:413-416.
- GORDON, H. R. and A. MOREL. 1983. Remote assessment of ocean color for interpretation of satellite visible imagery. A review. Lecture Notes on Coastal and Estuarine Study, Vol. 4, Springer Verlag.
- HALE, G.M. and M.R. QUERRY 1973: Optical constants of water in the 200nm to 200 μm wavelength region, *Appl. Opt.*, **12**: 555-563.

MERIS	ESI.
TATATATA	LOL

- KATTAWAR G.W. and J.C. VALERIO, 1982, Exact 1-D solution to the problem of the Chla fluorescence from the ocean, Applied Optics **21**, 2489-2492.
- KISHINO, M., S. SUGIHARA, and N. OKAMI, 1984, Influence of fluorescence of Chl-a on underwater upward irradiance spectrum, La Mer 22, 224-232.
- KRONFELD, U., 1988. Die optischen Eigenschaften der ozeanischen Schwebstoffe und ihre Bedeutung für die Fernerkundung von Phytoplankton, GKSS Report 88/E/40, pp.1-153
- LOISEL, H. and A. MOREL, 1998. Light scattering and chlorophyll concentration in Case 1 waters: A re-examination. *Limnol Oceanogr.* **43**(5): 847-858.
- MALONE, 1982
- MARITORENA S., A. MOREL and B. GENTILI, 2000, determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat, *Applied Optics* **39**, in press.
- MOBLEY, C.D., B. GENTILI, H.R. GORDON, Z. JIN, G.W. KATTAWAR, A. MOREL, P. REINERSMANN, K. STAMNES, and R.H. STAVN 1993. Comparison of numerical models for computing underwater light fields. *Appl. Opt.*, **32**, No. 36, pp. 7484-7504
- MOBLEY, C.D 1994 Light and water: Radiative transfer in natural waters, Academic Press
- MOREL, A. 1966. Etude expérimentale de la diffusion de la lumière par l'eau, les solutions de chlorure de sodium et l'eau de mer optiquement pure. J. Chim. Phys., 10: 1359-1366.
- MOREL, A. 1974. Optical properties of pure water and sea water. In : Optical aspects of Oceanography, N. G. Jerlov and E. Steemann-Nielsen, N. G. Jerlov and E. Steemann-Nielsen, Academic, pp. 1-24.
- MOREL, A. 1987. Chlorophyll-specific scattering coefficient of phytoplankton. A simplified theoretical approach. *Deep-Sea Res.*, **34**: 1093-1105.
- MOREL A. 1988. Optical modelling of the upper ocean in relation to its biogenous matter content (case 1 waters). *Journal of Geophysical Research*, **93**: 10 749-10 768.
- MOREL A. and D. ANTOINE. 1994. Heating rate within the upper ocean in relation to its bio-optical state. J. Phys. Oceanogr., 24: 1652-1665.
- MOREL, A. and S. MARITORENA, 2001, Bio-optical properties of oceanic waters : a reappraisal, *J. Geophys. Res.* In press.
- NECKEL H. and D. LABS, 1984. The solar radiation between 300 and 12500 Angström. Sol. Phys. 90, 205-258.
- PETZOLD, T. L. 1972. Volume scattering functions for selected ocean waters. San Diego: Scripps Inst. Oceanogr., Ref. 72-78, 79 pp.
- POPE R. M. and E. S. FRY. 1997. Absorption spectrum (380-700 nm) of pure water. II. integrating cavity measurements. *Appl. Opt.* **36**: 8710-8723.
- ROTHMAN, L.S et al., 1983: AFGL atmospheric absorption lines compilation, Appl. Opt. 22, 2247-2256.
- SATHYENDRANATH, S. and T. PLATT. 1998. An ocean color model incorporating transspectral processes, Applied Optics 27, 2216-2227.
- SATHYENDRANATH, S., L. PRIEUR and A. MOREL. 1989. A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters. *Int. J. Remote Sensing*, **10**: 1373-1394.
- SCHÜTZ, L., 1980. Long-range transport of desert dust with special emphasis on the Sahara, Ann. N.Y. Acad. Sci. 338, 515-532
- SHETTLE E.P. and R.W. FENN. 1979. Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Environmental Research Papers, AFGL-TR-79-0214, 20 September 1979, AFGL, Hanscom, MA.

- SPITZY A. and V. ITTEKOTT. 1986. Gelbstoff : An uncharacterized fraction of dissolved organic carbon. *In* the influence of yellow substances on remote sensing of sea-water consitutents from space (GKSS Geesthacht Research Center, Geesthacht, FRG), VOI. II, pp 31.
- THUILLIER G., M. HERSÉ, P. C. SIMON, D. LABS, H. MANDEL, D. GILLOTAY and T. FOUJOLS, 1998a "Observation of the visible solar spectral irradiance between 350 and 850 nm during the ATLAS I mission by the SOLSPEC spectrometer", *Solar Phys.* 177, 41-61
- THUILLIER G., M. HERSÉ, P. C. SIMON, D. LABS, H. MANDEL and D. GILLOTAY, 1998b "Observation of the solar spectral irradiance from 200 to 870 nm during the ATLAS 1 and 2 missions by the SOLSPEC Spectrometer", *Metrologia*, in press
- WHITLOCK, C. H., L. R. POOLE, J. W. USRY, W. M. HOUGHTON, W. G. WITTE, W. D. MORRIS and E. A. GURGANUS. 1981. Comparison of reflectance with backscatter and absorption parameters for turbid waters. *Appl. Opt.*, 20: 517-522.
- WALRAFEN G.E., 1967, Raman studies of the effect of temperature on water structure, J. Chem. Phys. 47, 114-126.
- WORLD CLIMATE RESEARCH PROGRAM. 1986. A preliminary cloudless standard atmosphere for radiation computation. Int. Ass. for Meteor. and Atm. Phys., Radiation Commission, March 1986, WCP-112, WMO/TD-N° 24.

2.3 - Abbreviations and definitions

AOP: Apparent Optical Property ATBD: Algorithm Theoretical Basis Document CDOM: Coloured Dissolved Organic Matter IOP: Inherent Optical Property RH: Relative Humidity SPM: Suspended Particulate Matter TBD: To Be Defined TGRD: Table Generation Requirements Document TSM: Total Suspended Matter VSF: Volume Scattering Function WCRP: World Climate Research Programme

Case 2(S) water :case 2 water dominated by suspended matter (see RD2) Case 2(Y) water :case 2 water dominated by yellow substance (see RD2)

2.4 - NOTATIONS and CONVENTIONS

The Geometry notations and conventions in this document are those of RD3. They are recalled here. In a Cartesian frame linked to the Earth ellipsoid at a given point, the directions of the Sun and of the observer are represented in figure 2-1 below.

Equations in this document are numbered. The number sequence does *not* reflect a model or algorithm logic.

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 10

Figure 2-1: Geometry notations (see table of symbols)

2.5 TABLE OF SYMBOLS

Symbol	definition	Dimension / units
Geometry (see fi	g. 2.1)	
λ	Wavelength	nm
$ heta_{ m s}$	Sun zenith angle ($\mu_s = \cos(\theta_s)$)	degrees
$ heta_{ m v}, heta$	Satellite viewing angle $(\mu_v = \cos(\theta_v))$	degrees
heta'	Refracted viewing angle $(\theta' = \sin^{-1}(n.\sin(\theta_v)))$	degrees
$arDelta \phi$	Azimuth difference between the sun-pixel and pixel-sensor	degrees
	half vertical planes	
Ψ	Scattering angle (not represented)	degrees
Radiometric qua	antities	
$L(\lambda, \theta_{s}, \theta_{v}, \Delta \phi)$	Radiance	W m ⁻² nm ⁻¹ sr ⁻¹
Inherent Optical	Properties ("IOPs")	
$eta(heta,\lambda)$	volume scattering function (VSF)	sr ⁻¹
$\widetilde{eta}(heta,\lambda)$	normalised volume scattering function	sr ⁻¹ m ⁻¹
	$\widetilde{\beta}(\theta,\lambda) = \frac{\beta(\theta,\lambda)}{b(\lambda)}$	
	where	
	$\beta(\theta, \lambda) = \frac{d\Phi(\theta, \lambda)}{\Phi_o(\lambda)} \frac{1}{d\omega dr}, \ \Phi_o(\lambda) \text{ is the radiant flux}$	
	onto a volume element of thickness dr, and $d\Phi(\theta,\lambda)/d\omega$ is the radiant intensity scattered from this volume in the direction θ with respect to the direction of the incident flux.	
$a(\lambda)$	Absorption coefficient	m ⁻¹
$b(\lambda)$	Scattering coefficient	m ⁻¹
$c(\lambda)$	Attenuation coefficient for wavelength λ	m ⁻¹
$b_b(\lambda)$	Backscattering coefficient	m ⁻¹
Apparent Optica	al Properties ("AOPs") and derived quantities	
$\rho(\lambda, \theta_{\rm S}, \theta_{\rm V}, \Delta\phi)$	Reflectance $(\pi L / E_d(0^+))^1$	dimensionless
	where the product π .L is the TOA upwelling irradiance if	

upwelling radiances are equal to $L(\lambda, \theta_s, \theta_v, \Delta \phi)$, for any values of θ_v

within $0-\pi/2$ and any $\Delta \phi$ within $0-2\pi$.

¹ This definition actually corresponds to the transformation of the normalised water-leaving radiance *sensu* Gordon and Clark (1981) (*i.e.*, L / ($\varepsilon_c t_{\theta s} \mu_s$)) into reflectance through the usual equation $\rho = \pi L / F_0 \mu_s$ (with $\mu_s = 1$ in this last case).

Doc. No : PO-TN-MEL-GS-0026 Name : Reference model for MERIS Level 2 processing : 4 Rev.: 1 Issue : 13 July 2001 Date Page :12

	Subscripts t : total reflectance	
	w : water-leaving reflectance	
	u : reflectance just below the sea surface	
$[ho_{ m w}]_{ m N}(\lambda)$	Normalised water-leaving reflectance (i.e., the reflectance if	
	there were no atmosphere, and for $\theta_{\rm s} = \theta_{\rm v} = 0$)	dimensionless
E_u	Upwelling irradiance	dimensionless
Ed	downwelling irradiance	dimensionless
R(λ, 0 ⁻)	Diffuse reflectance at null depth, or irradiance reflectance (E_u / E_d)	dimensionless
$F_0(\lambda)$	Mean extraterrestrial spectral irradiance	W m ⁻² nm ⁻¹
f	Ratio of R(0 ⁻) to (b_b/a); subscript 0 when $\theta_s = 0$	dimensionless
f	Ratio of R(0 ⁻) to ($b_b/(a + b_b)$); subscript 0 when $\theta_s = 0$	dimensionless
$Q(\lambda, \theta_s, \theta_v, \Delta \phi)$	Factor describing the bidirectional character of $R(\lambda, 0^{-})$	sr
	subscript 0 when $\theta_s = \theta_v = 0$; $Q = E_u/L_u$	
Other atmosphe	re and aerosol properties	
$F_a(\lambda)$	Aerosol forward scattering probability (section 15)	dimensionless
$ au_{ m a}(\lambda)$	Optical thickness due to aerosol scattering	dimensionless
$ au_{ m r}(\lambda)$	Optical thickness due to Rayleigh scattering	dimensionless
$\sigma_{\rm a}(\lambda)$	Aerosol single scattering albedo	dimensionless
$\varpi_{\rm r}(\lambda)$	Rayleigh single scattering albedo	dimensionless
V	Exponent of the Junge law for the distribution of aerosol	dimensionless
	particles (sensitivity studies)	
RH	Relative humidity	percents
$t_{\theta_s}(\lambda, \theta_s)$	Irradiance transmittance for a sun zenith angle $\theta_{\rm s}$	dimensionless
	$t_{\theta_s}(\lambda, \theta_s) = E_d(0^+) / (\mu_s \varepsilon_c F_0)$, where $E_d(0^+)$ is the	
a	downwelling irradiance just above the sea surface	
Geophysical pro	perties	2
Chl	Uniorophyli concentration	mg m ⁻³
TSM	I otal Suspended Matter concentration	mg m ⁻⁵
YS	yellow substance absorption	m^{-1}

Air-water interface

 $\Re(\theta')$ Geometrical factor, accounting for all refraction and reflection dimensionless effects at the air-sea interface (Morel and Gentili, 1996)

$$\Re(\theta') = \left[\frac{(1-\overline{\rho})}{(1-\overline{r}R)} \frac{(1-\rho_{\rm F}(\theta'))}{n^2}\right] \text{ (subscript 0 when } \theta' = 0\text{)}$$

where

	n is the refractive index of water α (θ) is the Freenel reflection coefficient for incident	dimensionless
	$\rho_{\rm F}(\theta)$ is the Freshel reflection coefficient for incluent	annensionness
	$\overline{\rho}$ is the mean reflection coefficient for the downwelling	dimensionless
	irradiance at the sea surface	
	\overline{r} is the average reflection for upwelling irradiance at the water-air interface	e dimensionless
σ	Root-mean square of wave facet slopes	dimensionless
β	Angle between the local normal and the normal to a wave face	t
р	Probability density of surface slopes for the direction $(\theta_{\rm s}, \theta_{\rm v}, \Delta \phi)$	dimensionless
Miscellaneous		
W	Wind speed	dimensionless
\mathcal{E}_{c}	Correction factor applied to $F_0(\lambda)$, and	dimensionless
	accounting for the changes in the Earth-sun distance.	
	It is computed from the eccentricity of the Earth	
	orbit, $e = 0.0167$, and from the day number D, as	
	$\varepsilon_{\rm c} = \left(1 + \mathrm{e}\mathrm{cos}\!\left(\frac{2\pi(\mathrm{D}-3)}{365}\right)\right)^2$	
ln	natural (or Neperian) logarithm	
\log_{10}	decimal logarithm	

3. - MERIS Spectral bands

The following MERIS spectral bands are considered in this document:

Channel number	Wavelength (nm)	Width (nm)
1	412.5	10
2	442.5	10
3	490.0	10
4	510.0	10
5	560.0	10
6	620.0	10
7	665.0	10
8	681.25	7.5
9	708.75	10
10	753.75	7.5
11	760.625	3.75
12	778.75	15
13	865.0	20
14	885.0	10
15	900.0	10

Table 3-1: MERIS spectral bands

NOTE: due to the programmable nature of the MERIS and optimisation of the processing, this list of bands may evolve in the future.

The refractive index of sea water relative to air shall be taken from table 3-2 below. Values are interpolated from Mobley (1994) at the MERIS wavelengths, for a pressure 1013 hPa, salinity 35 psu, and temperature 15°C.

λ (nm)	n
412.5	1.349
442.5	1.347
490.0	1.344
510.0	1.343
560.0	1.341
620.0	1.339
665.0	1.338
681.25	1.338
708.75	1.337
778.75	1.336
865.0	1.334

Table 3-2: Refractive index of sea water

4. - Water Optical Properties

At a given λ , the optical properties described below apply to Case 1 and Case 2 ocean waters (tentatively to inland waters). Water optical properties shall be computed at least for the following MERIS bands:

1, 2, 3, 4, 5, 6, 7, 9, 12, 13 for algorithms which include atmosphere correction;

1, 2, 3, 4, 5, 6, 7, 9 for algorithms based on water-leaving radiance (or reflectance)

4.1 - REMOTELY SENSED LAYER

The geometrical thickness of the vertical water layer from which 90% of the remotely sensed ocean colour signal emerges [denoted $Z_{90}(\lambda)$; m] can be approximated by (Gordon and McCluney 1975):

$$Z_{90}(\lambda) = 1/K_d(\lambda) \tag{1a}$$

where $K_d(\lambda)$ (m⁻¹) is the vertical attenuation coefficient for downward irradiance. Here, we assume that (whatever λ)

$$z >> Z_{90}(\lambda) \tag{1b}$$

where z (m) is the geometrical thickness of the water column. In other words, bottom effect is not accounted for in the present model.

4.2 - WATER CONSTITUENTS

4.2.1 - OVERVIEW

This section presents the concepts and terminology used through the discussion and specification of the water optical properties models.

The apparent optical properties of sea waters can be determined according to the inherent optical properties (absorption and scattering) of 5 groups of substances (*cf.* Fig. 4-1):

- 1. pure sea water, denoted "w"
- 2. phytoplankton and other associated particles (detritus, bacteria, ...), denoted "p1"
- 3. endogenous coloured dissolved organic matter (associated with biological activity), denoted "y1"
- 4. terrestrial (exogenous) particles (sediment resuspended from the bottom, brought by rivers, ...), denoted "p2"
- 5. exogenous coloured dissolved organic matter from land drainage (present in Case 2 waters only), denoted "y2".

While only groups 1, 2 and 3 are present in Case 1 waters, all of them (1 to 5 above) co-exist in Case 2 waters. In this case, however, the individual components y1 and y2 cannot be practically separated (a measure of CDOM absorption provides the sum y1 + y2).

IOPs of groups 2, 3, 4 and 5 are related to the following "concentrations":

- 1. p1 and y1 IOPs will be a function of the concentration of chlorophyll a (including the divinyl form and pheopigments) denoted "[*chl*]" and with units as mg m⁻³
- 2. p2 IOPs will be ideally related to the sea water particles dry weight (denoted "*TSM*" and with units as g m⁻³) from which the contribution of p1 has been subtracted; practically it is related to the corresponding scattering coefficient (units m⁻¹).

3. y2 IOPs will be a function of the CDOM concentration as determined by its absorption coefficient at 443 nm, denoted indifferently " $a_{y2}(443)$ " or *CDOM* and with units as m⁻¹ (*i.e.* the total measured CDOM absorption from which a_{y1} has been subtracted)

Figure 4-1: Schematic representation of IOP compartments.

Comments	on	Figure	4-1

Case 2 waters are seen as Case 1 waters to which other optically active substances are added. In other words, Case 1 waters can be seen as particular Case 2 waters when these additional substances are lacking.

Case 1 waters include 3 components:

- pure sea water for which 2 spectral IOPs must be specified: $a_w(\lambda)$ and $\beta_w(\lambda, \theta)$; this last term can be split into $\overline{\beta}_w(\theta)$ (independent from λ) and $b_w(\lambda)$
- all particulate matter found in open ocean, such as living algal cells, heterotrophic bacteria and organisms, various debris, ... Again, this compartment is described by its absorption and scattering properties: $a_{pl}(\lambda)$, $b_{pl}(\lambda)$ and $\overline{\beta}_{pl}(\theta)$
- coloured dissolved organic material presumably generated in open ocean (through processes like excretion, organism decay, ...), and likely related to the particulate matter abundance. This compartment comes into play through its absorption coefficient $a_{vl}(\lambda)$

In summary, there are 3 components in forming the absorption coefficient of Case 1 waters and 2 components in forming the scattering properties.

Case 2 waters include the three above components and in addition:

- exogenous particles, mainly sediment, either transported by rivers, or re-suspended from the bottom in shallow waters. The proportions between organic and mineral particles is varying according to the location and origin; the mineral particles are also geographically differing (clay, calcareous, ...). Therefore, several types of particles may be simultaneously present, and to each type corresponds a couple of properties like $a_{p2}(\lambda)$ and $\beta_{p2}(\lambda, \theta)$
- exogenous CDOM resulting from land drainage which acts only as absorber: $a_{y2}(\lambda)$. As for particles, it is likely that several types may be distinguished depending on the location.

4.2.2 - RELATIONSHIP WITH MERIS LEVEL 2 PRODUCTS

The way the IOPs presented above will be practically related to the MERIS Level 2 products is explained separately for Case 1 and Case 2 waters in sections 4.5 and 4.6 below, respectively.

To summarise:

- The Algal Pigment Index 1 product corresponds to p₁ (and take y₁ into account), *in Case 1 waters*.
- The Algal Pigment Index 2 product corresponds to the absorption of p₁.
- The Total Suspended Matter product corresponds to the aggregate scattering of p1 and p2.
- The Yellow Substance product corresponds to the aggregate absorption of p₂, y₁ and y₂.

4.3 - VERTICAL DISTRIBUTION

It is assumed that all substances are homogeneously distributed in the upper part of the water column. For many coastal waters, this is a realistic assumption, especially when considering the $Z_{90}(\lambda)$ layer; this may be false for river plumes, where very strong vertical gradients associated with fresh water spreading may be observed.

4.4 INHERENT OPTICAL PROPERTIES (IOPS) OF PURE SEA WATER

These Inherent Optical Properties are involved in both Case 1 and Case 2 waters and include absorption, scattering, and emission (Raman) properties.

4.4.1 ABSORPTION COEFFICIENT

The absorption coefficients of pure sea water, a_w (λ), are taken from Pope and Fry (1997) for wavelengths up to 709 nm, *i.e.* up to and including MERIS band 9, and from Hale and Querry (1973) for wavelengths above 709nm (see Table 4.4.1-1 below).

Doc. No : PO-TN-MEL-GS-0026

Name : Reference model for MERIS Level 2 processing 1

Rev.: Issue : 4

Date : 13 July 2001

: 19 Page

i ammi a	a (m ⁻¹)	ar (m 1)	Percent	(ertrs) 4	a im 1	av (mis ⁻¹)	Passant
A 11111	100 L		÷ End & Bobbb	× r(m),		U (att)	1 CICCUL
380.0	0.01137	0.0016	14	537.5	0.0466	0.0015	4
382.5	0.01044	0.0015	15	540.0	0.0474	0.0010	5
385.0	0.00941	0.0011	13	542.5	0.0489	0.0016	4
387.5	0.00917	0.0014	16	545.0	0.0511	0.0011	3
390.0	0.00851	0.0012	15	647.5	0.0537	0.0016	4
392.5	0.00829	0.0011	14	650.0	0.0565	0.0011	3
395.0	0.00813	0.0010	13	552.5	0.0593	0.0012	3
397.5	0.00775	0.0011	15	555.0	0.0596	0.0012	3
400.0	0.00663	0.0007	11	557.5	0.0606	0.0014	4
402.5	0.00579	0.0007	12	560.0	0.0619	0.0010	3
405.0	0.00530	0.0007	14	562.5	0.0640	0.0015	4
407.5	0.00503	0.0006	13	565.0	0.0642	0.0009	3
410.0	0.00473	0.0006	13	567 5	0.0679	0.0014	9
412.5	0.00459	0.0005	1.9	570.0	0.00012	0.0011	2
415.0	0.00444	0.0006	19	570.0 579 E	0.0030	0.062.7	4
417.5	0.00449	0.0006	1.0	576.0	0.0100	64,049,2,3	4L 71
406.6	0.00464	0.0000	3.9k 3.4	010.0 PP0% %	0.00112	0.0011	3
420.0	0.00.0494	0.0000	191	6.110	0.0836	0.0016	J.
422.0	0.001474	0.0006	13	590.0	0.0896	0.0012	3
425.0	0.00478	0.0006	14	582.5	0.0989	0.0016	3
427.0	0.00482	U.OUOKS	13	585.0	0.1100	0.0012	3
430.0	0.00495	0.0006	12	587.5	0.1220	0.0018	3
432.5	0.00504	0.0005	11	590.0	0.1351	0.0012	2
435.0	0 00530	0.0005	11	592.5	0.1516	0.0017	3
437.5	0.00580	0.0005	10	595.0	0.1672	0,0014	3
440.0	0.00635	0.0005	9	597.5	0.1925	0.0019	3
442.5	0.00696	0.0005	9	600.0	0.2224	0.0017	3
445.0	0.00751	0.0006	8	602.5	0.2470	0.0023	3
447.5	0.00830	0.0005	7	605.0	0.2577	0.0019	3
450.0	0.00922	0.0005	6	607.5	0.2629	0.0028	3
452.5	0.00969	0.0004	6	610.0	0.2644	0.0019	3
455.0	0.00963	0.0004	Prove and a second seco	612.5	0.2665	0.0023	9
457 5	0.00957	0.0004	5	615.0	0.2678	0.0019	з
460.0	0.00979	0.0005	6	617.5	0.2707	0.0026	3
462.5	0.01005	0.0005	6	620.0	0.2755	0.0025	3
465.0	0.01011	0.0006	7	622.5	0.2810	0.0039	3
467.5	0.0102	0.0006	6	625.0	0.2834	0.0028	3
470.0	0.0106	0.0005	6	627.5	0.2964	0.0039	3
472.5	0.0109	0.0008	8	630.0	0.2916	0.0027	3
475.0	0.0114	0.0007	7	632.5	0.0095	0.0038	3
477.5	0.0121	0.0008	8	635.0	0.3012	0.0028	EI P
480.0	0.0127	0.0008	2	697.5	0.3077	0.0020	2
482.5	0.0131	0.0006	* *	640.0	0.3308	0.0048	3
485.0	0.0126	0.0000	r #	649.5	1.990	0.0026	11
487.5	0.01.30	0.0007	e e	046.0	0.044	0.000	J
AND FRU	0.0150	0.0001	0	040.0	0.023	UUUUA	ð
400.0	0.0100	A CHART	ņ n	DH.I.D	0.539	0.004	ن
4012.0	0.01002	0.0014	9	650.0	0.340	600.0	3
495.0	0.0178	0.0010	6	632.5	0.35%	0.005	3
497.0	1610.0	0.0014	8	655.0	0.371	0.003	3
500.0	0.0304	0.0011	6	657.5	0.393	0.006	1
502.5	0.0225	0.0012	6	660.0	0.410	0.004	З
506 0	0.0256	0.0013	6	662.5	0 424	0.005	3
507 5	0.0280	0.0010	5	665.0	0.429	0.004	н
510.0	0.0325	0.0011	4	667.5	0.436	0.005	8
512.5	0.0372	0.0012	4	670.0	0.439	0,004	3
515.0	0.0396	0.0012	4	672.5	0.448	0.007	3
517.5	0.0399	0.0015	ô	675.0	0.448	0.004	-15
520.0	0.0409	0.0009	3	677.5	0.461	0.006	3
522 5	0.0416	0.0014	, j	680,0	0.465	0.004	3
525.0	0.0417	0.0010	4	682.5	0.478	0.006	3
527.5	0.0428	0.0017	5	685.0	0.486	0.004	3
530.0	0.0434	0.0011	4	687.5	0.502	0.006	3
2 0 0 F	0.0447	0.0017	-	690.0	0.516	0.004	0
0.52.0	2. F. J. P. W. S. B.	11/11/11	4,7	020.0	0.0310	0.009	13

Table 4.4.1-1: Absorption coefficient of pure water, $a_w(\lambda)$ *, from Pope and Fry (1997)*

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 20

λ (nm)	a, (m ⁻¹)	σ (m ⁻¹)	Percent			
695.0	0.559	0.005	3			
697.5	0.692	0.008	3			
700.0	0.624	0.006	3			
702.5	0.663	0.008	3			
705.0	0.704	0.006	3			
707.5	0.756	0.009	3			
710.0	0.827	0.007	3			
712.5	0.914	0.011	3			
715.0	1.007	0.009	3			
717.5	1.119	0.014	3			
720.0	1.231	0.011	3			
722.5	1.356	800.0	3			
725.0	1.489	0.006	3			
727.5	1.678	0.007	3			

Table 4.4.1-1: Continued

λ (nm)	$k(\lambda)$	$a(\lambda)$
700	3.35 10-8	0.6014
725	9.15 10-8	1.5859
750	1.56 10-7	2.6138
775	1.48 10-7	2.4000
800	1.25 10-7	1.9635
825	1.82 10-7	2.7722
850	2.93 10-7	4.3317
875	3.91 10-7	5.6153
900	4.86 10-7	6.7858

Table 4.4.1-2 : Imaginary part of the complex refractive index of water from Hale & Querry (1973), and for the 700-900 nm domain. The absorption coefficient of pure water, $a_w(\lambda)$, is computed as $4\pi k(\lambda)/\lambda$, with λ in meters.

4.4.2 NORMALISED VSF, TOTAL SCATTERING AND BACKSCATTERING COEFFICIENTS

The normalised volume scattering function of pure sea water is that published by Morel (1966, 1974), which can be expressed as:

$$\widetilde{\beta}_{w}(\theta) = \frac{3}{4\pi(3+p)}(1+p\cos^{2}\theta)$$
(2)

where the parameter p (polarisation factor at 90°) equals 0.84.

The backscattering probability corresponding to this normalised VSF is

$$\widetilde{\mathbf{b}}_{\mathsf{bw}} = \frac{1}{2} \tag{2'}$$

The total scattering coefficient for seawater (in the salinity range 35-38 psu), $b_w(\lambda)$, is determined from Morel (1974):

$$b_{w}(\lambda) = 0.00288 \left(\frac{\lambda}{500}\right)^{-4.32}$$
 (3)

Note that for freshwater it is

$$b_{w}(\lambda) = 0.00222 \left(\frac{\lambda}{500}\right)^{-4.32}$$
 (3')

Note that the variation of b_w with salinity is roughly a linear function of salinity.

4.4.3 EMISSION

See section 4.5.4.1

4.5 CASE 1 WATERS IOPS

4.5.1 TOTAL ABSORPTION COEFFICIENT (PURE SEA WATER AND PHYTOPLANKTON2)

Here, the analytical approach suggested by Fig. 4.1, and which consists of explicitly modelling a_1 as the sum $[a_w + a_{p1} + a_{y1}]$ is not used, by lack of knowledge of a stable relationship (if any) between [Chl] and the associated endogenous yellow substance. The indirect approach used here rests on the consideration of $K_d(\lambda)$. Indeed, this coefficient merges the influences of all absorbing substances, without discriminating their separate contributions. Therefore a_1 is globally determined as a function of [Chl] as described in Morel and Maritorena (2000)

$$a_1(\lambda) = K_d(\lambda)u(\lambda) \tag{8}$$

where $K_d(\lambda)$ is given as a function of [chl] (see table 4.5.1-1 below) :

$$K_{d}(\lambda) = K_{w}(\lambda) + \chi(\lambda)[Chl]^{e(\lambda)}$$
(9)

The factor u is determined by iterations as described in Morel (1988) and Morel and Maritorena (2000). This scheme consists of introducing $b_b(\lambda)$ in the following equation

$$R(\lambda) = f(\lambda) \frac{\mathbf{b}_b(\lambda)}{\mathbf{a}_1(\lambda)} \tag{10}$$

where R is the irradiance reflectance (E_u / E_d) , and $b_b = b_{bw} + b_{bp1}$. The coefficient b_{bw} is calculated according to Eqs. (2') and (3) above, and b_{bp1} according to Eq. (18) below (§4.5.2.2). Then $a_1(\lambda)$ is replaced by $u_1 K_d(\lambda)$, with $u_1 = 0.75$, whatever the wavelength and f is set to 0.33. A first set of R(λ) values is thus derived. Then, an exact relationship (derived from the Gershun's equation), namely

$$a_{1} = K_{d} \mu_{d} \left[1 + R \left(\mu_{d} / \mu_{u} \right) \right]^{-1} \left[1 - R + (K_{d})^{-1} dR / dZ \right]$$
(11)

² Here, "phytoplankton" means the living algal cells as well as all other particulate or dissolved matter found in open ocean, such as heterotrophic bacteria and organisms, various debris, yellow substances etc.... (see comments on Fig. 4.1).

MERIS ESL	Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.:I1Date: 13 July 2001Page: 22
-----------	---

is operated by letting μ_u equal to 0.42, by interpolating μ_d from the values given in table 4.5.1-2 below as a function of the chlorophyll concentration and wavelength, and by neglecting dR/dZ, which results in

$$a_{1}(\lambda) = K_{d}(\lambda)\mu_{d} \left[1 + (\mu_{d} / 0.42) R(\lambda)\right]^{-1} \left[1 - R(\lambda)\right]$$
(11')

or

$$a_1(\lambda) = K_d(\lambda) u_2(\lambda) \tag{11''}$$

The first set of $R(\lambda)$ values is used to produce the spectrally varying $u_2(\lambda)$ values through Eq. 11' and a new set of $a_1(\lambda)$ values through Eq. 11''. The value of a_1 shall be constrained to be higher than or equal to $a_w(\lambda)$ (from §4.4.1 above). With these adjusted $a_1(\lambda)$ values, through a second loop using Eq. (10), a more accurate set of $R(\lambda)$ values is derived, and so forth. Stable $R(\lambda)$ values (then stable $a_1(\lambda)$ values) are obtained within three loops in this iterative process. The final $a_1(\lambda)$ values are given in Table 4.5.1-3.

			-	-
		37	2	1
			for-	2
	Va			
La	1	- 11	1	

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 23

		and the second	in the second						
λ	K _w	е	χ	λ	K _w	e	χ	λ(nm)	$a(\lambda)$ (m^{-1})
350	0.02710	0.77800	0.15300	530	0.04454	0 67224	0.04829	775	2 400
355	0.02380	0.76700	0.14900	535	0.04630	0.66739	0.04611	800	1.963
360	0.02160	0.75600	0.14400	540	0.04846	0.66195	0.04419	825	2.772
365	0.01880	0.73700	0.14000	545	0.05212	0.65591	0.04253	850	4.331
370	0.01770	0.72000	0.13600	550	0.05746	0.64927	0.04111	875	5.615
375	0.01595	0.70000	0.13100	555	0.06053	0.64204	0.03996	900	6.786
380	0.01510	0.68500	0.12700	560	0.06280	0.64000	0.03900		
385	0.01376	0.67300	0.12300	565	0.06507	0.63000	0.03750		
390	0.01271	0.67000	0.11900	570	0.07034	0.62300	0.03600		
395	0.01208	0.66000	0.11800	575	0.07801	0.61500	0.03400		
400	0.01042	0.64358	0.11748	580	0.09038	0.61000	0.03300		
405	0.00890	0.64776	0.12066	585	0.11076	0.61400	0.03280		
410	0.00812	0.65175	0.12259	590	0.13584	0.61800	0.03250		
415	0.00765	0.65555	0.12326	595	0.16792	0.62200	0.03300		
420	0.00758	0.65917	0.12269	600	0.22310	0.62600	0.03400		
425	0.00768	0.66259	0.12086	605	0.25838	0.63000	0.03500		
430	0.00770	0.66583	0.11779	610	0.26506	0.63400	0.03600		
435	0.00792	0.66889	0.11372	615	0.26843	0.63800	0.03750		
440	0.00885	0.67175	0.10963	620	0.27612	0.64200	0.03850		
445	0.00990	0.67443	0.10560	625	0.28400	0.64700	0.04000		
450	0.01148	0.67692	0.10165	630	0.29218	0.65300	0.04200		
455	0.01182	0.67923	0.09776	635	0.30176	0.65800	0.04300		
460	0.01188	0.68134	0.09393	640	0.31134	0.66300	0.04400		
465	0.01211	0.68327	0.09018	645	0.32553	0.66700	0.04450		
470	0.01251	0.68501	0.08649	650	0.34052	0.67200	0.04500		
475	0.01320	0.68657	0.08287	600	0.37150	0.67700	0.04600		
480	0.01444	0.68794	0.07932	660	0.41048	0.68200	0.04750		
485	0.01526	0.68903	0.07342	665	0.42947	0.68/00	0.04900		
490	0.01000	0.68955	0.07242	670	0.43946	0.69500	0.05150		
495 500	0.01003	0.00947	0.06907	690	0.44844	0.69700	0.05200		
505	0.02188	0.08880	0.00379	685	0.40343	0.09300	0.03030		
510	0.02701	0.68567	0.00237	600	0.48042	0.00500	0.04400		
515	0.03303	0.68320	0.05635	695	0.51040	0.04000	0.03400		
520	0.04010	0.68015	0.05341	700	0.53939	0.02000	0.03400		
525	0.04287	0.67649	0.05072	705	0.74200	0.60000	0.03000		
525	0.01207	0.07042	0.05072	710	0.83400	0.00000	0.02000		
				715	1.00200	0.60000	0.02000		
				720	1 17000	0.60000	0.01000		
				725	1 48500	0.60000	0.00700		
				730	1.80000	0.60000	0.00500		
				735	2.09000	0.60000	0.00200		
				740	2.38000	0.60000	0.00000		
				745	2.42000	0.60000	0.00000		
				750	2.47000	0.60000	0.00000		

Table 4.5.1-1: K_w , x and e values. Values are reproduced from Morel and Maritorena (2000), and from Morel and Antoine (1994). Above 775nm, only $a(\lambda)$ is specified (see also Table 4.4.1-1)

Note that the K_w values in table 4.5.1-1 have been obtained by using the absorption and scattering coefficients of pure sea water as described in sections 4.4.1 and 4.4.2 ($K_w = a_w + 0.5b_w$).

5		
52		
23		
	ACRI	
	ACR	

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 24

	0.03	0.1	0.3	1.	3.	10.
350.	0.770	0.769	0.766	0.767	0.767	0.767
400.	0.770	0.769	0.766	0.767	0.767	0.767
412.	0.765	0.770	0.774	0.779	0.782	0.782
443.	0.800	0.797	0.796	0.797	0.799	0.799
490.	0.841	0.824	0.808	0.797	0.791	0.791
510.	0.872	0.855	0.834	0.811	0.796	0.796
555.	0.892	0.879	0.858	0.827	0.795	0.795
620.	0.911	0.908	0.902	0.890	0.871	0.871
670.	0.914	0.912	0.909	0.901	0.890	0.890
700.	0.914	0.912	0.909	0.901	0.890	0.890
710.	0.914	0.912	0.909	0.901	0.890	0.890

Table 4.5.1-2: mean cosines of the downwelling irradiance (μ_d) as a function of wavelength (lines) and chlorophyll concentration (columns), sun zenith angle: 30°, no Raman emission.

	0.03	0.1	0.3	1	3	10
412.5	0.0115643	0.0228673	0.0445606	0.095627	0.194528	0.425296
442.5	0.0126095	0.0223262	0.0415189	0.0877143	0.179471	0.399036
490.0	0.0173563	0.0234732	0.0358357	0.0663681	0.128137	0.280947
510.0	0.0325	0.0372764	0.0470969	0.0713008	0.120455	0.244057
560.0	0.0619	0.0619	0.0672771	0.0807731	0.106826	0.174669
620.0	0.2755	0.2755	0.2755	0.276348	0.301871	0.375383
665.0	0.429	0.429	0.429	0.429	0.467546	0.58095
681.25	0.4715	0.4715	0.4715	0.4715	0.504934	0.617897
708.5	0.7915	0.7915	0.7915	0.7915	0.7915	0.7915

Table 4.5.1-3:total absorption coefficients a_1 (m⁻¹), computed as function of Chl and λ through eq. (8) to (11"), with μ_d from table 4.5.1-2 above.

4.5.2 NORMALISED VSF, TOTAL SCATTERING, AND BACKSCATTERING COEFFICIENTS

4.5.2.1 Pure Sea Water

See section 4.4 above.

4.5.2.2 Case 1 Waters Particles (phytoplankton and its retinue)

The normalised VSF for Case 1 waters particles is obtained as a mixture of two separately computed VSFs (Fig. 4.2). The first one (Table 4.5.2-1) corresponds to a population of "small" non-absorbing particles of spheroidal shape, with a relative index of refraction equal to 1.06, and assumed to obey a Junge law with the exponent set equal to -4.2. The second population corresponding to "large" particles (Table 4.5.2-2) is identical except that the Junge exponent is equal to -3. The weighted sum of these two VSFs provides

$$\widetilde{\beta}_{pl}(\theta, \text{Chl}) = w_{s}(\text{Chl}) \ \widetilde{\beta}_{pl,s}(\theta) + w_{l}(\text{Chl}) \ \widetilde{\beta}_{pl,l}(\theta)$$
(12)

where the subscripts s and l stand for small and large particles, respectively, and where the weights w_s and w_l are such that :

$$w_{s}(Chl) + w_{l}(Chl) = 1$$
(13)

$$w_{s}(Chl) = 0.855 (0.5 - 0.25 \log_{10}(Chl))$$
 (14)

The normalised VSF computed through Eq. (12) are assumed to be wavelength independent (no change in shape).

The backscattering efficiency for Case 1 water particles that derives from the use of the above chlorophyll-varying normalised VSF exactly matches the following expression (from Morel and Maritorena, 2000) :

$$\widetilde{\mathbf{b}}_{\rm bpl}(\lambda) = 0.002 + [0.01 \ [0.5 - 0.25 \log_{10}(\rm chl)]]$$
(15)

At 550 nm, the particle scattering coefficient, $b_{pl}(550)$, is taken from Loisel and Morel (1998):

$$b_{pl}(550) = A_{bpl} [chl]^{B_{pl}}$$
(16)

where A_{bpl} and B_{bpl} equal 0.416 and 0.766, respectively. The factor of variation in A_{bpl} equals 1.3.

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.:I1Date: 13 July 2001Page: 26

θ	$\widetilde{oldsymbol{eta}}(heta)$	θ	$\widetilde{eta}(heta)$	θ	$\widetilde{eta}(heta)$	θ	$\widetilde{eta}(heta)$
0.	42.282829537580	47.0	2.2451516277360D-02	94.0	2.7766892922530D-03	141.0	2.0547500762672D-03
1.0	34.958732391211	48.0	2.1023504641344D-02	95.0	2.7211555064079D-03	142.0	2.0626834742451D-03
2.0	23.065450213275	49.0	1.9706560577018D-02	96.0	2.6576883225850D-03	143.0	2.0626834742451D-03
3.0	15.406801674179	50.0	1.8492750686405D-02	97.0	2.6021545367400D-03	144.0	2.0706168722230D-03
4.0	10.720368953898	51.0	1.7382074969504D-02	98.0	2.5545541488728D-03	145.0	2.0706168722230D-03
5.0	7.6237177877997	52.0	1.6358666630359D-02	99.0	2.5069537610056D-03	146.0	2.0785502702008D-03
6.0	5.5174720252582	53.0	1.5406658873015D-02	100.0	2.4593533731384D-03	147.0	2.0785502702008D-03
7.0	4.0755214089952	54.0	1.4533985095450D-02	101.0	2.4196863832490D-03	148.0	2.0864836681787D-03
8.0	3.0647033724414	55.0	1.3716845103730D-02	102.0	2.3800193933597D-03	149.0	2.0944170661566D-03
9.0	2.3450331082773	56.0	1.2971105693810D-02	103.0	2.3482858014483D-03	150.0	2.0944170661566D-03
10.0	1.8249354036444	57.0	1.2272966671758D-02	104.0	2.3165522095368D-03	151.0	2.1023504641344D-03
11.0	1.4415460129661	58.0	1.1622428037573D-02	105.0	2.2848186176253D-03	152.0	2.1023504641344D-03
12.0	1.1551186123732	59.0	1.1019489791255D-02	106.0	2.2530850257139D-03	153.0	2.1102838621123D-03
13.0	0.93748963904439	60.0	1.0464151932805D-02	107.0	2.2292848317803D-03	154.0	2.1102838621123D-03
14.0	0.76994420714985	61.0	9.9405476662657D-03	108.0	2.2054846378467D-03	155.0	2.1182172600901D-03
15.0	0.63911454109686	62.0	9.4566103896159D-03	109.0	2.1896178418909D-03	156.0	2.1182172600901D-03
16.0	0.53574236544527	63.0	9.0044067048776D-03	110.0	2.1658176479573D-03	157.0	2.1261506580680D-03
17.0	0.45312395890378	64.0	8.5760032140728D-03	111.0	2.1499508520016D-03	158.0	2.1340840560459D-03
18.0	0.38633268132813	65.0	8.1793333151796D-03	112.0	2.1340840560459D-03	159.0	2.1340840560459D-03
19.0	0.33187783760806	66.0	7.7985302122420D-03	113.0	2.1182172600901D-03	160.0	2.1420174540237D-03
20.0	0.28700653864525	67.0	7.4494607012159D-03	114.0	2.1023504641344D-03	161.0	2.1420174540237D-03
21.0	0.24977510193512	68.0	7.1162579861456D-03	115.0	2.0944170661566D-03	162.0	2.1499508520016D-03
22.0	0.21861271467807	69.0	6.7989220670309D-03	116.0	2.0785502702008D-03	163.0	2.1499508520016D-03
23.0	0.19234523397335	70.0	6.5053863418499D-03	117.0	2.0706168722230D-03	164.0	2.1499508520016D-03
24.0	0.17006031905353	71.0	6.2277174126246D-03	118.0	2.0626834742451D-03	165.0	2.1578842499795D-03
25.0	0.15102809730463	72.0	5.9579818813772D-03	119.0	2.0547500762672D-03	166.0	2.1578842499795D-03
26.0	0.13469323086820	73.0	5.7041131460855D-03	120.0	2.0468166782894D-03	167.0	2.1658176479573D-03
27.0	0.12058764926356	74.0	5.4661112067495D-03	121.0	2.0468166782894D-03	168.0	2.1658176479573D-03
28.0	0.10834641618371	75.0	5.2360426653914D-03	122.0	2.0388832803115D-03	169.0	2.1658176479573D-03
29.0	9.7675995903483D-02	76.0	5.0218409199890D-03	123.0	2.0388832803115D-03	170.0	2.1737510459352D-03
30.0	8.8330453085557D-02	77.0	4.8235059705424D-03	124.0	2.0309498823336D-03	171.0	2.1737510459352D-03
31.0	8.0119386178466D-02	78.0	4.6331044190736D-03	125.0	2.0309498823336D-03	172.0	2.1737510459352D-03
32.0	7.2868260426697D-02	79.0	4.4506362655827D-03	126.0	2.0309498823336D-03	173.0	2.1816844439131D-03
33.0	6.6442208064625D-02	80.0	4.2840349080475D-03	127.0	2.0230164843558D-03	174.0	2.1816844439131D-03
34.0	6.0730161520562D-02	81.0	4.1253669484902D-03	128.0	2.0230164843558D-03	175.0	2.1816844439131D-03
35.0	5.5636920018772D-02	82.0	3.9746323869107D-03	129.0	2.0230164843558D-03	176.0	2.1816844439131D-03
36.0	5.1091082977455D-02	83.0	3.8397646212870D-03	130.0	2.0230164843558D-03	177.0	2.1816844439131D-03
37.0	4.7005383018854D-02	84.0	3.7048968556633D-03	131.0	2.0309498823336D-03	178.0	2.1896178418909D-03
38.0	4.3332219755103D-02	85.0	3.5858958859953D-03	132.0	2.0309498823336D-03	179.0	2.1896178418909D-03
39.0	4.0016059400355D-02	86.0	3.4748283143052D-03	133.0	2.0309498823336D-03	180.0	2.1975512398688D-03
40.0	3.7025168362699D-02	87.0	3.3637607426151D-03	134.0	2.0309498823336D-03		
41.0	3.4311946254269D-02	88.0	3.2606265689028D-03	135.0	2.0388832803115D-03		
42.0	3.1852592881131D-02	89.0	3.1654257931684D-03	136.0	2.0388832803115D-03		
43.0	2.9615374651373D-02	90.0	3.0781584154119D-03	137.0	2.0388832803115D-03		
44.0	2.7576491371061D-02	91.0	2.9988244356332D-03	138.0	2.0468166782894D-03		
45.0	2.5712142846263D-02	92.0	2.9194904558546D-03	139.0	2.0468166782894D-03		
46.0	2.4014395679000D-02	93.0	2.8480898740538D-03	140.0	2.0547500762672D-03]	

Table 4.5.2-1: normalised VSF for small particles (see text)

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.:IDate: 13 July 2001Page: 27

θ	$\widetilde{eta}(heta)$	θ	$ \widetilde{\beta}(\theta) $	θ	$ \widetilde{\beta}(\theta) $	θ	$\widetilde{eta}(heta)$
0.	99.652707830456	47.0	5.4847330202340D-03	94.0	4.9069761508587D-04	141.0	1.8994746390421D-04
1.0	73.481769997167	48.0	5.1127525700883D-03	95.0	4.6695418209784D-04	142.0	1.8994746390421D-04
2.0	36.927670628662	49.0	4.7803445082559D-03	96.0	4.5112522677249D-04	143.0	1.8203298624153D-04
3.0	20.353147764054	50.0	4.4795943570742D-03	97.0	4.2738179378447D-04	144.0	1.8203298624153D-04
4.0	12.851924552535	51.0	4.2184165942059D-03	98.0	4.1155283845912D-04	145.0	1.8203298624153D-04
5.0	8.5125509962107	52.0	3.9809822643257D-03	99.0	3.9572388313377D-04	146.0	1.8203298624153D-04
6.0	5.7523452534420	53.0	3.7752058450961D-03	100.0	3.7989492780842D-04	147.0	1.8203298624153D-04
7.0	4.0082080674853	54.0	3.5852583811919D-03	101.0	3.7198045014574D-04	148.0	1.8203298624153D-04
8.0	2.8410204741822	55.0	3.4269688279384D-03	102.0	3.5615149482039D-04	149.0	1.8203298624153D-04
9.0	2.0484251086536	56.0	3.2765937523476D-03	103.0	3.4823701715771D-04	150.0	1.8203298624153D-04
10.0	1.5064337638360	57.0	3.1499621097448D-03	104.0	3.3240806183236D-04	151.0	1.8203298624153D-04
11.0	1.1225736827185	58.0	3.0312449448046D-03	105.0	3.2449358416969D-04	152.0	1.8203298624153D-04
12.0	0.85049768410875	59.0	2.9283567351899D-03	106.0	3.1657910650701D-04	153.0	1.8203298624153D-04
13.0	0.65265948597486	60.0	2.8333830032378D-03	107.0	3.0866462884434D-04	154.0	1.8203298624153D-04
14.0	0.50766625519465	61.0	2.7463237489483D-03	108.0	3.0075015118166D-04	155.0	1.8203298624153D-04
15.0	0.39944368763522	62.0	2.6671789723216D-03	109.0	2.9283567351899D-04	156.0	1.8203298624153D-04
16.0	0.31787708084369	63.0	2.5880341956948D-03	110.0	2.8492119585631D-04	157.0	1.8203298624153D-04
17.0	0.25567720089273	64.0	2.5168038967308D-03	111.0	2.8492119585631D-04	158.0	1.8203298624153D-04
18.0	0.20747803192703	65.0	2.4455735977667D-03	112.0	2.7700671819364D-04	159.0	1.8203298624153D-04
19.0	0.17005838153790	66.0	2.3664288211399D-03	113.0	2.6909224053096D-04	160.0	1.8203298624153D-04
20.0	0.14039491925820	67.0	2.2872840445132D-03	114.0	2.6909224053096D-04	161.0	1.8203298624153D-04
21.0	0.11692057851070	68.0	2.2081392678864D-03	115.0	2.6117776286829D-04	162.0	1.8203298624153D-04
22.0	9.8052463762885D-02	69.0	2.1210800135970D-03	116.0	2.5326328520561D-04	163.0	1.8203298624153D-04
23.0	8.2753778440933D-02	70.0	2.0340207593076D-03	117.0	2.5326328520561D-04	164.0	1.8203298624153D-04
24.0	7.0351791943521D-02	71.0	1.9390470273555D-03	118.0	2.4534880754293D-04	165.0	1.8203298624153D-04
25.0	6.0102543370356D-02	72.0	1.8361588177407D-03	119.0	2.4534880754293D-04	166.0	1.8203298624153D-04
26.0	5.1681539137270D-02	73.0	1.7332706081259D-03	120.0	2.3743432988026D-04	167.0	1.8203298624153D-04
27.0	4.4661397450477D-02	74.0	1.6303823985111D-03	121.0	2.3743432988026D-04	168.0	1.8203298624153D-04
28.0	3.8780940547109D-02	75.0	1.5274941888963D-03	122.0	2.3743432988026D-04	169.0	1.8203298624153D-04
29.0	3.3858135440925D-02	76.0	1.4246059792816D-03	123.0	2.2951985221758D-04	170.0	1.8203298624153D-04
30.0	2.9663462279707D-02	77.0	1.3296322473295D-03	124.0	2.2951985221758D-04	171.0	1.8203298624153D-04
31.0	2.6125690764491D-02	78.0	1.2425729930400D-03	125.0	2.2160537455491D-04	172.0	1.8203298624153D-04
32.0	2.3094445819687D-02	79.0	1.1555137387506D-03	126.0	2.2160537455491D-04	173.0	1.8203298624153D-04
33.0	2.0490582668666D-02	80.0	1.0842834397865D-03	127.0	2.2160537455491D-04	174.0	1.8203298624153D-04
34.0	1.8258699967792D-02	81.0	1.0130531408224D-03	128.0	2.1369089689223D-04	175.0	1.8203298624153D-04
35.0	1.6319652940437D-02	82.0	9.4973731952104D-04	129.0	2.1369089689223D-04	176.0	1.8994746390421D-04
36.0	1.4641783675949D-02	83.0	8.9433597588231D-04	130.0	2.1369089689223D-04	177.0	1.8994746390421D-04
37.0	1.3185519786017D-02	84.0	8.3893463224358D-04	131.0	2.0577641922956D-04	178.0	1.8994746390421D-04
38.0	1.1903374404664D-02	85.0	7.9144776626753D-04	132.0	2.0577641922956D-04	179.0	1.8994746390421D-04
39.0	1.0787433054226D-02	86.0	7.5187537795416D-04	133.0	2.0577641922956D-04	180.0	2.1369089689223D-04
40.0	9.8060378240547D-03	87.0	7.0438851197810D-04	134.0	1.9786194156688D-04		
41.0	8.9433597588231D-03	88.0	6.6481612366473D-04	135.0	1.9786194156688D-04		
42.0	8.1756554255436D-03	89.0	6.2524373535135D-04	136.0	1.9786194156688D-04	-	
43.0	7.5029248242162D-03	90.0	5.9358582470065D-04	137.0	1.8994746390421D-04	-	
44.0	6.9093389995156D-03	91.0	5.6192791404995D-04	138.0	1.8994746390421D-04	-	
45.0	6.3790689961163D-03	92.0	5.3818448106192D-04	139.0	1.8994746390421D-04	-	
46.0	15.9042003363558D-03	193.0	15.1444104807390D-04	1140.0	11.8994746390421D-04	1	

Table 4.5.2-2: normalised VSF for large particles (see text)

Figure 4.2. : normalised VSFs of large, small particles (blue curves; tables 4.5.2-1 & 4.5.2-2), and of mixed populations following a mixing rule depending on Chl (Eqs. (12) & (13)).
These "mixed VSFs" are shown as red curves, and the corresponding Chl concentration is indicated in the green box on the side of the figure. In insert is shown the resulting backscattering probability, as a function of the Chl concentration (Eq. 15)

At any other wavelength, the particle scattering coefficient, $b_{pl}(\lambda)$, is expressed from its value at 550 nm according to :

$$b_{p1}(\lambda) = b_{p1}(550) \left(\frac{\lambda}{550}\right)^{\nu}$$
(17)

where $v = 0.5 \left[0.3 - \log_{10} (chl) \right]$ when $[chl] < 2 \text{ mg m}^{-3}$ and v = 0 when $[chl] \ge 2 \text{ mg m}^{-3}$

From the above equations, it results that the backscattering coefficient for Case 1 water particles is expressed as :

$$b_{bp1}(\lambda) = \left\{ 0.002 + \left[0.01 \left[0.5 - 0.25 \log_{10}(chl) \right] \right] \right\} \left\{ b_{p1}(550) \left(\frac{\lambda}{550} \right)^{-\nu} \right\}$$
(18)

4.5.3 TOTAL IOPS IN CASE 1 WATERS

Case 1 waters absorption and backscattering coefficients denoted $a_1(\lambda)$ and $b_{b1}(\lambda)$, respectively, as well as the normalised VSF for these waters, denoted $\tilde{\beta}(\theta, \lambda)$, can be expressed as:

$$a_{1}(\lambda) \text{ as per section 4.5.1}$$

$$b_{b1}(\lambda) = 0.5b_{w}(\lambda) + \tilde{b}_{bp1}(\lambda)b_{p1}(\lambda)$$
(19)

$$\widetilde{\beta}_{1}(\theta,\lambda) = \eta(\lambda)\widetilde{\beta}_{w}(\theta) + (1-\eta(\lambda))\widetilde{\beta}_{p1}(\theta)$$
(20)

where

$$\eta(\lambda) = \mathbf{b}_{w}(\lambda) / \left(\mathbf{b}_{w}(\lambda) + \mathbf{b}_{nl}(\lambda) \right)$$
(21)

4.5.4 WARNING CONCERNING THE USE OF THE MODEL FOR CASE 1 WATERS IOPS: STATE-OF-THE-ART AND UNCERTAINTIES

4.5.4.1 Raman Emission

The Raman emission by water molecules is a trans-spectral (or inelastic) scattering process by which absorbed energy at a given wavelength λ ' is re-emitted as radiation at longer wavelengths around λ . The Raman VSF $\beta^{R}(\theta)$ is symmetrical with respect to $\theta = \pi/2$ and expresses as :

$$\beta^{\rm R}(\theta) = 0.067 \left(1 + 0.55 \cos^2(\theta)\right) \tag{4}$$

The Raman emission undergoes a frequency shift that is independent of the incident frequency and thus occurs within the whole (visible) spectrum. According to Walrafen (1967), the shape of the redistribution function $f^{R}(\kappa_{R})$ is the sum of 4 Gaussian functions (i = 1 to 4):

$$\mathbf{f}^{\mathsf{R}}(\boldsymbol{\kappa}_{\mathsf{R}}) = \left[\left(\frac{\pi}{4 \ln(2)} \right)^{1/2} \sum_{i=1}^{4} A_{i} \right]^{-1} \sum_{i=1}^{4} A_{i} \frac{1}{\Delta \boldsymbol{\kappa}_{i}} \exp\left(-\frac{(\boldsymbol{\kappa}_{\mathsf{R}} - \boldsymbol{\kappa}_{i})^{2}}{\Delta \boldsymbol{\kappa}_{i}^{2}} \right)$$
(5)

where $\kappa_{\rm R}$ is the wavenumber shift of the Raman emission, $\kappa_{\rm i}$ is the centre of the ith Gaussian function, $\Delta \kappa_{\rm i}$ the width at half maximum of this function and the A_i's are the weights of each function (see table 4.5.4-1).

i	A _i	$\kappa_{i} \text{ (cm}^{-1})$	$\Delta \kappa_{\rm i} (\rm cm^{-1})$
1	0.41	3250	210
2	0.39	3425	175
3	0.10	3530	140
4	0.10	3625	140

Table 4.5.4-1 : Data from Walrafen (1967)

To an incident (exciting) radiation with a wavelength λ ' and a wavenumber κ ' will correspond a Raman emission within a spectral band described by Eq. (5) such as $\kappa = \kappa' - \kappa^R$, leading to redistribution functions expressed in terms of wavelengths $f^R(\lambda' \rightarrow \lambda)$ as shown in Fig. 4.3 below.

The magnitude of the phenomenon is expressed through the Raman coefficient $a^R(\lambda^\prime)$ through

$$a^{R}(\lambda') = \int_{\lambda'}^{\infty} b^{R}(\lambda' \to \lambda) \, d\lambda \tag{6}$$

where b^R is the Raman scattering coefficient for an exciting wavelength λ ' and an emission at wavelength λ ($\lambda > \lambda$ '). This coefficient, according to recent determinations at 488 nm, is :

MERIS ESL	Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.:IDate: 13 July 2001Page: 31
-----------	--

$$a^{\rm R}(488) = 2.6 \ 10^{-4} \ {\rm m}^{-1} \tag{7}$$

it varies according to a λ^{-5} law.

This phenomenon is important in clear Case 1 waters (low Chl) to the extent that the elastic scattering is low, in the red part of the spectrum in particular. With an almost isotropic function (Eq. (4)), it strongly modifies the upward radiance distribution and thus affects the Q (and f/Q) behaviour.

Figure 4.3. : the Raman wavelength redistribution function $f^{R}(\lambda' \rightarrow \lambda)$, for selected incident wavelengths λ' . Figure reproduced from Mobley (1994).

Conversely the Raman emission at a fixed wavelength λ is excited by a spectral band centred on λ' , the shape of which is approximately the reverse image of those shown in this figure.

4.5.4.2 Fluorescence by Phytoplankton

The emission of fluorescence by phytoplankton is isotropic ($\tilde{\beta}^{F}(\theta) = \text{constant}$). Its intensity depends on the chlorophyll-a concentration and on the quantum yield for fluorescence, ϕ_{f} . This yield ϕ_{f} is defined as the number of photons emitted divided by the number of photons absorbed by the algal cells. It is known as being varying within a factor of 10, approximately with the lower values observed near the surface (Maritorena *et al.* 2000). If ϕ_{f} is fixed, this emission can be (but has not been) incorporated into the IOP model for Case 1 waters. Any radiation within the 380-680 nm domain, after being weighted by the algal absorption spectrum, is able to excite the Chl-a fluorescence around 683 nm. In contrast, the emission spectrum is independent from the excitation spectrum and is currently modelled (*e.g.*, see Gordon, 1979; Kattawar and Valerio, 1982; Kishino et al., 1984; Sathyendranath and Platt, 1998) as a Gaussian spectral distribution, peaked around 683 nm, and with a standard deviation $\sigma = 10.64$ nm, corresponding to a width of about 25 nm at half maximum (see Fig. 4.4). This curve, modelled through $\exp(-(\lambda - 683) / 2\sigma^2)$ accounts very well for observations for natural populations as well as for algae grown in culture, except beyond 710 nm where a weak shoulder (around 730 nm) often appears.

Figure 4.4. : Typical Gaussian spectral distribution for the Chl-a fluorescence, peaked around 683 nm, and with a standard deviation $\sigma = 10.64$ nm, corresponding to a width of about 25 nm at half maximum

4.5.4.3 Fluorescence by Endogenous Yellow Substance

This term which may be important in presence of high amount of yellow substance is less documented than the chlorophyll-a fluorescence, and depends on the chemical composition of the organic matter collectively forming the "yellow substance". This emission is believed to be negligible in Case 1 waters, and has not been incorporated within the IOP model for Case 1 waters.

4.5.4.4 Other Warnings and Limitations

The Case 1 waters IOP model include some uncertainties in its parameterisation or even some assumptions. These properties with their corresponding uncertainties are listed in table 4.5.4-2 below. The column "Expectation" indicates which scientific evolutions are foreseen.

1
Core -
ACDI

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 33

ΙΟΡ	Equation number	Comment	Expectation
	or table		
$a_w(\lambda)$	Table 4.4.1-1	Known with sufficient accuracy	Will not evolve
$a^R(\lambda)$	Eqs. (6) and (7),	Known with sufficient accuracy	Will not evolve
	Table 4.5.4-1		
$a_1(\lambda)$	Eqs. (8) to (11''),	Well documented for World Ocean (but see	Will not evolve
	Table 4.5.1-1 and	the large variation factor). Seasonal	significantly
	4.5.1-2	variability under investigation.	
$b_w(\lambda)$	Eqs. (3) and (3')	Known with sufficient accuracy	Will not evolve
$b_{pl}(\lambda)$	Eqs. (16) and (17)	Well documented for World Ocean (but see	Will not evolve
		the large variation factor)	significantly
$b_{bpl}(\lambda)$	Eqs. (15) and (18)	Best guess	Could evolve
$\widetilde{\beta}_{\rm w}(\theta,\lambda)$	Eqs. (2) and (2')	Slight uncertainty on <i>p</i> ; very weak influence on the result	Will not evolve
$\beta^{R}(\theta)$	Eqs. (4) and (5)	Known with sufficient accuracy	Will not evolve
$\widetilde{\beta}_{\mu}(\theta)$	Eqs. (12) to (14),		Could evolve
1 p (-)	Table 4.5.2-1 and		
	Table 4.5.2-2		

Table 4.5.4-2: Comments on model parameterisation

As a general warning, the present model is based on statistical relationships (between K_d or b_p and Chl) that represent "average" situations. Therefore, its use as a predictive tool leads to various results when the large standard errors associated with each input parameters are taken into account; it may fail when compared case by case to actual data (as reflectance for instance).

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.:IIDate: 13 July 2001Page: 34

4.6 CASE 2 WATERS IOPS

4.6.1 INTRODUCTION

Water constituents comprise a large number of different substances, which include mineralic dissolved and particulate compounds, a large variety of organic macromolecules, living organisms such as phytoplankton, zooplankton, bacteria etc. and their debris and excrements. All of these constituents of water exhibit different optically properties concerning scattering and absorption.

For the purpose of optical remote sensing this diversity of substances has to be grouped into a small number of classes each of which includes constituents with similar optical properties and / or correlated concentrations. For the majority of the world ocean areas it is sufficient to comprise all substances into one group using phytoplankton chlorophyll a as a proxy. This type of water is called case I water. The concentration of this class of substances - in terms of chlorophyll a - can be derived from the blue to green shift of the water colour. In many coastal waters one needs more than one class of substances to describe the variability of water colour. By tradition and experience three classes are defined: (1) phytoplankton pigment with chlorophyll a as a proxy, (2) the dry weight of all particles (total suspended matter, TSM) and (3) the absorption caused by the dissolved fraction of all water constituents (gelbstoff). Dissolved and particulate is defined by the pore size of the filter used for separation, which traditionally was 0.45 μ m and nowadays is 0.2 μ m.

However, each of the three groups of substances is variable with respect to their composition and thus their chemical, physical and in particular optical properties. Any remote sensing system and retrieval algorithm has to take this variability into account.

For the MERIS case 2 water algorithm two approaches have been prepared. One approach, endorsed in the previous issue of this document, is to base the algorithm directly on optical and concentration measurements and harmonize the case 2 with the case 1 algorithm. The other approach, which is described here, uses optical components, which do not directly reflect a water constituent, but which describe the dominant optical property of a group of substances. The quantitative relationship between the concentration of a bio-geochemical component and its optical proxy is described by a conversion factor or equation, which can be adapted by the user based on his experience to local conditions.

This alternative model is based on the experience with the first MERIS reference model (Version of 1996) as well as on measurements of water constituents (concentrations, scattering and absorption) during the marine optics projects COASTIOOC, COLORS and MAPP.

Due to the restrictions of the MERIS processor, only three components can be defined. For this model these are:

- (1) phytoplankton pigment absorption a_{pig} ,
- (2) absorption of all other substances a_{yp} (dissolved gelbstoff a_y and bleached particulate matter a_p) and

MERIS ESL	Doc. No : PO-TN-MEL-GS-0026 Name : Reference model for MERIS Level 2 processing Issue : 4 Rev.: 1 Date : 13 July 2001 Page : 35
-----------	---

(3) scattering of all particles b_p with the assumption that the scattering component is not absorbing, *i.e.* that the absorption, which modifies the volume scattering of absorbing particles, is covered by the absorption a_p .

All three optical components are defined for the wavelength of MERIS band 2 (442 nm).

Phytoplankton pigment absorption $a_{pig}(442)$ is related to chlorophyll *a* concentration (in µg/l), the scattering of non absorbing particles b_p is related to the dry weight of total suspended matter (TSM, in mg/l) and the sum of the absorption of gelbstoff a_y and of the bleached particulate matter, a_p , is related to the gelbstoff absorption $a_y(442)$. The mean conversion factors and equations based on the results of COASTIOOC, COLORS, MAPP are submitted with the product as well as the reverse function so that the user can replace them by his own to convert the digital numbers of the data product into concentration units of his choice.

Figure 4.5: Processing to provide different case 2 water products

4.6.2 COMPONENTS

4.6.2.1 Scattering particles

In order to include also particles with a flat scattering spectrum (as found in many COASTIOOC and COLORS samples), an exponent of $s_{bp}=0.4$ is used with a standard deviation of 0.2. The scattering spectrum is computed using

$$s_{bp} = 0.4 + randn*0.2$$
 (22)

$$b_p(\lambda) = b_p(442) \cdot (\lambda/442)^{-\text{sbp}}$$
 (23)

with randn, the normal distributed random number and $b_p(442)$, the particle scattering at the reference wavelength 442nm.

Only one phase function is used for the particle scattering component, which is that of Petzold as described in Mobley (1994) and reproduced in table 4.6.1.1-1 below. This phase

MERIS ESL ACRI 57	bc. No : PO-TN-MEL-GS-0026 ame : Reference model for MERIS Level 2 processing sue : 4 Rev.: 1 ate : 13 July 2001 age : 36
-------------------------	---

function yields a backscattering factor b_b/b of 0.02, which about is the mean backscattering factor of the Helgoland time series measured with the BB-4 instrument.

θ	$\widetilde{\beta}_{p1}(\theta)$	θ	$\widetilde{\boldsymbol{\beta}}_{p1}(\boldsymbol{\theta})$
1.00 ^E -01	1.77E+03	5.00E+01	2.28E-02
1.26 ^E -01	1.30E+03	5.50E+01	1.70E-02
1.58 ^E -01	9.50E+02	6.00E+01	1.31E-02
2.00 ^E -01	6.99E+02	6.50E+01	1.05E-02
2.51 ^E -01	5.14E+02	7.00E+01	8.49E-03
3.16 ^E -01	3.76E+02	7.50E+01	6.98E-03
3.98 ^E -01	2.76E+02	8.00E+01	5.84E-03
5.01 ^E -01	2.01E+02	8.50E+01	4.95E-03
6.31 ^E -01	1.44E+02	9.00E+01	4.29E-03
7.94 ^E -01	1.02E+02	9.50E+01	3.78E-03
1.00E+00	7.16E+01	1.00E+02	3.40E-03
1.26E+00	4.96E+01	1.05E+02	3.12E-03
1.58E+00	3.40E+01	1.10E+02	2.91E-03
2.00E+00	2.28E+01	1.15E+02	2.80E-03
2.51E+00	1.52E+01	1.20E+02	2.69E-03
3.16E+00	1.00E+01	1.25E+02	2.57E-03
3.98E+00	6.58E+00	1.30E+02	2.48E-03
5.01E+00	4.30E+00	1.35E+02	2.38E-03
6.31E+00	2.81E+00	1.40E+02	2.33E-03
7.94E+00	1.82E+00	1.45E+02	2.31E-03
1.00E+01	1.15E+00	1.50E+02	2.36E-03
1.50E+01	4.89E-01	1.55E+02	2.51E-03
2.00E+01	2.44E-01	1.60E+02	2.66E-03
2.50E+01	1.47E-01	1.65E+02	2.83E-03
3.00E+01	8.61E-02	1.70E+02	3.03E-03
3.50E+01	5.93E-02	1.75E+02	3.09E-03
4.00E+01	4.21E-02	1.80E+02	3.15E-03
4.50E+01	3.07E-02		

Table 4.6.2.1-1. Normalised volume scattering function for marine particles as derived by Mobley (1994) from Petzold's measurements.

4.6.2.2 Absorption of bleached particles and gelbstoff

The absorption of all constituents other than phytoplankton pigments is defined here as the sum of the absorption by gelbstoff (*i.e.* of any material which passes a filter with a pore size of about 0.2 μ m) and the absorption by the bleached filter pad, *i.e.* of any material, which remains on a filter of type Whatman GF/F after bleaching. The absorption spectrum is described by an exponential decrease so that the absorption *a* at any wavelength of MERIS can be computed by

$$a(\lambda) = a(442).e^{-s.(442-\lambda)}$$
(24)

with a(442) the absorption at the reference wavelength, *i.e.* 442 nm (MERIS band 2) and an absorption exponent s which is different for the dissolved and the particulate fraction. This exponent has been derived from measurements by fitting an exponential curve to a measured absorption spectrum. In case of the Helgoland data set, the exponent was determined for the most relevant wavelength range 400 - 550 nm. For the dissolved part it is 0.0138 ± 0.00284 and for the particulate part 0.0072 ± 0.00108

COASTIOOC values have been derived from the wavelength range 350-500, this gives a higher mean exponent of 0.0176 ± 0.002 . When using this wavelength range we got a mean exponent of 0.0154 ± 0.0019 from the Helgoland series.

The mean exponent of particle absorption of the COASTIOOC data set is 0.0123 with a standard deviation of 0.00126, again derived from the wavelength range 350 - 500 nm.

Since the dissolved and particulate absorption fraction has to be combined to one, i.e. the absorption of all water constituents except phytoplankton pigments, a_y , we use the covariance between the dissolved and particulate absorption from the Helgoland data set, as expressed in the following relationships with randu, the random number from a uniform distribution between 0 and 1:

$$a_{yd}(442) = [0.005 \dots 1.5]$$
⁽²⁵⁾

$$a_{yd}(442) = \exp(\ln(0.005) + \operatorname{randu}^*(\ln(1.5) - \ln(0.005)))$$
 (26)

$$a_{yp}(442) = 2*rand*a_{yd}(442)$$
 (27)

The spectral exponent was computed as:

$$s_{yd} = 0.014 + randn*0.003$$
 (28)

$$s_{yp} = 0.007 + randn*0.001$$
 (29)

$$a_{yd}(\lambda) = a_{yd}(442) * \exp(-s_{yd}*(\lambda - 442))$$
 (30)

$$a_{yp}(\lambda) = a_{yp}(442) * \exp(-s_{yp}*(\lambda - 442))$$
(31)

4.6.2.3 Pigment Absorption

The pigment absorption component is determined from measurements of filter pad absorption. It is the absorption of the bleachable fraction of the material, which does not pass the filter, *i.e.* the difference between the absorption of the filter pad before and after bleaching.

The time series of Helgoland shows two different types of spectra with all transitions, a typical summer spectrum with a clear maximum around 440 nm and a winter spectrum without a clear maximum but with a nearly exponential decrease in the blue-green spectral range. Since it is assumed that the winter spectra are dominated by detritus which contain degradation products of chlorophyll only the summer spectrum have been used for the component model. In order to include the variance of these summer spectra, a set of 77 spectra haven been selected with a clear absorption peak at 442 nm. One of these spectra is selected randomly for the computation of the reflectances. The 77 spectra were selected after normalisation by $a_{pig}(442)$ according to the following criteria:

$$a_{pign}(442) / a_{pign}(412) > 0.98$$
 (32)

$$a_{pign}(442) / a_{pign}(448) > 1.0$$
 (33)

Figure 4.6: Normalized pigment absorption spectra selected from the data base of site Helgoland

600 noth (nm) 650

700

4.6.2.4 Co-variations of scattering particles and phytoplankton

450

500

400

Particle scattering is not varied independently from the absorption of particles and phytoplankton in order to exclude unrealistic combinations of high particle absorption without any scattering. Thus, the minimum scattering of the range from which particle scattering is randomly sampled depends on the absorption by particles a_p and phytoplankton a_{pig} , which are sampled first, while the maximum of the particle scattering range is fixed.

The relationship between particle and phytoplankton absorption and minimum scattering is calculated using the following FORTRAN sequence:

b_p1=((conc_apig/0.05118)**(1.0/0.6266249))**0.766*550/442*0.416 b_p2 =(conc_apart/0.0216)**(1.0/1.0247)*1.002*0.5 log_b=In ((b_p1+b_p2)*0.5) if(log_b.lt.log_bpart_an) log_b=log_bpart_an conc_bpart=exp(log_b+ran1(iseed)*(log_bpart_en-log_b))

 b_p1 is the scattering of phytoplankton as a function of phytoplankton absorption conc_apig at 442 nm and b_p2 is the scattering of particulate matter as a function of the absorption of particles conc_apart at 442. The sum of both is reduced by a factor of 0.5 in order to extend the sampling range for particle scattering into the minimum direction.

4.6.3 RELATIONSHIPS BETWEEN CONCENTRATIONS AND OPTICAL PROPERTIES

The component model of water constituents as discussed here uses absorption or scattering at MERIS band 2 (442 nm) as the primary quantitative unit. However, the MERIS Level 2 products are not these optical units but an estimate of the corresponding concentrations of chlorophyll and total suspended matter dry weight (TSM). Thus, the particle scattering at 442 nm is converted into TSM concentration [g m⁻³] and the pigment absorption at 442 nm into chlorophyll concentration [mg m⁻³], while the absorption of bleached particles and gelbstoff is not converted. The conversion factor or backward conversion equation is

Copyright © 2001 ACRI S.A.

MERIS ESL	Doc. No : PO-TN-MEL-GS-0026 Name : Reference model for MERIS Level 2 processing Issue : 4 Rev.: 1 Date : 13 July 2001 Page : 39
-----------	---

published in order to enable users to compute the initial optical units and then apply their own conversion algorithms, which might be better adapted to their area under research.

4.6.3.1 Relationship between particle scattering and TSM dry weight

According to the COASTIOOC results,

$$b_p(555) = A_{bp}(555) * \langle TSM \rangle (g m^{-3})$$
 (34)
with $A_{bp} = 0.5 m^2 g^{-1}$ and a factor of variation of 1.2.

The absorption of these particles after bleaching is

$$a_p(443) = A_{ap} * < TSM > {}^{Bap}$$
(35)
with $A_{ap} = 0.0216$ and $B_{ap} = 1.0247$ and a factor of variation of A_{ap} of 1.84

Since the single scattering albedo near the IR region is close to 1, the value of 0.93 for λ around 780 nm is used to modify the conversion factor of 0.5 for non absorbing particles. Because of the assumed spectral scattering exponent of 0.4, the conversion factor is estimated according to the following scheme:

$$b_p(442) = b_p(780)^* (442/780)^{-0.4}$$
(36)

the conversion factor for non absorbing particles is then

$$A_{bp}(442) = (442/780)^{-0.4} * 0.92 * 0.5 = 0.577$$
(37)

$$b_p(442) = A_{bp}(442) * < TSM > (g m^{-3})$$
 (38)

and the reverse relationship

$$(g m^{-3}) = 1.73 * b_p(442)$$
 (39)

4.6.3.2 Relationship between pigment absorption and chlorophyll a concentration

The relationship between chlorophyll a concentration and the difference of the absorption at 442 nm of the filterpad before and after bleaching was determined for the 77 selected spectra as:

$$ln (chl) = 3.2662 + 0.77135*ln (a_{pig}(442 nm))$$
(40)

$$chl = 26.212* < a_{nig}(442) > 0.77135$$
(41)

with a correlation coefficient of r = 0.69475

The inverse relationship is

$$a_{pig}(442) = 0.041457^* < chl > 0.62576$$
(42)

Figure 4.7: Relationship between absorption at 442 nm and chlorophyll a concentration

4.6.3.3 Conversion factors used in the bio-optical model

Concentration	Optical property	Conversion factor
TSM dry weight g m ⁻³	scattering of non absorbing	TSM (g m ⁻³) = $1.37 * b_p(442)$
	particles at 442 nm $[m^{-1}]$	
gelbstoff absorption at 442	nm absorption of bleached particles	$a_{yp}(442) = 2*randu*a_{yd}(442)$
m ⁻¹	and gelbstoff at 442 nm [m ⁻¹]	$a_{y}(442) = a_{yd}(442) + a_{yp}(442)$
chlorophyll a mg m ⁻³	pigment absorption at 442 nm m ⁻¹	chl = $26.212* < a_{pig}(442) > 0.7713$

Table 4.6.3.3-1. Conversion factors used in the bio-optical model.

MERIS	ESL
-------	------------

4.7 AOP CALCULATIONS (INCLUDING BIDIRECTIONALITY)

4.7.1 RADIATIVE TRANSFER SIMULATIONS/CALCULATIONS

Using the ocean part of the reference model, one should be able to calculate the directional reflectance just below the sea surface, $\rho_u^{0^-}(\lambda, \theta_s, \theta', \Delta\phi)$ (or other AOPs or derived quantities), using geophysical parameters as inputs (*[chl]* only for Case 1 waters, and [Chl], *SPM* and $a_{y2}(443)$ for Case 2 waters).

A first approach consists in using the parameterisations presented in sections 4.2 to 4.6 to derive IOPs and introduce them into radiative transfer simulations with the relevant boundary conditions (sea state, barometric pressure etc.). The output of these simulations are radiances in all directions, which can be integrated in different manners to derive various plane or scalar irradiances, from which various quantities can be derived, such as

 $f'(\lambda, \theta_s)$, which is defined as:

$$f'(\lambda, \theta_s) = \frac{E_u(\lambda, \theta_s)}{E_d(\lambda, \theta_s)} \frac{\mathbf{b}_b(\lambda) + \mathbf{a}(\lambda)}{\mathbf{b}_b(\lambda)}$$
(43)

 $f(\lambda, \theta_s)$, which is defined as:

$$f(\lambda, \theta_s) = \frac{E_u(\lambda, \theta_s)}{E_d(\lambda, \theta_s)} \frac{a(\lambda)}{b_b(\lambda)}$$
(44)

Q ($\lambda, \theta', \theta_s, \Delta \phi$), which is defined as:

$$Q(\lambda, \theta_{s}, \theta', \Delta \phi) = \frac{E_{u}(\lambda, \theta_{s})}{L_{u}(\lambda, \theta_{s}, \theta', \Delta \phi)}$$
(45)

and the directional reflectance just below the sea surface, which is

$$\rho_{u}^{0^{-}}(\lambda,\theta_{s},\theta',\Delta\phi) = \pi \cdot \frac{R(\lambda)}{Q(\lambda,\theta_{s},\theta',\Delta\phi)}$$
(46)

where R(λ) is the irradiance reflectance just below sea surface [defined as the ratio of upward to downward irradiance, E_u(λ) / E_d(λ); Eq. (10)], and Q (λ , θ_s , θ ', $\Delta \phi$) is the bi-directionality factor. Eq. (46) is obtained when considering that :

$$\rho_{u}^{0^{-}}(\lambda,\theta_{s},\theta',\Delta\phi) = \pi \cdot \frac{L_{u}(\lambda,\theta_{s},\theta',\Delta\phi)}{E_{d}(0^{+})(\lambda,\theta_{s})}$$
(47)

The water-leaving reflectance, $\rho_{w}^{0+}(\lambda,\theta_{s},\theta_{v},\Delta\phi)$, (*i.e.*, above the sea surface) is expressed as:

$$\rho_{w}^{0+}(\lambda,\theta_{s},\theta_{v},\Delta\phi) = \frac{1-\rho_{F}(W,\theta')}{n^{2}}.\rho_{u}^{0^{-}}(\lambda,\theta_{s},\theta',\Delta\phi)$$
(48)

Copyright © 2001 ACR1 S.A.

MERIS ESL	Doc. No : PO-TN-MEL-GS-0026 Name : Reference model for MERIS Level 2 processing Issue : 4 Rev.: 1 Date : 13 July 2001 Page : 42
-----------	---

$W(m.s^{-1})$	0	4	10	16
θ' (deg) \				
0	0.0211	0.0211	0.0213	0.0217
10	0.0211	0.0213	0.0218	0.0228
20	0.0218	0.0227	0.0255	0.0334
30	0.0265	0.0325	0.0613	0.0961
35	0.0350	0.0602	0.1234	0.1686
40	0.0588	0.1559	0.2367	0.2741
45	0.1529	0.3801	0.4065	0.4131
50	1.0000	0.6718	0.5988	0.5629
55	1.0000	0.8905	0.7715	0.7055
60	1.0000	0.9807	0.8967	0.8277

where $\rho_F(W, \theta)$ is interpolated by-linearly from table 4.7-1 below.

Table 4.7-1: Values of $\rho_F(W, \theta')$, the mean Fresnel reflection coefficient for the water-air interface, as function of wind speed W and view angle θ' , (Austin, 1974).

When the Raman scattering is ignored, the functions $f(\lambda)$, $f'(\lambda)$ and $Q(\lambda, \theta_s, \theta_v, \Delta \phi)$ are obtained through monochromatic radiative transfer calculations using $a_1(\lambda)$ and $b_1(\lambda)$ or $a_2(\lambda)$ and $b_2(\lambda)$ as calculated using the parameterisation presented in sections 4.4 (pure sea water), 4.5 (Case 1 waters) and 4.6 (Case 2 waters), and a normalised volume scattering function. When the Raman scattering is accounted for, radiative transfer calculations must include the wavelength domain involved for the excitation of the Raman emission.

In case f'/Q (or f/Q) lookup tables are developed, they should have the following entries:

✓ The molecular to total scattering ratio $\frac{b_w}{b}$ as derived from parameterisations in section 4.

✓ The single scattering albedo $\frac{b}{a+b}$ as derived from parameterisations in section 4

- ✓ Sun zenith angle θ_s
- ✓ Viewing angle θ'
- \checkmark Azimuth difference angle $\Delta \phi$

The atmospheric optical thickness $\tau(550)$ should be specified (it is not necessarily an entry to the lookup table).

4.7.2 SEMI-ANALYTICAL CALCULATIONS

When the reflectance $R(\lambda)$ in Eq. (46) is replaced by :

$$R(\lambda) = f'(\lambda) \frac{b_{b}(\lambda)}{a(\lambda) + b_{b}(\lambda)}$$
(49)

or by

$$R(\lambda) = f(\lambda) \frac{b_b(\lambda)}{a(\lambda)} \qquad (only usable when b_b << a) \qquad (49')$$

Copyright © 2001 ACRI S.A.

MERIS ESL	Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.:Issue: 13 July 2001Page: 43
-----------	--

Then $\rho_{w}^{0+}(\lambda,\theta_{s},\theta_{v},\Delta\phi)$ can be expressed as :

$$\rho_{w}^{0+}(\lambda,\theta_{s},\theta',\Delta\phi) = \pi \quad \Re(\theta') \quad \frac{f(\lambda,\theta_{s})}{Q(\lambda,\theta_{s},\theta',\Delta\phi)} \left[\frac{b_{b}(\lambda)}{a(\lambda)}\right]$$
(50)

which is also obtained by combining the following basic equations (see also the table of symbols in section 2.5):

$$R = \frac{E_u}{E_d} = f \frac{b_b}{a} \quad ; \quad Q = \frac{E_u}{L_u} \quad ; \quad L_w = L_u \frac{1 - \rho_F}{n^2} \quad ; \quad E_d(0^-) = E_d(0^+) \frac{1 - \overline{\rho}}{1 - \overline{r} R}$$

The semi-analytical Eq. (50) can be used along with the parameterisations developed in section 4.2 to 4.6.1. In that case, $a(\lambda)$ and $b_b(\lambda)$ can be broken into individual contributions by the different water constituents, following the "analytical approach" (but see introduction to section 4.5.1).

$$a(\lambda) = \sum_{n=1}^{N} a_n(\lambda)$$
(51)

$$b_{\rm b}(\lambda) = \sum_{n=1}^{\rm N} \widetilde{b}_{\rm bn}(\lambda) b_{\rm n}(\lambda)$$
(52)

where the subscript n indicates a given optically significant seawater constituent, $b_n(\lambda)$ is the scattering coefficient of the nth substance and $\tilde{b}_{bn}(\lambda)$ is the ratio of backscattering to scattering (or backscattering efficiency) of the nth substance.

In Eq. (50) above, the "gothic" \Re factor (Morel and Gentili, 1996) is interpolated from table 4.7-2 below.

$W (m.s^{-1}) \\ \theta' (deg) \setminus$	0	4	8	16
0	0.528883	0.528867	0.528824	0.528581
1	0.528899	0.528856	0.528797	0.528597
2	0.528894	0.528883	0.528775	0.528613
3	0.528878	0.52884	0.528829	0.528613
4	0.528867	0.528883	0.528845	0.528592
5	0.528872	0.528905	0.528824	0.528597
6	0.528878	0.528851	0.528829	0.528559
7	0.528856	0.528856	0.528824	0.528402
8	0.528851	0.528867	0.528862	0.528359
9	0.528856	0.528878	0.52877	0.528278
10	0.528856	0.528883	0.528764	0.528089
11	0.528899	0.528905	0.528673	0.527738
12	0.528889	0.528802	0.528608	0.527625

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 44

.

W (m.s ⁻¹)	0	4	8	16
$\theta' (deg) \setminus$		-	-	
13	0.528883	0.528775	0.528532	0.527392
14	0.528851	0.5287	0.528489	0.52689
15	0.528813	0.528608	0.528316	0.526447
16	0.528732	0.528554	0.528089	0.525945
17	0.528727	0.528446	0.528008	0.525048
18	0.528646	0.528381	0.527846	0.52387
19	0.528613	0.5283	0.5275	0.522865
20	0.528548	0.528084	0.527279	0.52198
21	0.528467	0.5279	0.526998	0.520192
22	0.528365	0.527679	0.526144	0.518177
23	0.52824	0.527371	0.525448	0.515962
24	0.528014	0.526976	0.524616	0.51318
25	0.527851	0.526831	0.523416	0.510576
26	0.527614	0.526053	0.522061	0.507005
27	0.52736	0.525593	0.52051	0.503111
28	0.526982	0.524902	0.51842	0.498773
29	0.526474	0.523508	0.515708	0.493392
30	0.52602	0.521947	0.511937	0.487402
31	0.525307	0.520035	0.50794	0.48133
32	0.524545	0.517836	0.503089	0.474475
33	0.5236	0.514968	0.497228	0.46648
34	0.522309	0.510771	0.490238	0.45802
35	0.520899	0.505082	0.482119	0.448756
36	0.51909	0 498659	0.472968	0.438514
37	0.516891	0 490292	0.461931	0.428472
38	0.513801	0.47965	0.44975	0.417047
39	0.510274	0.46742	0.436121	0 404482
40	0.505412	0.451889	0.421482	0.391841
41	0 499173	0.434063	0 405481	0 378471
42	0.48872	0.413638	0.387114	0.363265
43	0.474221	0 390988	0 368575	0.348366
44	0.449583	0.365242	0.346011	0 333381
45	0.412601	0.336671	0 324193	0 317797
46	0.359554	0.306188	0.302239	0.302866
47	0.287908	0.275208	0.280156	0.287767
48	0.209752	0.243574	0.256517	0.270011
49	0.136037	0.21375	0.234029	0.254097
50	0.0755841	0.184504	0.21093	0.237464
51	0.0361985	0.154728	0.189511	0.221885
52	0.0140559	0.128167	0.168395	0.20649
53	0.00447281	0.103831	0.146798	0.19118
54	0.0011182	0.0826552	0.127189	0.175709
55	0.000226882	0.0627274	0.108666	0.161335
56	0	0.0460786	0.0914604	0.145221
57	0	0.0326278	0.0748656	0.130527
58	0	0.0220994	0.0596105	0.116007
59	0	0.0141207	0.0463325	0.101784

Copyright © 2001 ACRJ S.A.

MERIS ESL

Doc. No : PO-TN-MEL-GS-0026 Name : Reference model for MERIS Level 2 processing 1

: 4 Issue Rev.: : 13 July 2001

Date Page : 45

W (m.s ⁻¹) θ' (deg) ∖	0	4	8	16
60	0	0.00872415	0.035345	0.0883597
61	0	0.00485635	0.0259402	0.0748602
62	0	0.00252271	0.0180317	0.0623547
63	0	0.00122624	0.012257	0.0503408
64	0	0.000502381	0.00773019	0.0400446
65	0	0.000199872	0.00458625	0.0306453
66	0	0	0.00265776	0.0225315
67	0	0	0.00127486	0.0157467
68	0	0	0.000648234	0.010604
69	0	0	0.000318715	0.00674163
70	0	0	0.000113441	0.00397043
71	0	0	0	0.00202573
72	0	0	0	0.00100476
73	0	0	0	0.000426754
74	0	0	0	0.000162058
75	0	0	0	0
76	0	0	0	0
77	0	0	0	0
78	0	0	0	0
79	0	0	0	0
80	0	0	0	0
81	0	0	0	0
82	0	0	0	0
83	0	0	0	0
84	0	0	0	0
85	0	0	0	0
86	0	0	0	0
87	0	0	0	0
88	0	0	0	0
89	0	0	0	0
90	0	0	0	0

Table 4.7-2: Values of \Re as function of wind speed W and view angle θ'

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 46

5. Sea surface state

5.1 SPECULAR REFLECTION

The effect of the air-sea interface shape on Fresnel reflection and refraction will be accounted for by applying statistics of Cox and Munk (1954), assuming an isotropic distribution of waves and a variable wind speed.

If a code like FUB's MOMO is used to calculate TOA radiances (reflectances), then the glint reflectance at the TOA level has to be calculated independently (see below), and subtracted from the total signal calculated by the code at the TOA (for any combination of θ_s , θ_v , and $\Delta \phi$). In its actual state, this code does not provide information on the history of photons and cannot therefore separate the contributions from the sea surface from the total TOA signal. When generating the LUTs with the coefficients of the quadratic equation linking $[\rho_{\text{path}} / \rho_r]$ to τ_a) for atmospheric correction of MERIS data, this subtraction must be performed on the reflectances for the pure Rayleigh atmospheres (ρ_r) as well as for the realistic atmospheres (molecules + aerosols, ρ_{path}), before the corresponding reflectances are ratioed and related to the aerosol optical thickness.

As far as a standard version of the MOMO code is used, the following surface model is considered for calculation of the glint reflectance. Within the surface model, the facet slopes are assumed to be normally distributed, independently of the wind direction. The probability density of surface slopes for the direction (θ_s , θ_v , $\Delta \phi$) is given by (Cox and Munk, 1954)

$$p(\theta_{\rm s}, \theta_{\rm v}, \Delta \phi) = \frac{1}{\pi \, \sigma^2} \exp\left(\frac{-\tan^2(\beta)}{\sigma^2}\right)$$

where β is the angle between the local normal and the normal to the facet :

$$\cos(\beta) = (\cos(\theta_v) + \cos(\theta_s)) / (2\cos(\omega))$$

with
$$\cos(2\omega) = \cos(\theta_v) \cos(\theta_s) - \sin(\theta_v) \sin(\theta_s) \cos(\Delta\phi)$$

and σ is the root mean square of slopes, and is a function of wind speed, W, through (Cox and Munk, 1954):

$$\sigma^2 = 0.003 + 5.12 \ 10^{-3} \ \mathrm{W}$$

Shadowing effects are not accounted for. The reflectance $\rho_{\rm G}$ is then

$$\rho_{\rm G} = \pi \rho_{\rm F} \, p(\theta_{\rm s}, \theta_{\rm v}, \Delta \phi) / (4 \cos(\theta_{\rm v}) \cos(\theta_{\rm s}) \cos^4(\beta))$$

where ρ_F is the Fresnel reflectance at the air-sea interface. Finally, the value of ρ_G at the TOA level is :

$\rho_{\rm G} \, {\rm T}(\theta_{\rm v}) \, {\rm T}(\theta_{\rm s})$

where $T(\theta)$ is the direct transmittance of the atmosphere for angle θ , and is equal to $e^{-\tau/\cos(\theta v)}$, with τ the total optical thickness (Rayleigh + aerosols + absorbing gases, when applicable).

5.2 WHITE CAPS

White caps are not accounted for.

6. - Atmosphere

Atmosphere properties shall be provided at least for the following MERIS bands (see wavelengths in section 3 above):

- 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, for all ocean-related processing;
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 for all land-related processing;
- 10, 11 for all cloud-related processing;
- 10, 12, 13, 14, 15 for all water vapour-related processing;

6.1 - CONSTITUENTS

The atmosphere shall be considered to be composed of:

- 1. air (molecular scattering, O₂ absorption);
- 2. ozone (absorption);
- 3. water vapour (absorption);
- 4. aerosols (scattering and absorption);
- 5. clouds (scattering and absorption).

Other atmosphere constituents: gases, rain... are neglected.

Absorption by gases (O_2 , ozone, water vapour) may be treated separately from the rest of atmosphere constituents, so that radiative transfer simulations consider only the absorption of aerosols and scattering by aerosol and molecules.

6.2 - POLARISATION

The radiation transfer through the atmosphere should be treated with polarisation.

6.3 - SAMPLING

It shall be possible to parameterise:

- the zenith and azimuth angle sampling of the radiative transfer model
- the vertical layering of the atmosphere, with a resolution equal to or better than 1km from 0 to 50 km altitude. Within each layer it shall be possible to specify either:
 - the type and optical thickness (or extinction coefficient) of a homogenous aerosol or
 - the type and optical thickness (or extinction coefficient) of a homogeneous cloud

A total of 20 layers (some may be thicker than 1 km) are enough for an accurate calculation of the TOA total reflectance.

6.4 - SURFACE PROPERTIES

The surface below the atmosphere shall be modelled by either:

• a water body with properties as described in sections 4 and 5 above;

or

• a land surface with properties as described in section 8 below;

The surface will be considered infinite and homogeneous.

6.5 - AIR PRESSURE AT GROUND

The air pressure at surface at 0m elevation shall be 1013.25 hPa.

6.6 - RAYLEIGH SCATTERING

The vertical profile of molecular scattering shall be taken from Elterman (1968), scaled so that the total optical thickness has the values in table 6.6-1 below. The sea level pressure shall be 1013.25 hPa.

The total optical thickness of Rayleigh scattering τ_r will be taken from table 6.6-1 below.

λ	412.5	442.5	490.0	510.0	560.0	620.0	665.0	708.75	778.75	865.0
τ_r	0.314085	0.235229	0.154853	0.131495	0.089808	0.059387	0.044703	0.034542	0.023609	0.015456

Table 6.6-1: Optical thickness of Rayleigh scattering

(computed from the approximate formula of Travis and Hansen $\tau_r = P/P0.[8.524e-3.\lambda^{-4} + 9.63e-5.\lambda^{-6} + 1.1e-7.\lambda^{-8}]$ with λ in micrometer)

The Rayleigh scattering phase function should be computed as :

$$\widetilde{\beta}_{r}(\psi,\lambda) = \frac{3}{4\pi * 4(1+2\gamma)} \left[(1+3\gamma) + (1-\gamma)\cos^{2}(\psi) \right]$$

where

$$\gamma = \frac{\delta}{2 - \delta}$$

and δ is the depolarisation factor = 0.0279.

In principle, δ is wavelength-dependent. That dependency should be accounted for in a later version of this document.

6.7 - OXYGEN

When simulations include gaseous absorption, the vertical profile of O_2 shall be taken from Elterman (1968), for a standard atmospheric pressure of 1013.25 hPa. The O_2 absorption spectrum shall be taken from Rothman *et al*, 1983.

6.8 - OZONE

When simulations include gaseous absorption, the vertical ozone profile shall be taken from Elterman(1968). The standard total ozone column content shall be 0.350 atm.cm. The ozone absorption spectrum shall be taken from Rothman *et al*, 1983.

6.9 - WATER VAPOUR

When simulations include gaseous absorption, the vertical water vapour profile shall be taken from Elterman(1968). The standard total water vapour column content shall be 1.42 g.cm⁻². The water vapour absorption spectrum shall be taken from Rothman *et al*, 1983.

6.10 - AEROSOLS

6.10.1 - AEROSOL MODELS AND PROPERTIES

Two sets of aerosol models shall be taken from:

- 1. ATBD volume 7: atmosphere corrections above case 1 waters, section 3.1.1.5.2
- 2. ATBD volume 15: atmosphere corrections above land, section 2.3.3

Atmosphere corrections above water and above land follow slightly different philosophies.

Above water, *basic constituents* are mixed homogeneously to build up *models*, as explained below; vertical profiles of models build up *assemblages*, as explained on §6.10.3 and described in §12.

Above land, models are homogeneous in terms of composition as well as vertically.

Aerosol models shall be defined each as a homogeneous mixture of basic constituents. Each basic constituent shall be a population of spherical particles characterised by:

- 1. its complex refraction index at all wavelengths (see section 10 below);
- 2. its particle size distribution function: log-normal, Junge power-law distribution or modified Gamma distribution (see below);
- 3. the parameters of the particle size distribution function (see below).

The 6 basic constituents are the following:

- a) sea salt solution in water (oceanic)
- b) water soluble particles
- c) dust-like particles
- d) desert dust aerosols
- e) soot-like particles
- f) sulphuric acid solution in water

An additional constituent, used in several models, is built by combination of two of the above:

g) rural aerosol mixture (70% of water soluble particles (b), and 30% of dust-like particles (c))

The models are the following:

- 1) Maritime model (Shettle and Fenn, 1979)
- 2) Urban model (Shettle and Fenn, 1979)
- 3) Continental model (WCRP, 1986)
- 4) Stratospheric model (WCRP, 1986)
- 5) Desert dust model (Schütz, 1980)
- 6) POLDER models (reference TBD). POLDER models are made of a single component of spherical droplets for the whole size spectrum, with a power-law size distribution. Therefore they do not appear in table 6.10.1-1 below.

Tables 6.10.1-1 below show the proportions of constituents in each model.

Aerosol model	Components	Volume %	Particl	Particle %	
Maritime	Rural aerosol mixtures [‡]		99		
(Shettle and Fenn, 1979)	oceanic (Sea-salt solution in water)		1		
Urban	Rural aerosol mixtures [‡]			80	
(Shettle and Fenn, 1979)	Soot		20		
Continental	Water soluble	29		93.876	
(WCRP, 1986)	Dust-like	70		2.27 10-6	
	Soot	1		0.06123	
Dust	Desert dusts 100			100	
(Schütz, 1980)					
H ₂ SO ₄	75% solution of 100			100	
(WCRP, 1986)	sulphuric acid in water				

‡ 70% of water soluble particles, and 30% of dust-like particles.

Table 6.10.1-1: Aerosol components

and their respective contributions (as percent of the volume, or as percent of the number of particles) in the composition of the aerosol models. The principle of «external mixing» is applied when calculating the optical properties of the aerosol models.

Copyright © 2001 ACRI S.A.

ACRI 37	MERIS ESL	Doc. No : PC Name : Re Issue : 4 Date : 13 Page : 52	D-TN-MEL-GS-00 eference model for Rev.: 1 3 July 2001	26 MERIS Level 2 processing
Aerosol model or aerosol component		Parameters o	of the lognorm $\sigma/\ln(10)$	al size distribution $exp(\sigma)$
Rural	RH 70%	0.02846	0.35	2 238721
(water soluble + dust-like	e) RH 80%	0.03274	0.55	2.230721
(Shettle and Fenn, 1979)	RH 85%	0.03679		
(,,,,	RH 90%	0.03884		
	RH 95%	0.04238		
	RH 99%	0.05215		
Oceanic	RH 70%	0.2041	0.40	2.511886
(sea-salt solution in wate	r) RH 80%	0.3180		
(Shettle and Fenn, 1979)	RH 85%	0.3777		
	RH 90%	0.3803		
	RH 95%	0.4606		
	RH 99%	0.7505		
Urban	RH 70%	0.02911	0.35	2.238721
(Shettle and Fenn, 1979)	RH 80%	0.03514		
	RH 85%	0.03961		
	RH 90%	0.04187		
	RH 95%	0.04904		
	RH 99%	0.05996		
Continental (WCRP, 198	6)			
Water soluble		0.005	0.475671	2.99
Dust-like		0.500	0.475671	2.99
Soot		0.0118	0.301030	2.00
Desert Dust (Schütz, 198	0)	0.500	0.342423	2.20
		Parameters of	of the gamma	modified size distribution
		Α	α	<u>γ</u> b
75% H ₂ SO ₄ (WCRP, 19	86)	324	1	1 18
POLDER models		$n(r) \approx r^{(\alpha-3)}$	α	
models 1, 5, 9			0.0	
models 2, 6, 10			0.5	
models 3, 7, 11			1.0	
models 4, 8, 12			1.5	

 Table 6.10.1-2: Parameters defining the size distribution of the various aerosol models (separately for each component of the continental model)

The tables in section 10 show the refractive indices of the aerosol models.

6.10.2 - AEROSOL PHASE FUNCTION & SINGLE SCATTERING ALBEDO

Aerosol phase function, extinction and scattering coefficients, single scattering albedo, asymmetry factor shall be computed according to Mie theory, based on the parameters identified in section 6.10.1 above.

The table in section 11 (divided into 3 parts) summarises the results of Mie computations. For each aerosol model, and for each wavelength, there are 2 lines : the first one for the scattering (b) and attenuation (c) coefficients (thus 2 successive values for each wavelength), the second one for the single scattering albedo (ω) and the asymmetry factor (g).

The plots in section 13 show the scattering phase function at 550nm, of the aerosol models. A full set of discretised phase functions can be retrieved as a binary file from the following ftp server: ftp.acri.fr, login: meris: password: envisat, file: pub/phase_functions.tar.z (archive created with the Unix tar utility and compressed by the Unix compress utility).

6.10.3 - AEROSOL VERTICAL PROFILES

Aerosol assemblages shall be specified by:

- 1. a boundary layer aerosol: model, optical thickness at 560nm, between 0 and 2 km altitude
- 2. a tropospheric layer aerosol: model, optical thickness at 560nm, between 2 and 12 km altitude
- 3. a stratospheric layer aerosol: model, optical thickness at 560nm, above 12 km altitude

The 33 assemblages used for atmosphere corrections above water are described in section 12 below.

The POLDER models used for atmosphere corrections above land shall be distributed following:

 $\delta(z) = \delta(0).e^{-z/H}$

where $\delta(z)$ is the optical thickness at altitude z, H the scale height; H = 2 km for all POLDER models.

6.11 - REFERENCE ATMOSPHERE

For the purposes of validation and of look-up table computation (*i.e.* those which do not require variations of the atmosphere properties), a reference atmosphere has been defined with the following parameters:

Rayleigh scattering as defined in 6.6 above, with a sea level pressure of 1013.25 hPa boundary layer aerosol: maritime model with relative humidity = 90%, τ_{a560} : 0.2 tropospheric, stratospheric aerosols: none total ozone: none total ozone: none wind speed: 3 m.s⁻¹

7. - Clouds

7.1 - WATER CLOUDS

Cloud types shall be taken from ATBD volume 1, Cloud albedo and optical thickness, section 3.1.2.1. Each cloud type is specified a population of water droplets with a modified gamma-function distribution, characterised by its effective radius (μ m).

The cloud scattering phase function, extinction and scattering coefficients, shall be computed according to Mie theory, based on the cloud parameters identified above.

Clouds shall be specified by a type and an extinction coefficient (m^{-1}) in each atmosphere layer.

7.2 - CIRRUS CLOUDS

It shall be possible to specify layer(s) of cirrus cloud, whose optical properties: scattering phase function, extinction and scattering coefficients, shall be taken from Brogniez *et al.* (1995).

8. - Land Surface

When not represented by specific tables (*e.g.* DDV reflectance and coupling terms), land surfaces shall be modelled as a Lambertian reflecting surface characterised by its albedo (dimensionless) at all MERIS channel wavelengths.

The following table 8-1 provides, as example, spectra for different types of surface.

Wavelength	412.5	442.5	490	510	560	620	665	681.25	708.75	753.75	778.75	865	885	900
Surface type														
clear water	0.0145	0.0138	0.0134	0.0119	0.0100	0.0042	0.0034	0.0033	0.0026	0.0022	0.0022	0.0021	0.0019	0.0000
water	0.0135	0.0135	0.0152	0.0157	0.0157	0.0057	0.0042	0.0043	0.0027	0.0019	0.0019	0.0018	0.0019	0.0000
turbid water	0.0212	0.0238	0.0304	0.0331	0.0360	0.0160	0.0108	0.0097	0.0058	0.0022	0.0022	0.0021	0.0019	0.0000
brown soil	0.0181	0.0602	0.0991	0.1341	0.1928	0.2576	0.2904	0.3001	0.3159	0.3452	0.3473	0.3542	0.3688	0.3708
podzol	0.0614	0.0739	0.0884	0.0955	0.1100	0.1324	0.1601	0.1726	0.1958	0.2400	0.2440	0.2567	0.3206	0.3321
conif	0.0149	0.0156	0.0264	0.0512	0.0682	0.0375	0.0250	0.0247	0.1047	0.3763	0.3823	0.3921	0.6144	0.6195
grass	0.0388	0.0408	0.0435	0.0715	0.1089	0.0662	0.0468	0.0461	0.1345	0.4544	0.4626	0.4749	0.4997	0.5060
oat	0.0380	0.0370	0.0450	0.0480	0.0760	0.0590	0.0580	0.0720	0.0870	0.2300	0.2360	0.2440	0.2480	0.2430
snow fine	0.9894	0.9916	0.9922	0.9910	0.9898	0.9837	0.9776	0.9764	0.9690	0.9570	0.9552	0.9551	0.9534	0.9337
snow	0.9806	0.9845	0.9852	0.9832	0.9809	0.9707	0.9590	0.9560	0.9475	0.9277	0.9249	0.9249	0.9152	0.8806
medium														
snow coarse	0.9714	0.9767	0.9773	0.9752	0.9712	0.9565	0.9391	0.9359	0.9227	0.8955	0.8913	0.8913	0.8762	0.8284
ice	0.8455	0.8409	0.8380	0.8350	0.827	0.8040	0.7787	0.7691	0.7523	0.7174	0.7140	0.7037	0.6511	0.6398

Table 8-1 : Surface reflectances in MERIS simulator

9. - Sun irradiance

Sun irradiance when needed, shall be taken from Thuilier *et al.* (1998a, 1998b). It shall be corrected for the day of year according to the following approximate formulae:

M = 0.9856.(J - 4).
$$\frac{\pi}{180}$$

E(J) = E₀. $\frac{1}{(1 - 0.01673.\cos M)^2}$

where J is the day of year.

10. - Tables of refractive indices

The following table 10-1 provides the complex refractive index of all aerosol models at all MERIS channel wavelengths. nr: real part, ni: imaginary part.

Wavelength	41	2.5	44	2.5	49	90	5	10
	nr	ni	nr	ni	nr	ni	nr	ni
Rural, RH = 70%	1.502	504E-02	1.502	504E-02	1.501	504E-02	1.501	504E-02
Rural, RH = 80%	1.446	331E-02	1.445	331E-02	1.444	331E-02	1.444	331E-02
Rural, RH = 85%	1.423	261E-02	1.422	261E-02	1.421	261E-02	1.421	261E-02
Rural, RH = 90%	1.403	198E-02	1.402	198E-02	1.401	198E-02	1.400	198E-02
Rural, RH = 95%	1.388	153E-02	1.387	153E-02	1.385	153E-02	1.385	153E-02
Rural, RH = 99%	1.365	819E-03	1.364	819E-03	1.362	819E-03	1.361	819E-03
Oceanic, RH = 70%	1.417	147E-07	1.416	128E-07	1.415	975E-08	1.414	622E-08
Oceanic, RH = 80%	1.359	516E-08	1.358	444E-08	1.356	331E-08	1.355	249E-08
Oceanic, RH = 85%	1.350	362E-08	1.348	309E-08	1.346	227E-08	1.346	188E-08
Oceanic, RH = 90%	1.350	375E-08	1.349	319E-08	1.347	235E-08	1.348	193E-08
Oceanic, RH = 95%	1.347	287E-08	1.345	242E-08	1.342	175E-08	1.341	158E-08
Oceanic, RH = 99%	1.340	200E-08	1.339	165E-08	1.337	116E-08	1.336	124E-08
Urban, RH = 70%	1.488	610E-01	1.487	606E-01	1.486	600E-01	1.486	600E-01
Urban, RH = 80%	1.424	347E-01	1.423	345E-01	1.421	341E-01	1.420	341E-01
Urban, RH = 85%	1.403	265E-01	1.403	263E-01	1.401	260E-01	1.400	260E-01
Urban, RH = 90%	1.389	205E-01	1.389	204E-01	1.388	202E-01	1.386	202E-01
Urban, RH = 95%	1.370	128E-01	1.369	127E-01	1.367	125E-01	1.368	125E-01
Urban, RH = 99%	1.350	470E-02	1.349	466E-02	1.347	461E-02	1.346	461E-02
Water soluble (WCRP86)	1.530	500E-02	1.530	500E-02	1.530	500E-02	1.530	500E-02
Dust-like (WCRP86) [†]	1.530	800E-02	1.530	800E-02	1.530	800E-02	1.530	800E-02
Soot (WCRP86) [†]	1.750	459E+00	1.750	455E+00	1.750	450E+00	1.750	450E+00
Dust, (Schütz, 1980)	1.530	550E-02	1.530	550E-02	1.530	550E-02	1.530	550E-02
75 % H ₂ SO ₄ solution	1.439	100E-07	1.436	100E-07	1.432	100E-07	1.431	100E-07

Table 10-1: Refractive index of aerosol components/models

Wavelength	56	560		620		665		.25
	nr	ni	nr	ni	nr	ni	nr	ni
Rural, RH = 70%	1.501	563E-02	1.501	563E-02	1.501	594E-02	1.501	610E-02
Rural, $RH = 80\%$	1.443	370E-02	1.443	370E-02	1.443	390E-02	1.443	401E-02
Rural, RH = 85%	1.420	291E-02	1.420	291E-02	1.419	307E-02	1.419	315E-02
Rural, RH = 90%	1.399	222E-02	1.399	222E-02	1.398	234E-02	1.398	240E-02
Rural, RH = 95%	1.384	171E-02	1.383	171E-02	1.382	180E-02	1.382	185E-02
Rural, RH = 99%	1.360	916E-03	1.359	916E-03	1.359	965E-03	1.359	990E-03
Oceanic, RH = 70%	1.412	720E-08	1.409	154E-07	1.408	417E-07	1.408	541E-07
Oceanic, RH = 80%	1.354	452E-08	1.352	137E-07	1.351	281E-07	1.351	344E-07
Oceanic, RH = 85%	1.344	406E-08	1.343	133E-07	1.342	258E-07	1.342	311E-07
Oceanic, RH = 90%	1.345	406E-08	1.344	131E-07	1.343	258E-07	1.343	313E-07
Oceanic, RH = 95%	1.340	382E-08	1.339	130E-07	1.338	246E-07	1.338	295E-07
Oceanic, RH = 99%	1.335	357E-08	1.334	127E-07	1.333	233E-07	1.333	277E-07
Urban, RH = 70%	1.486	589E-01	1.485	580E-01	1.485	580E-01	1.485	580E-01
Urban, RH = 80%	1.420	335E-01	1.419	330E-01	1.419	330E-01	1.419	331E-01
Urban, RH = 85%	1.399	256E-01	1.399	252E-01	1.398	252E-01	1.398	252E-01
Urban, RH = 90%	1.384	198E-01	1.384	195E-01	1.383	195E-01	1.383	196E-01
Urban, RH = 95%	1.365	124E-01	1.364	121E-01	1.363	122E-01	1.363	122E-01
Urban, RH = 99%	1.345	453E-02	1.344	446E-02	1.343	446E-02	1.343	446E-02
Water soluble (WCRP86)	1.530	600E-02	1.530	600E-02	1.530	652E-02	1.530	679E-02
Dust-like (WCRP86) [†]	1.530	800E-02	1.530	800E-02	1.530	800E-02	1.530	800E-02
Soot (WCRP86) [†]	1.750	439E+00	1.750	432E+00	1.750	430E+00	1.750	430E+00
Dust, (Schütz, 1980)	1.530	550E-02	1.530	- 550E-02	1.530	550E-02	1.530	550E-02
75 % H ₂ SO ₄ solution	1.430	106E-07	1.429	140E-07	1.428	174E-07	1.428	188E-07

Table 10-1(cont): Refractive index of aerosol components/models

MERIS ESL

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 58

Wavelength	70	8.75	753	3.75	70	50	778.75	
	nr	ni	nr	ni	nr	ni	nr	ni
Rural, RH = 70%	1.500	649E-02	1.498	730E-02	1.497	743E-02	1.496	775E-02
Rural, RH = 80%	1.442	426E-02	1.440	480E-02	1.440	488E-02	1.439	509E-02
Rural, RH = 85%	1.419	335E-02	1.417	377E-02	1.417	384E-02	1.416	401E-02
Rural, $RH = 90\%$	1.398	255E-02	1.396	287E-02	1.396	292E-02	1.395	305E-02
Rural, $RH = 95\%$	1.382	197E-02	1.381	221E-02	1.380	225E-02	1.380	235E-02
Rural, RH = 99%	1.359	105E-02	1.358	119E-02	1.358	121E-02	1.357	126E-02
Oceanic, RH = 70%	1.407	200E-06	1.406	622E-06	1.406	681E-06	1.405	857E-06
Oceanic, RH = 80%	1.351	943E-07	1.350	265E-06	1.350	289E-06	1.349	360E-06
Oceanic, RH = 85%	1.342	772E-07	1.341	207E-06	1.341	225E-06	1.341	280E-06
Oceanic, RH = 90%	1.343	786E-07	1.342	212E-06	1.342	231E-06	1.341	287E-06
Oceanic, RH = 95%	1.338	690E-07	1.337	180E-06	1.337	195E-06	1.336	241E-06
Oceanic, RH = 99%	1.333	594E-07	1.332	147E-06	1.332	160E-06	1.331	196E-06
Urban, RH = 70%	1.484	583E-01	1.483	587E-01	1.483	588E-01	1.482	590E-01
Urban, RH = 80%	1.419	332E-01	1.417	335E-01	1.417	335E-01	1.416	336E-01
Urban, RH = 85%	1.398	253E-01	1.397	255E-01	1.396	256E-01	1.396	256E-01
Urban, RH = 90%	1.383	196E-01	1.382	198E-01	1.381	198E-01	1.381	199E-01
Urban, RH = 95%	1.363	122E-01	1.362	123E-01	1.362	123E-01	1.361	124E-01
Urban, RH = 99%	1.343	448E-02	1.342	452E-02	1.342	453E-02	1.342	454E-02
Water soluble (WCRP86) [†]	1.529	744E-02	1.526	880E-02	1.526	899E-02	1.525	955E-02
Dust-like (WCRP86) [†]	1.529	800E-02	1.526	800E-02	1.526	800E-02	1.525	800E-02
Soot (WCRP86) [†]	1.750	430E+00	1.750	430E+00	1.750	430E+00	1.750	430E+00
Dust, (Schütz, 1980)	1.530	550E-02	1.530	550E-02	1.530	550E-02	1.530	550E-02
75 % H ₂ SO ₄ solution	1.428	340E-07	1.427	772E-07	1.427	832E-07	1.426	101E-06

Table 10-1 (cont): Refractive index of aerosol components/models

Wavelength	80	55	885		9	00
	nr	ni	nr	ni	nr	ni
Rural, RH = 70%	1.492	929E-02	1.492	959E-02	1.492	982E-02
Rural, RH = 80%	1.436	611E-02	1.436	630E-02	1.436	645E-02
Rural, RH = 85%	1.413	481E-02	1.413	496E-02	1.413	508E-02
Rural, RH = 90%	1.393	366E-02	1.393	378E-02	1.393	387E-02
Rural, RH = 95%	1.378	281E-02	1.378	290E-02	1.378	297E-02
Rural, RH = 99%	1.356	151E-02	1.356	156E-02	1.355	160E-02
Oceanic, RH = 70%	1.402	404E-05	1.401	162E-04	1.401	210E-04
Oceanic, RH = 80%	1.348	138E-05	1.347	493E-05	1.347	636E-05
Oceanic, RH = 85%	1.339	973E-06	1.339	326E-05	1.339	418E-05
Oceanic, RH = 90%	1.340	985E-06	1.340	327E-05	1.339	418E-05
Oceanic, RH = 95%	1.335	740E-06	1.335	223E-05	1.334	283E-05
Oceanic, RH = 99%	1.330	498E-06	1.330	121E-05	1.329	150E-05
Urban, RH = 70%	1.479	600E-01	1.479	604E-01	1.479	605E-01
Urban, RH = 80%	1.414	341E-01	1.414	344E-01	1.414	344E-01
Urban, RH = 85%	1.394	260E-01	1.393	262E-01	1.393	263E-01
Urban, RH = 90%	1.379	201E-01	1.379	203E-01	1.379	203E-01
Urban, RH = 95%	1.360	125E-01	1.360	126E-01	1.360	126E-01
Urban, RH = 99%	1.341	462E-02	1.341	464E-02	1.340	466E-02
Water soluble (WCRP86)	1.520	121E-01	1.520	127E-01	1.520	130E-01
Dust-like (WCRP86) [†]	1.520	800E-02	1.520	800E-02	1.520	800E-02
Soot (WCRP86) [†]	1.750	430E+00	1.750	431E+00	1.750	432E+00
Dust, (Schütz, 1980)	1.530	550E-02	1.530	550E-02	1.530	550E-02
75 % H ₂ SO ₄ solution	1.425	212E-06	1.424	377E-06	1.424	443E-06

Table 10-1 (cont): Refractive index of aerosol components/models

‡ S&F79 stands for Shettle and Fenn (1979).

† WCRP86 stands for WCRP (1986).

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.:Ibate: 13 July 2001Page: 59

model no	nr	ni
1	1.33	0
2	Idem	Idem
3	Idem	Idem
4	Idem	Idem
5	1.44	0
6	Idem	Idem
7	Idem	Idem
8	Idem	Idem
9	1.55	-0.008
10	1.55	-0.0065
11	1.55	-0.005
12	1.55	-0.0023

 Table 10-2 : Refractive index of land aerosol models

 Note: the refractive indices in table 10-2 are independent of wavelength.

11. – Tables of aerosols optical properties (ATBD 2.7)

For each aerosol model, and for each wavelength, there are 2 lines : the first one for the scattering (b) and attenuation (c) coefficients (thus 2 successive values for each wavelength), the second one for the single scattering albedo (ω) and the asymmetry factor (g).

λ	41	2.5	44	2.5	4	90	5	10	50	50
H2SO4	.148329	.14833D+00	.139728	.13973D+00	.126184	.12618D+00	.120614	.12061D+00	.107559	.10756D+00
H2SO4	1.000000	.73911D+00	1.000000	.73855D+00	1.000000	.73505D+00	1.000000	.73249D+00	1.000000	.72401D+00
conti	.000683	.75657D-03	.000632	.70070D-03	.000563	.62566D-03	.000537	.59688D-03	.000474	.53112D-03
conti	.902636	.64101D+00	.901856	.64038D+00	.900226	.63945D+00	.899168	.63861D+00	.891938	.63692D+00
des50	4.850898	.61657D+01	4.939096	.62082D+01	5.065333	.62711D+01	5.116927	.62981D+01	5.240319	.63644D+01
des50	.786751	.80923D+00	.795575	.80246D+00	.807732	.79299D+00	.812458	.78919D+00	.823385	.78033D+00
mar70	.030204	.30650D-01	.029395	.29805D-01	.028263	.28625D-01	.027819	.28164D-01	.026822	.27163D-01
mar70	.985458	.72349D+00	.986277	.72250D+00	.987366	.72147D+00	.987775	.72142D+00	.987446	.72057D+00
mar80	.057857	.58295D-01	.056887	.57289D-01	.055569	.55926D-01	.055006	.55345D-01	.053836	.54173D-01
mar80	.992492	.77352D+00	.992985	.77283D+00	.993629	.77216D+00	.993863	.77304D+00	.993767	.77253D+00
mar85	.079569	.80059D-01	.078356	.78805D-01	.076715	.77115D-01	.076006	.76387D-01	.074549	.74928D-01
mar85	.993892	.78640D+00	.994294	.78577D+00	.994818	.78469D+00	.995009	.78504D+00	.994933	.78447D+00
mar90	.083267	.83701D-01	.081929	.82328D-01	.079985	.80339D-01	.079195	.79533D-01	.077586	.77924D-01
mar90	.994824	.78935D+00	.995160	.78774D+00	.995590	.78711D+00	.995753	.78648D+00	.995661	.78514D+00
mar95	.114715	.11515D+00	.113103	.11350D+00	.110920	.11128D+00	.110126	.11047D+00	.108099	.10844D+00
mar95	.996227	.80157D+00	.996476	.80079D+00	.996804	.79938D+00	.996926	.79838D+00	.996870	.79753D+00
mar99	.265249	.26569D+00	.263162	.26356D+00	.260031	.26039D+00	.258592	.25893D+00	.255927	.25627D+00
mar99	.998360	.82527D+00	.998476	.82397D+00	.998625	.82281D+00	.998680	.82326D+00	.998661	.82128D+00
urb70	.010416	.14453D-01	.009725	.13491D-01	.008772	.12176D-01	.008397	.11674D-01	.007564	.10515D-01
urb70	.720650	.71094D+00	.720892	.70423D+00	.720470	.69427D+00	.719327	.69007D+00	.719420	.67963D+00
urb80	.017550	.21936D-01	.016437	.20513D-01	.014856	.18521D-01	.014213	.17734D-01	.012853	.16013D-01
urb80	.800071	.74399D+00	.801320	.73859D+00	.802124	.73085D+00	.801451	.72775D+00	.802615	.71878D+00
urb85	.024571	.29516D-01	.023168	.27764D-01	.021070	.25201D-01	.020211	.24179D-01	.018333	.21891D-01
urb85	.832462	.75824D+00	.834441	.75308D+00	.836095	.74641D+00	.835894	.74375D+00	.837461	.73623D+00
urb90	.028832	.33512D-01	.027208	.31552D-01	.024837	.28736D-01	.023776	.27516D-01	.021529	.24870D-01
urb90	.860340	.76506D+00	.862324	.76034D+00	.864306	.75381D+00	.864095	.75191D+00	.865669	.74546D+00
urb95	.044996	.49900D-01	.042636	.47170D-01	.039165	.43216D-01	.037920	.41815D-01	.034508	.38000D-01
urb95	.901731	.77777D+00	.903877	.77461D+00	.906263	.77002D+00	.906867	.76708D+00	.908106	.76265D+00
urb99	.109992	.11529D+00	.105894	.11079D+00	.099538	.10391D+00	.096809	.10100D+00	.090518	.94257D-01
urb99	.954029	.79220D+00	.955808	.79089D+00	.957931	.78901D+00	.958493	.78829D+00	.960330	.78529D+00

Table 11-1: Optical properties of aerosol models

MERIS ESL

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 61

λ	62	20	6	65	681	.25	708	.75 ³	753	3.75
H2SO4	.093177	.93177D-01	.083373	.83373D-01	.080217	.80217D-01	.075642	.75642D-01	.067148	.67148D-01
H2SO4	1.000000	.71177D+00	1.000000	.70161D+00	1.000000	.69769D+00	1.000000	.69173D+00	1.000000	.67946D+00
conti	.000410	.46227D-03	.000369	.41838D-03	.000355	.40401D-03	.000334	.38263D-03	.000295	.34365D-03
conti	.887941	.63232D+00	.881477	.62844D+00	.878570	.62681D+00	.873113	.62460D+00	.859658	.62055D+00
des50	5.379658	.64431D+01	5.478536	.65012D+01	5.512597	.65216D+01	5.562956	.65526D+01	5.659404	.66119D+01
des50	.834953	.77074D+00	.842699	.76422D+00	.845289	.76204D+00	.848970	.75887D+00	.855940	.75298D+00
mar70	.025765	.26065D-01	.025074	.25363D-01	.024821	.25108D-01	.024474	.24762D-01	.023799	.24098D-01
mar70	.988500	.72116D+00	.988616	.72101D+00	.988562	.72149D+00	.988354	.72154D+00	.987578	.72319D+00
mar80	.052733	.53031D-01	.051928	.52215D-01	.051723	.52010D-01	.051367	.51655D-01	.050617	.50918D-01
mar80	.994382	.77165D+00	.994489	.77220D+00	.994490	.77125D+00	.994416	.77125D+00	.994098	.77190D+00
mar85	.073127	.73463D-01	.072108	.72432D-01	.071856	.72180D-01	.071389	.71715D-01	.070522	.70863D-01
mar85	.995428	.78318D+00	.995519	.78312D+00	.995520	.78210D+00	.995457	.78220D+00	.995196	.78193D+00
mar90	.075906	.76205D-01	.074685	.74975D-01	.074340	.74629D-01	.073877	.74168D-01	.072794	.73098D-01
mar90	.996071	.78369D+00	.996138	.78413D+00	.996134	.78344D+00	.996078	.78245D+00	.995837	.78293D+00
mar95	.106171	.10647D+00	.104899	.10519D+00	.104517	.10481D+00	.103878	.10417D+00	.102806	.10311D+00
mar95	.997175	.79567D+00	.997229	.79444D+00	.997227	.79403D+00	.997185	.79380D+00	.997020	.79309D+00
mar99	.253413	.25372D+00	.251371	.25167D+00	.251086	.25138D+00	.250386	.25069D+00	.248840	.24916D+00
mar99	.998798	.81815D+00	.998822	.81805D+00	.998824	.81637D+00	.998806	.81523D+00	.998731	.81425D+00
urb70	.006663	.92878D-02	.006067	.85043D-02	.005869	.82479D-02	.005585	.78833D-02	.005036	.71879D-02
urb70	.717350	.66807D+00	.713362	.65961D+00	.711527	.65668D+00	.708479	.65236D+00	.700551	.64459D+00
urb80	.011367	.14174D-01	.010389	.12993D-01	.010064	.12606D-01	.009598	.12053D-01	.008683	.10981D-01
urb80	.802019	.70881D+00	.799570	.70132D+00	.798355	.69872D+00	.796322	.69486D+00	.790774	.68808D+00
urb85	.016369	.19527D-01	.014983	.17914D-01	.014536	.17398D-01	.013894	.16660D-01	.012669	.15258D-01
urb85	.838259	.72687D+00	.836383	.72053D+00	.835487	.71816D+00	.834012	.71462D+00	.830285	.70810D+00
urb90	.019251	.22205D-01	.017637	.20378D-01	.017116	.19794D-01	.016370	.18957D-01	.014943	.17363D-01
urb90	.866947	.73666D+00	.865478	.73072D+00	.864712	.72847D+00	.863522	.72512D+00	.860637	.71893D+00
urb95	.031043	.34127D-01	.028635	.31493D-01	.027856	.30647D-01	.026733	.29428D-01	.024560	.27080D-01
urb95	.909647	.75588D+00	.909257	.75100D+00	.908948	.74908D+00	.908426	.74621D+00	.906943	.74097D+00
urb99	.083358	.86663D-01	.078219	.81282D-01	.076536	.79526D-01	.074081	.76970D-01	.069214	.71923D-01
urb99	.961867	.78136D+00	.962319	.77848D+00	.962398	.77724D+00	.962460	.77536D+00	.962332	.77216D+00

Table 11-1 (cont): Optical properties of aerosol models

³ The values in *Italic type* are subject to change in a future revision of this document.

Doc. No : PO-TN-MEL-GS-0026 Name : Reference model for MERIS Level 2 processing : 4 Rev.: : 13 July 2001 Issue 1

Date Page : 62

λ	7	60	778	75 ⁴	8	55	80	20	9(00
12504	066022	66022D-01	063550	63550D-01	050916	50916D-01	047788	47789D-01	046675	46675D-01
12304	999999	67759D+00	1.000000	67369D+00	999999	64892D+00	999997	64193D+00	999997	63902D+00
in2304	000291	33881D-03	000280	32802D-03	000225	27228D-03	000213	25996D-03	000209	25530D-03
conti	.857921	.61979D+00	.853615	.61842D+00	.826760	.60843D+00	.820058	.60532D+00	.817381	.60415D+00
des50	5.672920	.66200D+01	5.702191	.66388D+01	5.866978	.67438D+01	5.909829	.67712D+01	5.926989	.67828D+01
des50	.856938	.75219D+00	.858914	.75047D+00	.869978	.74120D+00	.872792	.73890D+00	.873822	.73800D+00
mar70	.023697	.23997D-01	.023520	.23823D-01	.022468	.22783D-01	.022219	.22539D-01	.022113	.22434D-01
mar70	.987500	.72339D+00	.987288	.72379D+00	.986172	.72648D+00	.985816	.72707D+00	.985662	.72748D+00
mar80	.050522	.50824D-01	.050304	.50609D-01	.049185	.49505D-01	.048913	.49238D-01	.048822	.49148D-01
mar80	.994067	.77197D+00	.993978	.77242D+00	.993548	.77417D+00	.993406	.77502D+00	.993353	.77502D+00
mar85	.070405	.70746D-01	.070101	.70447D-01	.068762	.69125D-01	.068455	.68824D-01	.068346	.68718D-01
mar85	.995171	.78194D+00	.995101	.78235D+00	.994747	.78343D+00	.994633	.78347D+00	.994590	.78345D+00
mar90	.072670	.72976D-01	.072381	.72690D-01	.070823	.71149D-01	.070498	.70830D-01	.070389	.70724D-01
mar90	.995813	.78280D+00	.995748	.78289D+00	.995418	.78369D+00	.995305	.78335D+00	.995265	.78353D+00
mar95	.102614	.10292D+00	.102366	.10268D+00	.100757	.10109D+00	.100379	.10072D+00	.100151	.10049D+00
mar95	.997006	.79303D+00	.996963	.79227D+00	.996736	.79184D+00	.996652	.79161D+00	.996619	.79269D+00
mar99	.248665	.24898D+00	.248109	.24843D+00	.246070	.24642D+00	.245582	.24594D+00	.245419	.24578D+00
mar99	.998724	.81400D+00	.998703	.81411D+00	.998596	.81246D+00	.998539	.81208D+00	.998517	.81221D+00
urb70	.004965	.70978D-02	.004804	.68950D-02	.003992	.58645D-02	.003805	.56277D-02	.003733	.55367D-02
urb70	.699532	.64339D+00	.696767	.64113D+00	.680769	.62703D+00	.676164	.62297D+00	.674303	.62136D+00
urb80	.008567	.10844D-01	.008325	.10557D-01	.006963	.89599D-02	.006651	.85949D-02	.006531	.84546D-02
urb80	.790077	.68699D+00	.788515	.68467D+00	.777071	.67219D+00	.773787	.66850D+00	.772451	.66703D+00
urb85	.012466	.15029D-01	.012129	.14643D-01	.010257	.12507D-01	.009782	.11972D-01	.009614	.11781D-01
urb85	.829429	.70752D+00	.828296	.70537D+00	.820083	.69361D+00	.817115	.69060D+00	.816075	.68924D+00
urb90	.014705	.17100D-01	.014313	.16661D-01	.012128	.14226D-01	.011616	.13659D-01	.011418	.13441D-01
urb90	.859943	.71842D+00	.859063	.71637D+00	.852546	.70517D+00	.850411	.70190D+00	.849539	.70059D+00
urb95	.024272	.26769D-01	.023670	.26117D-01	.020272	.22457D-01	.019470	.21599D-01	.019160	.21269D-01
urb95	.906747	.74014D+00	.906295	.73835D+00	.902670	.72870D+00	.901403	.72581D+00	.900883	.72466D+00
urb99	.068563	.71247D-01	.067190	.69824D-01	.059382	.61749D-01	.057447	.59753D-01	.056502	.58781D-01
urb99	.962318	.77160D+00	.962271	.77041D+00	.961677	.76366D+00	.961418	.76160D+00	.961223	.76132D+00

Table 11-1 (cont): Optical properties of aerosol models

⁴ The values in *Italic type* are subject to change in a future revision of this document.

12. - Tables describing the aerosol assemblages (ATBD 2.7)

Table 12-1 below describes the aerosol assemblages used when defining and testing the MERIS atmospheric corrections over Case 1 waters. For the 33 assemblages but the first one, the stratosphere contains the H₂SO₄ aerosol, with $\tau_a(550) = 0.005$. For assemblage #0, the stratosphere is aerosol-free.

Assemblage #	Boundary layer (0-2 km)	Free troposphere (2-12 km)
0	Maritime aerosol model (S&F79) RH = 99% $\tau_a(550)$ in {0.03, 0.1, 0.3, 0.5, 2}	Aerosol-free
1	Maritime aerosol model (S&F79) RH = 70% $\tau_a(550)$ in {0.03, 0.1, 0.3, 0.5, 2}	Continental aerosol (WCRP, 1986) $\tau_{a(550)} = 0.025$
2	Maritime aerosol model (S&F79) RH = 80% $\tau_a(550)$ in {0.03, 0.1, 0.3, 0.5, 2}	Continental aerosol (WCRP, 1986) $\tau_{a(550)} = 0.025$
3	Maritime aerosol model (S&F79) RH = 95% $\tau_a(550)$ in {0.03, 0.1, 0.3, 0.5, 2}	Continental aerosol (WCRP, 1986) $\tau_{a(550)} = 0.025$
4	Maritime aerosol model (S&F79) RH = 99% $\tau_a(550)$ in {0.03, 0.1, 0.3, 0.5, 2}	Continental aerosol (WCRP, 1986) $\tau_{a(550)} = 0.025$
5	Urban aerosol model (S&F79) RH = 70% $\tau_a(550)$ in {0.03, 0.1, 0.3, 0.5, 2}	Continental aerosol (WCRP, 1986) $\tau_{a(550)} = 0.025$
6	Urban aerosol model (S&F79) RH = 80% $\tau_a(550)$ in {0.03, 0.1, 0.3, 0.5, 2}	Continental aerosol (WCRP, 1986) $\tau_{a(550)} = 0.025$
7	Urban aerosol model (S&F79) RH = 95% $\tau_a(550)$ in {0.03, 0.1, 0.3, 0.5, 2}	Continental aerosol (WCRP, 1986) $\tau_{a(550)} = 0.025$
8	Urban aerosol model (S&F79) RH = 99% $\tau_a(550)$ in {0.03, 0.1, 0.3, 0.5, 2}	Continental aerosol (WCRP, 1986) $\tau_{a(550)} = 0.025$

Table 12-1: Aerosol assemblages used in atmosphere corrections above ocean

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 64

9	Maritime aerosol model (S&F79)	Continental aerosol (WCRP, 1986)
	RH = 70%	$\tau_{a(550)} = 25\%$ of τ_{tropo}
	$\tau_{\text{tropo}}(550)^{\bullet}$ in {0.05, 0.2, 0.5, 0.8, 2.}	
10	Maritime aerosol model (S&F79)	Continental aerosol (WCRP, 1986)
	RH = 70%	$\tau_{a(550)} = 50\% \text{ of } \tau_{tropo}$
	$\tau_{\rm tropo}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	
11	Maritime aerosol model (S&F79)	Continental aerosol (WCRP, 1986)
	RH = 70%	$\tau_{a(550)} = 75\%$ of τ_{tropo}
	$\tau_{\rm tropo}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	
12	Maritime aerosol model (S&F79)	Continental aerosol (WCRP, 1986)
	RH = 80%	$\tau_{a(550)} = 25\%$ of τ_{tropo}
	$\tau_{\rm tropo}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	
13	Maritime aerosol model (S&F79)	Continental aerosol (WCRP, 1986)
	RH = 80%	$\tau_{a(550)} = 50\%$ of τ_{tropo}
	$\tau_{\rm tropo}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	
14	Maritime aerosol model (S&F79)	Continental aerosol (WCRP, 1986)
	RH = 80%	$\tau_{a(550)} = 75\%$ of τ_{tropo}
	$\tau_{tropo}(550) \ln \{0.05, 0.2, 0.5, 0.8, 2.\}$	
15	Maritime aerosol model (S&F79)	Continental aerosol (WCRP, 1986)
	RH = 95% (550) in (0.05, 0.2, 0.5, 0.8, 2.)	$\tau_{a(550)} = 25\%$ of τ_{tropo}
16	<i>t</i> tropo(550) In {0.05, 0.2, 0.5, 0.8, 2.}	
16	Maritime aerosol model (S&F79) BIL = 0.5%	Continental aerosol (WCRP, 1986)
	$\pi = 95\%$	$\tau_{a(550)} = 50\% \text{ or } \tau_{tropo}$
17	Maritima agreed model (\$ & E70)	Continental correct (WCDD 1086)
17	RH = 95%	Continental aerosol (wCRP, 1980) $\tau_{(550)} = 75\%$ of $\tau_{(550)}$
	$\mathcal{T}_{rono}(550)$ in $\{0.05, 0.2, 0.5, 0.8, 2\}$	(a(550) - 757001 tropo)
18	Maritime aerosol model (S&F79)	Continental aerosol (WCRP 1986)
10	RH = 99%	$T_{2}(550) = 25\%$ of T_{trops}
	$\tau_{\rm tropo}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	
19	Maritime aerosol model (S&F79)	Continental aerosol (WCRP, 1986)
	RH = 99%	$\tau_{a(550)} = 50\% \text{ of } \tau_{tropo}$
	$\tau_{tropo}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	
20	Maritime aerosol model (S&F79)	Continental aerosol (WCRP, 1986)
	RH = 99%	$\tau_{a(550)} = 75\%$ of τ_{tropo}
	$\tau_{tropo}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	

Table 12-1(cont): Aerosol assemblages used in atmosphere corrections above ocean

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.:IIDate: 13 July 2001Page: 65

21	Maritime aerosol model (S&F79)	Desert dust (Schütz, 1980)
	RH = 70%	$\tau_{a(550)} = 25\%$ of τ_{tropo}
	$\tau_{tropo}(550) \ln \{0.05, 0.2, 0.5, 0.8, 2.\}$	
22	Maritime aerosol model (S&F/9) PH = 70%	Desert dust (Schütz, 1980)
	$\mathcal{R}_{\text{frame}}(550) \text{ in } \{0.05, 0.2, 0.5, 0.8, 2\}$	$r_{a(550)} = 50\% 01 \ t_{tropo}$
23	Maritime aerosol model (S&F79)	Desert dust (Schütz 1980)
25	RH = 70%	$T_{2}(550) = 75\%$ of T_{trop2}
	$\tau_{tropo}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	
24	Maritime aerosol model (S&F79)	Desert dust (Schütz, 1980)
	RH = 80%	$\tau_{a(550)} = 25\%$ of τ_{tropo}
	$\tau_{\rm tropo}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	
25	Maritime aerosol model (S&F79)	Desert dust (Schütz, 1980)
-	$\pi = \frac{550}{10} \text{ in } \{0.05, 0.2, 0.5, 0.8, 2\}$	$\tau_{a(550)} = 50\%$ of τ_{tropo}
26	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	Desert dust (Schütz 1980)
20	RH = 80%	$T_{2}(550) = 75\%$ of T_{tropo}
	$\tau_{\text{tropo}}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	
27	Maritime aerosol model (S&F79)	Desert dust (Schütz, 1980)
	RH = 95%	$\tau_{a(550)} = 25\%$ of τ_{tropo}
	$\tau_{\rm tropo}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	
28	Maritime aerosol model (S&F/9) $\mathbf{PH} = 0.5\%$	Desert dust (Schutz, 1980) $= 50\%$ of π
	$\mathcal{T}_{trops}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	$l_{a(550)} = 50\% 01 $ tropo
29	Maritime aerosol model (S&F79)	Desert dust (Schütz, 1980)
	RH = 95%	$\tau_{a(550)} = 75\%$ of τ_{tropo}
	$\tau_{\text{tropo}}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	
30	Maritime aerosol model (S&F79)	Desert dust (Schütz, 1980)
	RH = 99%	$\tau_{a(550)} = 25\%$ of τ_{tropo}
21	$\tau_{\text{tropo}}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	
31	Maritime aerosol model (S&F /9) RH = 90%	Desert dust (Schutz, 1980) τ (550) = 50% of τ
	$\tau_{\rm tropo}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	$t_a(550) = 3070 \text{ or } t_{\text{tropo}}$
32	Maritime aerosol model (S&F79)	Desert dust (Schütz, 1980)
	RH = 99%	$\tau_{a(550)} = 75\% \text{ of } \tau_{tropo}$
	$\tau_{\text{tropo}}(550)$ in {0.05, 0.2, 0.5, 0.8, 2.}	

• : NOTE : τ_{tropo} stands now for the whole troposphere (*i.e.*, 0-12 km), while τ_a was only for the boundary layer in cases 1 to 8.

Table 12-1 (cont): Aerosol assemblages used in atmosphere corrections above ocean

13. - Aerosol phase functions

The figures below show the aerosol scattering phase function at the wavelength 550nm, for the aerosol models. Figure 13-1 shows the aerosol models from ATBD 2.7, figure 13-2 the models from ATBD 2.15.

Figure 13-2: Scattering phase functions for the aerosol models of ATBD 2.15

MERIS	ESL
--------------	-----

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.:Date: 13 July 2001Page: 68

14. - Spectral dependency of aerosol optical thickness

14.1 – AEROSOL ASSEMBLAGES (ATM. COR. ABOVE WATER)

For the 33 aerosol assemblages listed in table 12-1 above, the spectral dependency of optical thickness is tabulated at the first 13 bands and at 5 optical thicknesses in table 14-1 below. The line labelled $\tau_a(560)$ or $\tau_{tropo}(560)$ refers to the optical thickness of the boundary layer + tropospheric aerosol at 560nm (see table 12-1). The values in *Italic type* are subject to change in a future revision of this document.

Spectral dependency of optical thickness for assemblage 0					
$\tau_{a}(560)$	0.03	0.1	0.3	0.5	2.0
412	0.031100001	0.103400002	0.310299882	0.516999986	2.06829992
443	0.0307	0.102499901	0.307799965	0.512899897	2.051899806
490	0.030400001	0.101399998	0.303999894	0.506700002	2.027200022
510	0.030300001	0.100799904	0.302399884	0.50400001	2.015899937
560	0.029899999	0.0998	0.299199905	0.498699886	1.99510003
620	0.0296	0.098700005	0.296200007	0.493799886	1.975200006
665	0.029400001	0.097900005	0.293799997	0.489799884	1.95919986
681	0.029400001	0.097799995	0.293599979	0.4892999	1.956999858
708.75	0.029300001	0.097599998	0.292800007	0.487899914	1.951500054
753	0.028999999	0.096899998	0.290999878	0.4848999999	1.939700053
761	0.028999999	0.096899998	0.290699988	0.484600019	1.938399953
778.75	0.028999999	0.0968	0.290199875	0.483500018	1.934099879
865	0.0288	0.096	0.2878	0.4794999	1.9184
Spec	tral dependency	of optical thick	ness for assemb	lage 1	
$\tau_{a}(560)$	0.03	0.1	0.3	0.5	2.0
412	0.075099999	0.153500006	0.377499891	0.601599877	2.282000106
443	0.071300001	0.147499991	0.365299902	0.583299882	2.217200059
490	0.065899999	0.139299903	0.348400002	0.557799867	2.127100003
510	0.0638	0.135900004	0.341699994	0.547499985	2.091499975
560	0.059000002	0.128499896	0.327099987	0.525600028	2.014900038
620	0.054200003	0.120800003	0.311299989	0.501899992	1.930899942
665	0.050900003	0.115700002	0.301099903	0.486400024	1.876899872
681	0.049700002	0.114000006	0.297500019	0.481099909	1.857499918
708.75	0.0483	0.111599899	0.292599987	0.47369998	1.831199946
753	0.045200001	0.106799896	0.282999883	0.459099978	1.780400008
761	0.045000005	0.106399901	0.281799985	0.457099987	1.772799944
778.75	0.0441	0.104999902	0.279199973	0.453199986	1.759300027
865	0.0398	0.0981	0.2646999	0.4311999	1.6803

Table 14-1: Spectral dependency of aerosol optical thickness

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.:IIDate: 13 July 2001Page: 69

Spectral dependency of optical thickness for assemblage 2					
$\tau_{a}(560)$	0.03	0.1	0.3	0.5	2.0
412	0.073600001	0.148699898	0.362999872	0.577199991	2.184099819
443	0.070100001	0.143999991	0.354600015	0.565099998	2.144999883
490	0.065499996	0.137499998	0.343100002	0.548699901	2.090799928
510	0.063399997	0.134599901	0.338200001	0.541700023	2.0678
560	0.059099996	0.128700008	0.32759998	0.526400012	2.017799944
620	0.054900002	0.123099907	0.318099986	0.512999883	1.975299817
665	0.051799999	0.118799995	0.310200005	0.501899894	1.93819988
681	0.050899999	0.117900002	0.309099974	0.500299864	1.934399963
708.75	0.049600002	0.115699908	0.305099899	0.494599887	1.914999888
753	0.046799998	0.112399904	0.299599983	0.486799876	1.890799887
761	0.046599997	0.112099898	0.298799893	0.485799981	1.887299975
778.75	0.0458	0.110600005	0.295999986	0.481300005	1.871799994
865	0.0421	0.1053999	0.2867	0.4677	1.8264
Spect	ral dependency	of optical thick	ness for assembl	age 3	
$\tau_a(560)$	0.03	0.1	0.3	0.5	2.0
412	0.073299994	0.147300004	0.358999987	0.570500023	2.157600053
443	0.069799996	0.142800003	0.351399875	0.560099893	2.124399954
490	0.065199997	0.136899991	0.341300015	0.545799917	2.079500044
510	0.063299995	0.134499898	0.337500011	0.540400028	2.063000117
560	0.059099996	0.128999996	0.328299902	0.527499976	2.022100073
620	0.054999999	0.123399899	0.3191	0.514699874	1.982300067
665	0.051899999	0.1196999	0.312900001	0.506199999	1.956100122
681	0.050999999	0.118500007	0.311100012	0.503799917	1.948300167
708.75	0.049899999	0.116900005	0.308299893	0.499599928	1.935500094
753	0.047299996	0.113499908	0.30299999	0.492499919	1.913800047
761	0.046899997	0.1130999	0.302399915	0.491400032	1.909999958
778.75	0.046199996	0.112299899	0.300999908	0.489700023	1.904900073
865	0.0428	0.1077	0.2935	0.4793999	1.8725
Spec	tral dependency	of optical thick	ness for assembl	age 4	
$\tau_a(560)$	0.03	0.1	0.3	0.5	2.0
412	0.0726	0.144899903	0.351799989	0.558499846	2.109800179
443	0.069300004	0.1410999	0.346399994	0.551499895	2.090500142
490	0.065000002	0.135999905	0.338599863	0.541299891	2.061800052
510	0.063199998	0.13369989	0.335299994	0.536899944	2.048800079
560	0.059200003	0.129099994	0.328499984	0.527999861	2.024400035
620	0.055200003	0.124299995	0.321799895	0.519399997	2.000799952
665	0.052400004	0.120899893	0.316799969	0.512799932	1.982200098
681	0.051600005	0.119999894	0.31579999	0.511500016	1.979200099
708.75	0.050400004	0.118699903	0.313899882	0.509000023	1.972599987
753	0.047800001	0.115699899	0.309799907	0.503699992	1.958499986
761	0.047600005	0.115499996	0.309299992	0.503199852	1.957000112
778.75	0.046900001	0.114699903	0.308099959	0.501399856	1.952000115
865	0.0437	0.1108999	0.3027	0.4943999	1.9333

Table 14-1: Spectral dependency of aerosol optical thickness (cont.)

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 70

Spectral dependency of optical thickness for assemblage 5					
$\tau_{a}(560)$	0.03	0.1	0.3	0.5	2.0
412	0.081800002	0.176100004	0.445499963	0.714799992	2.734400171
443	0.076300006	0.16419991	0.415599983	0.666899961	2.552200237
490	0.068700002	0.148100012	0.374799918	0.601800015	2.303200016
510	0.0656	0.141699997	0.359200003	0.576699971	2.207999935
560	0.058699999	0.127199908	0.323100005	0.518999865	1.988400082
620	0.051500002	0.112099998	0.285100001	0.458299909	1.756000116
665	0.0468	0.102200006	0.260599995	0.419099914	1.607600002
681	0.045300002	0.098999998	0.252700007	0.406300023	1.559000109
708.75	0.043200001	0.094600001	0.241399997	0.388299926	1.489900013
753	0.038800001	0.085799999	0.219599893	0.353700007	1.358000072
761	0.038499999	0.084800002	0.217	0.349200008	1.341000007
778.75	0.037099999	0.082099997	0.210600007	0.338999997	1.302600058
865	0.0312	0.0695	0.1788	0.2879999	1.1076
Spect	ral dependency	of optical thick	ness for assembl	age 6	
$\tau_a(560)$	0.03	0.1	0.3	0.5	2.0
412	0.0817	0.17580001	0.444200015	0.71269988	2.726299822
443	0.076200001	0.164199904	0.41519993	0.66630002	2.549199855
490	0.068700002	0.148000006	0.374599914	0.601299992	2.301500104
510	0.065500002	0.141500007	0.35849993	0.575499905	2.20339977
560	0.058700003	0.127199907	0.3232	0.519200021	1.989299896
620	0.051700002	0.11230001	0.285800014	0.459199907	1.760299991
665	0.046900002	0.102500003	0.261500004	0.420599907	1.613399873
681	0.045400001	0.099300003	0.253600005	0.407900008	1.56509993
708.75	0.0433	0.094800011	0.242400016	0.389899917	1.496299949
753	0.038900002	0.086000006	0.220399895	0.354799879	1.362799946
761	0.038600002	0.085000003	0.2177	0.350499986	1.34579998
778.75	0.037200003	0.082599999	0.211699904	0.340999978	1.309999858
865	0.0314	0.0698	0.1794	0.2890999	1.1116
Spect	ral dependency	of optical thicks	ness for assembl	age 7	
$\tau_a(560)$	0.03	0.1	0.3	0.5	2.0
412	0.080200001	0.170499994	0.428599909	0.686599991	2.622100129
443	0.075199994	0.160500014	0.404500006	0.648400016	2.477899958
490	0.0682	0.146399904	0.369800016	0.593299926	2.269499898
510	0.065399998	0.141000002	0.357199917	0.573599864	2.195300071
560	0.0588	0.127599894	0.324000019	0.520499984	1.994399982
620	0.052	0.113799996	0.290400007	0.46689997	1.790399919
665	0.047499998	0.104500002	0.267199912	0.430199997	1.651699975
681	0.045999999	0.101400007	0.259900005	0.41839989	1.606999892
708.75	0.043999997	0.097100002	0.249300007	0.401600006	1.542899965
753	0.039799998	0.088900002	0.228899904	0.368899981	1.419100001
761	0.039399998	0.087899997	0.226300016	0.3646999	1.402899985
778.75	0.038099998	0.085399998	0.2203999	0.355499895	1.368499915
865	0.0324	0.073	0.1891999	0.3052999	1.1763

Table 14-1: Spectral dependency of aerosol optical thickness (cont.)

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.:Ibate: 13 July 2001Page: 71

Spectral dependency of optical thickness for assemblage 8					
$\tau_{a}(560)$	0.03	0.1	0.3	0.5	2.0
412	0.077699997	0.162200004	0.403600005	0.644800019	2.45509998
443	0.07329999	0.154599903	0.386500009	0.618499867	2.357899874
490	0.067299996	0.143400004	0.360900014	0.578499961	2.20979996
510	0.064699998	0.138600011	0.349999986	0.561599899	2.147300027
560	0.058899995	0.127900006	0.325300012	0.522699906	2.002599978
620	0.052799998	0.1163	0.297699994	0.479199906	1.839900057
665	0.048599998	0.107999901	0.278199999	0.448399982	1.724599864
681	0.0471	0.105399899	0.271899895	0.438399913	1.687000048
708.75	0.045199999	0.101700001	0.262699998	0.423999907	1.632400007
753	0.041299997	0.093999999	0.244599894	0.395300016	1.524400054
761	0.040999999	0.093099999	0.242399895	0.391399895	1.510099944
778.75	0.039799999	0.090899999	0.2371	0.383399989	1.479599913
865	0.0342	0.0796	0.2087	0.3380999	1.3076
Spect	tral dependency	of optical thick	ness for assembl	age 9	
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0
412	0.067199993	0.244299912	0.600700046	0.957199872	2.382999751
443	0.064599995	0.23410001	0.575900012	0.917999917	2.284899907
490	0.060599999	0.22030001	0.542100041	0.863799963	2.150800019
510	0.059099994	0.214900008	0.529000002	0.842700016	2.098499953
560	0.055199995	0.202800014	0.499099912	0.795999956	1.982599963
620	0.051299996	0.189700013	0.467900024	0.745699951	1.85849994
665	0.048999995	0.181299906	0.447700025	0.713899888	1.779199879
681	0.048099997	0.178399918	0.440699993	0.702799983	1.751799966
708.75	0.046899997	0.174500015	0.430799994	0.687399913	1.71309997
753	0.044699998	0.166700009	0.412299921	0.657899928	1.640099871
761	0.044399997	0.165700004	0.409899883	0.653899984	1.630299972
778.75	0.043900002	0.163699902	0.404800005	0.645900017	1.610800052
865	0.0406	0.1521999	0.3771	0.6021999	1.5017
Spect	ral dependency	of optical thickn	ess for assembla	age 10	
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0
412	0.069499998	0.257899922	0.634699995	1.011500017	2.518900051
443	0.0658	0.2443	0.601099911	0.957799933	2.385000119
490	0.060800001	0.225499912	0.55519999	0.884599943	2.203100059
510	0.058600001	0.218299909	0.537499897	0.856699969	2.133100045
560	0.054099999	0.201700017	0.497399898	0.792999921	1.974899996
620	0.049499999	0.18440001	0.454999995	0.725399977	1.807500078
665	0.046199997	0.173500006	0.428000003	0.682500026	1.700600118
681	0.045200002	0.169799904	0.41909989	0.668099887	1.664600008
708.75	0.043699999	0.164399911	0.405799885	0.647199909	1.612499949
753	0.0409	0.154200003	0.381099917	0.608299922	1.516199934
761	0.0405	0.153200012	0.378199914	0.603299972	1.503400065
778.75	0.039599998	0.150399996	0.371500005	0.592499898	1.477100077
865	0.0357	0.1354999	0.3355999	0.5356999	1.336

Table 14-1: Spectral dependency of aerosol optical thickness (cont.)

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 72

Spectral dependency of optical thickness for assemblage 11					
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0
412	0.074199998	0.27149998	0.668699931	1.065899915	2.654800083
443	0.0696	0.254200009	0.625899926	0.997799899	2.485100171
490	0.063	0.230699996	0.568099989	0.905699939	2.255599991
510	0.060499998	0.221499988	0.545999898	0.870299855	2.167500137
560	0.054799998	0.201100011	0.49529991	0.789799973	1.967000127
620	0.048899998	0.179499893	0.442299997	0.705100024	1.756300046
665	0.0452	0.165600005	0.408299901	0.651199885	1.621799969
681	0.0438	0.160999994	0.397099911	0.633099923	1.577500096
708.75	0.042099999	0.154400006	0.380599887	0.606899931	1.512100056
753	0.038400001	0.142000009	0.35009991	0.558500014	1.391700047
761	0.037999998	0.14049999	0.346399991	0.55239988	1.376500074
778.75	0.037200001	0.136999994	0.338099913	0.539099894	1.343600049
865	0.0322	0.1189	0.2943	0.4693999	1.17
Spect	ral dependency	of optical thickr	ess for assembl	age 12	
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0
412	0.065500001	0.237099885	0.582400035	0.927999861	2.309799984
443	0.063199998	0.228699992	0.562399934	0.896399869	2.230799943
490	0.0599	0.217700005	0.535399911	0.852799855	2.123599977
510	0.058500001	0.213199995	0.524499993	0.835499953	2.080700017
560	0.055199999	0.202999995	0.499699885	0.796899904	1.984800049
620	0.052200003	0.193099991	0.476199873	0.759099859	1.891999884
665	0.050100002	0.185900004	0.4591999	0.732299879	1.825300008
681	0.049499999	0.18419999	0.455099887	0.725799923	1.809400054
708.75	0.0485	0.180800004	0.446699984	0.712399855	1.776000077
753	0.046700001	0.175099896	0.433099986	0.691	1.723000053
761	0.046500003	0.174299986	0.431399999	0.688199842	1.716099903
778.75	0.046100003	0.172199902	0.425999986	0.679600013	1.695099975
865	0.0433	0.1632	0.4045999	0.6459	1.6113
Spect	ral dependency	of optical thickr	less for assembl	age 13	
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0
412	0.068199997	0.253099999	0.622600016	0.992099986	2.470000037
443	0.064999996	0.2407999	0.591999895	0.943299984	2.348699946
490	0.060299997	0.223699887	0.550599981	0.877399938	2.184899948
510	0.058400001	0.216999991	0.534500012	0.851899936	2.121200058
560	0.054099999	0.201900003	0.497900014	0.793499993	1.976400031
620	0.049899995	0.186700004	0.460599906	0.73429975	1.829699967
665	0.046999995	0.1765999	0.435600006	0.694899949	1.731199891
681	0.0462	0.173699898	0.428699921	0.683399972	1.70309988
708.75	0.044799998	0.168500009	0.416299895	0.663799874	1.654499947
753	0.042199999	0.159799902	0.395099925	0.630399955	1.571400001
761	0.041899998	0.158899993	0.392599898	0.626099968	1.560799841
778.75	0.041099999	0.156000008	0.385699898	0.615000008	1.533499846
865	0.0375	0.1428	0.3538999	0.5651	1.409

Table 14-1: Spectral dependency of aerosol optical thickness (cont.)

Copyright © 2001 ACRI S.A.

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.:IIDate: 13 July 2001Page: 73

Spect						
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0	
412	0.073599997	0.269100006	0.662599944	1.056200012	2.630399911	
443	0.068999999	0.25249993	0.62149987	0.990599915	2.466899941	
490	0.062799995	0.22980001	0.565999965	0.901999892	2.246499972	
510	0.060400001	0.221000006	0.544499851	0.867899923	2.161699864	
560	0.054799999	0.201200006	0.495499874	0.790200011	1.967799968	
620	0.049299997	0.180599905	0.444999884	0.709599887	1.767400004	
665	0.045699998	0.167099903	0.412199888	0.657299888	1.637299888	
681	0.0442999999	0.163099907	0.401899878	0.640799902	1.596699811	
708.75	0.042599998	0.15639991	0.385899894	0.615299893	1.533000002	
753	0.039099998	0.144899905	0.356999976	0.56959994	1.419399883	
761	0.038699997	0.143299907	0.353599999	0.563899853	1.405199945	
778.75	0.0379	0.139899903	0.345199995	0.550299908	1.371699988	
865	0.0331	0.1226	0.3036	0.484	1.2065	
Specti	al dependency	of optical thickn	ess for assembla	age 15		
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0	
412	0.064900002	0.234999991	0.577500018	0.919999915	2.289799931	
443	0.062899995	0.227299892	0.558500007	0.890099985	2.215300094	
490	0.059700001	0.216800013	0.533199941	0.849499881	2.115000064	
510	0.058399997	0.212699903	0.523599945	0.834100032	2.0769998	
560	0.055299999	0.2034	0.500499904	0.798099854	1.988000004	
620	0.052299997	0.193499901	0.477499911	0.761199975	1.896999939	
665	0.050599999	0.187099914	0.462399993	0.737799842	1.838600024	
681	0.049800001	0.185299899	0.457699913	0.730000009	1.819799938	
708.75	0.048799995	0.182199991	0.450500027	0.718699848	1.791299992	
753	0.047199998	0.176799989	0.43720002	0.697899946	1.740099911	
761	0.046999996	0.175999998	0.435599894	0.694999995	1.733100016	
778.75	0.046799999	0.174700004	0.432000026	0.689599875	1.719900001	
865	0.0441	0.1665999	0.4132	0.6599	1.646	
Spect	ral dependency	of optical thickn	ess for assembla	age 16		
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0	
412	0.067900003	0.251699914	0.619300019	0.986700009	2.456799815	
443	0.064699998	0.239599913	0.589599911	0.939100035	2.338599866	
490	0.060199996	0.223099921	0.549300019	0.875100064	2.179199804	
510	0.058299998	0.216900014	0.5338	0.851000058	2.118799884	
560	0.054199999	0.20220001	0.498299962	0.794399941	1.978399893	
620	0.050099999	0.186999908	0.461399989	0.735700049	1.833199947	
665	0.0471	0.17749991	0.437799975	0.69840008	1.740099885	
681	0.046200001	0.1742999	0.430399905	0.686300044	1.710100011	
708.75	0.0451	0.169699919	0.418699874	0.668000009	1.664599989	
753	0.042499999	0.160900009	0.3977999	0.634999868	1.582800012	
761	0.042299998	0.159900003	0.395499925	0.630699908	1.572099991	
778.75	0.041399998	0.157700017	0.389799987	0.62170004	1.549899949	
865	0.0381	0.1450999	0.3596999	0.5742	1.4321	

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.:IIDate: 13 July 2001Page: 74

Specti							
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0		
412	0.073399996	0.268400018	0.660899852	1.053600017	2.623699919		
443	0.068999999	0.251899888	0.620199894	0.988599957	2.461900179		
490	0.062700002	0.22959989	0.565299936	0.900900053	2.243599981		
510	0.060199996	0.220799999	0.544200012	0.867599901	2.160399967		
560	0.054799999	0.201299991	0.495899888	0.790500004	1.968899962		
620	0.049399998	0.180699905	0.445499974	0.710300042	1.76910002		
665	0.0458	0.167500002	0.413199982	0.659200021	1.641600114		
681	0.044399997	0.163299903	0.402699896	0.64230004	1.600200147		
708.75	0.042799998	0.156999903	0.387199911	0.617299957	1.538000073		
753	0.039299996	0.145299893	0.358399996	0.571900031	1.425100075		
761	0.038800001	0.143799897	0.355100007	0.566099924	1.410800039		
778.75	0.038100001	0.140699893	0.347199893	0.553599885	1.380100083		
865	0.0333	0.1237	0.3064	0.4886	1.2182		
Specti	al dependency of	of optical thickn	ess for assembla	age 18			
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0		
412	0.063899998	0.231499891	0.56859988	0.905699913	2.25389995		
443	0.062199997	0.224599896	0.552199909	0.879899959	2.189899776		
490	0.059299998	0.215399889	0.529799881	0.844099898	2.101699913		
510	0.058299999	0.211699887	0.520799856	0.829900029	2.06640004		
560	0.0554	0.203499984	0.500999938	0.798799884	1.989799968		
620	0.052799999	0.194899992	0.480999983	0.766800006	1.911099921		
665	0.051099999	0.189199881 0.467299882 0.74559		0.745599976	1.858299927		
681	0.050299998	0.187499884	0.463599884	0.73940006	1.842999996		
708.75	0.049499997	0.185099889	0.457399998	0.729799953	1.819199918		
753	0.048000001	0.180099897	0.445699996	0.711300011	1.773699955		
761	0.047800002	0.179599988	0.444400019	0.709200048	1.768300093		
778.75	0.047699997	0.178099892	0.440900008	0.703700058	1.755199946		
865	0.0454	0.1712	0.4246	0.678	1.6914		
Spect	al dependency of	of optical thickn	ess for assembla	age 19			
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0		
412	0.067300001	0.249299892	0.613199993	0.977099875	2.432900062		
443	0.064200001	0.237899889	0.585299914	0.932399907	2.321500092		
490	0.06	0.222199997	0.546999971	0.871699964	2.170399988		
510	0.058	0.216100006	0.532100006	0.84809999	2.111700079		
560	0.054200003	0.202299993	0.498699889	0.794999901	1.979700006		
620	0.050299999	0.187899998	0.463800031	0.73949993	1.842499971		
665	0.047500001	0.178699901	0.441100013	0.70369997	1.753300049		
681	0.046700002	0.175799901	0.434299983	0.692399938	1.725500088		
708.75	0.045400003	0.171499886	0.423499919	0.67549987	1.683300045		
753	0.043000003	0.163099893	0.403399978	0.643999869	1.605200045		
761	0.042800004	0.162299896	0.401299892	0.640099975	1.595500101		
778.75	0.042000001	0.160099884	0.395599973	0.631199897	1.5736001		
865	0.0389	0.1482999	0.3673	0.5863999	1.4625		

Table 14-1: Spectral dependency of aerosol optical thickness (cont.)

Copyright © 2001 ACRI S.A.

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 75

Spectral dependency of optical thickness for assemblage 20						
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0	
412	0.073200006	0.267299989	0.657999899	1.048799935	2.611700064	
443	0.068800006	0.250999891	0.617999957	0.985099933	2.453300037	
490	0.062500003	0.228999998	0.56400002	0.899099982	2.239099992	
510	0.060200001	0.220499992	0.543199901	0.866100018	2.156899961	
560	0.054800004	0.201299981	0.495999909	0.790799959	1.969400114	
620	0.049400003	0.181199885	0.446600014	0.712199999	1.773800079	
665	0.046000001	0.168099889	0.414800023	0.661800002	1.64820009	
681	0.044600001	0.164099899	0.404800019	0.6454	1.6079001	
708.75	0.043000005	0.157899896	0.389399903	0.621099872	1.54740006	
753	0.039700002	0.146499902	0.36129993	0.576300007	1.436300135	
761	0.039200001	0.145099893	0.357899996	0.570800028	1.422600085	
778.75	0.038500003	0.141799999	0.350100038	0.558399959	1.391800101	
865	0.0338	0.1253	0.3101999	0.4948	1.2332	
Spect	ral dependency	of optical thickn	ess for assembla	age 21		
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0	
412	0.061799997	0.223299892	0.548099859	0.872799868	2.172399932	
443	0.0604	0.218699992	0.537100014	0.855399937	2.128900138	
490	0.0586	0.212099995	0.521499872	0.830999944	2.068799895	
510	0.057699997	0.209499896	0.515599999	0.821499997	2.04530002	
560	0.055599998	0.203799994	0.50249987	0.801000135	1.995000003	
620	0.053499999	0.197699977	0.48829988	0.77869992	1.940300022	
665	0.0524	0.194099893	0.479499875	0.764500079	1.906000032	
681	0.0519	0.192599882	0.476099912	0.75959996	1.893600054	
708.75	0.051300002	0.190899986	0.471800004	0.753000077	1.877100091	
753	0.0501	0.187099888	0.463299913	0.739700072	1.844699981	
761	0.05000003	0.186499887	0.462299925	0.737700017	1.839700005	
778.75	0.049499996	0.185899996	0.459999989	0.734300045	1.831599933	
865	0.0478	0.1801999	0.4471	0.7143999	1.7823	
Spect	ral dependency	of optical thickr	ness for assembl	age 22		
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0	
412	0.059100002	0.215700003	0.529299916	0.843099919	2.09770016	
443	0.057999997	0.212899988	0.523100048	0.83319992	2.07320001	
490	0.056600003	0.209099908	0.514400028	0.819199867	2.039499887	
510	0.056000002	0.207499896	0.51090002	0.813900066	2.026500016	
560	0.054699998	0.204299987	0.503600017	0.802799973	1.999699826	
620	0.053500003	0.200800004	0.495999909	0.791000004	1.971299855	
665	0.052599999	0.198899985	0.491600044	0.783899872	1.954399936	
681	0.052199999	0.197999899	0.489699928	0.781299844	1.947999943	
708.75	0.051900002	0.197199994	0.48779993	0.778199946	1.940099885	
753	0.051100001	0.194999903	0.483500008	0.771700051	1.924799974	
761	0.050900001	0.194999993	0.482799916	0.770899983	1.922399972	
778.75	0.050599998	0.194599984	0.481899997	0.769099841	1.91889992	
865	0.0497	0.1916999	0.4757999	0.7598999	1.8968	

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 76

Spect						
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0	
412	0.058200001	0.208299921	0.510699901	0.813099891	2.022999952	
443	0.057600003	0.20739992	0.50909991	0.810599961	2.01730005	
490	0.056999999	0.206100015	0.506900008	0.807499856	2.01000038	
510	0.056499999	0.205499902	0.506200029	0.806299883	2.007499995	
560	0.055800003	0.204900006	0.50469999	0.804599983	2.004200039	
620	0.055100001	0.204099905	0.503699995	0.803300019	2.002100024	
665	0.054800002	0.203799898	0.503699874	0.803399922	2.002600028	
681	0.054600001	0.203400015	0.503299876	0.803099882	2.002700126	
708.75	0.054500003	0.203600005	0.503599978	0.80350001	2.003700034	
753	0.054000003	0.203	0.503499966	0.803699913	2.004899996	
761	0.054000003	0.2032999	0.503599978	0.803800001	2.004899996	
778.75	0.053800001	0.203200002	0.503699995	0.804299992	2.006200177	
865	0.0536	0.2032999	0.5044999	0.8057999	2.0112	
Spect	ral dependency	of optical thickr	less for assembl	age 24		
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0	
412	0.0601	0.216099898	0.529799879	0.843599943	2.099200042	
443	0.059	0.213300005	0.523599919	0.833800038	2.074800189	
490	0.057899995	0.209499895	0.514800035	0.819999873	2.04160005	
510	0.057100001	0.207800009	0.51109986	0.814299985	2.027500022	
560	0.055599998	0.203999989	0.503099914	0.801899963	1.997200013	
620	0.054399999	0.2010999	0.496599926	0.792099966	1.973799935	
665	0.053499999	0.1987	0.490999908	0.782899945	1.952100144	
681	0.0533	0.198399999	0.490499936	0.782599912	1.951200054	
708.75	0.052899997	0.197200003	0.487700011	0.777999951	1.94000012	
753	0.052099996	0.195500002	0.484100037	0.77280009	1.927600153	
761	0.052099996	0.195099897	0.483799896	0.772000021	1.925499993	
778.75	0.051699999	0.194399883	0.481200028	0.768000043	1.9159	
865	0.0505	0.1912	0.4745999	0.7581	1.8919	
Spect	ral dependency	of optical thickr	ess for assembl	age 25		
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0	
412	0.057799999	0.210899993	0.517199857	0.823699989	2.048799971	
443	0.057200001	0.209399891	0.513999986	0.818699845	2.036900075	
490	0.056100002	0.20729989	0.509799909	0.811999944	2.021300145	
510	0.0558	0.206200013	0.507899872	0.809099938	2.014600068	
560	0.0547	0.204500002	0.504099912	0.80330002	2.001199932	
620	0.053899997	0.203099913	0.501599904	0.799899914	1.993499984	
665	0.053399996	0.201999895	0.499199972	0.796299869	1.98500004	
681	0.053199997	0.201899904	0.499299983	0.796600016	1.986500063	
708.75	0.052999998	0.201300006	0.498299899	0.794799947	1.982100022	
753	0.0524	0.200599902	0.497500021	0.793799841	1.98000038	
761	0.052299997	0.200699894	0.497199919	0.79370001	1.979799985	
778.75	0.052099998	0.20020001	0.496099993	0.79159988	1.975299918	
865	0.0515	0.199	0.4941	0.7892999	1.9698	

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 77

Spectr					
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0
412	0.057599999	0.205899892	0.504599917	0.803399942	1.998600024
443	0.057000003	0.205699903	0.5047	0.803399983	1.999100072
490	0.056800002	0.205199998	0.504800022	0.803799937	2.000900103
510	0.056400001	0.204999898	0.5047	0.803899886	2.001700017
560	0.055799998	0.204999997	0.50489992	0.805000034	2.005000192
620	0.055500004	0.205199899	0.506399923	0.807799878	2.013200166
665	0.055300003	0.205299901	0.507599897	0.809499927	2.018100087
681	0.055100002	0.205499902	0.508099907	0.810799925	2.021900065
708.75	0.055000002	0.205599902	0.508899924	0.811900016	2.024600122
753	0.054700001	0.205899892	0.510399865	0.814799916	2.032600035
761	0.054700001	0.206099894	0.510800012	0.815300007	2.033600132
778.75	0.0545	0.206100005	0.510800012	0.815499914	2.034300117
865	0.0545	0.207	0.5137999	0.8203999	2.0477
Specti	al dependency	of optical thickn	ess for assembla	age 27	
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0
412	0.059499999	0.213999998	0.524899996	0.835600067	2.079200091
443	0.058699996	0.211899919	0.519699865	0.827499959	2.059300008
490	0.0577	0.208600008	0.512599966	0.816699994	2.032999953
510	0.056999996	0.207299918	0.510199984	0.812900057	2.023799898
560	0.055700002	0.204400013	0.503899887	0.803100031	2.000400108
620	0.0545	0.201499901	0.497900012	0.794199988	1.978799994
665	0.054000002	0.199899998	0.494199893	0.788399903	1.96539999
681	0.053599998	0.199499898	0.493099985	0.78679995	1.961599887
708.75	0.053199999	0.198599998	0.491499975	0.784299913	1.955300079
753	0.052600001	0.197200013	0.488200018	0.779700051	1.944699945
761	0.052600001	0.196799986	0.487999853	0.778800068	1.94249996
778.75	0.052400002	0.196899993	0.487199992	0.777999948	1.940700053
865	0.0513	0.1945999	0.4832	0.7721	1.9266
Spect	ral dependency	of optical thickness for assem		age 28	
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0
412	0.057500002	0.209499909	0.513900017	0.81830001	2.035600035
443	0.056900001	0.208199904	0.511600037	0.814499985	2.026799887
490	0.056	0.206699887	0.508499903	0.809699941	2.015600028
510	0.0557	0.206100015	0.507200008	0.808199955	2.01220012
560	0.054799998	0.204800009	0.504499919	0.804199868	2.003199945
620	0.054100003	0.20340001	0.502399934	0.801299936	1.997000013
665	0.053500002	0.202899916	0.50140003	0.79979995	1.993899938
681	0.053200002	0.202499889	0.50099992	0.799499951	1.993499863
708.75	0.053300002	0.202499889	0.500699875	0.798999985	1.992199994
753	0.052700001	0.201700003	0.50020001	0.7983999	1.991399964
761	0.052700001	0.201700003	0.50010001	0.798299868	1.991099913
778.75	0.052400001	0.201900017	0.50020001	0.798300012	1.991700015
865	0.0521	0.2013	0.4998999	0.7983999	1.9929

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 78

Spectral dependency of optical thickness for assemblage 29						
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0	
412	0.057400001	0.205199898	0.502900006	0.800799988	1.991899891	
443	0.057000005	0.205099887	0.503399909	0.801399953	1.994099927	
490	0.056699998	0.204999886	0.504100026	0.802699963	1.997999936	
510	0.0562	0.204799902	0.504399995	0.803599848	2.00039994	
560	0.055799998	0.205099997	0.505299917	0.805299983	2.006099824	
620	0.0556	0.205299896	0.506900008	0.808499968	2.014899888	
665	0.055400002	0.205699904	0.50859987	0.81140009	2.022399769	
681	0.055199998	0.205699904	0.508899907	0.812300025	2.025399903	
708.75	0.055199998	0.206199897	0.510199899	0.813899939	2.029599782	
753	0.054900005	0.206299898	0.511799872	0.817099882	2.038299923	
761	0.054800002	0.206599905	0.512299992	0.817499859	2.039200046	
778.75	0.0547	0.206899989	0.512799896	0.818799968	2.042700016	
865	0.0547	0.2081	0.5166	0.8249999	2.0594	
Spect	ral dependency	of optical thickn	ess for assembla	age 30		
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0	
412	0.058499997	0.210500004	0.515999982	0.821300061	2.043299987	
443	0.058000001	0.209199908	0.513399924	0.817299981	2.033900035	
490	0.057300004	0.207199908	0.509199959	0.811299873	2.019699998	
510	0.056899995	0.206299892	0.507399941	0.808699878	2.01320001	
560	0.055799996	0.204500003	0.504400009	0.803799918	2.002199878	
620	0.054999999	0.202900013	0.501399904	0.799799941	1.992900084	
665	0.054499997	0.201999901	0.499099896	0.796199931	1.985100114	
681	0.054100001	0.201699888	0.499000016	0.796199931	1.984799917	
708.75	0.0539	0.201499895	0.498400032	0.795399988	1.983199954	
753	0.053399998	0.200499907	0.496700012	0.793100024	1.978299929	
761	0.053399998	0.200399911	0.49680001	0.792999984	1.977700007	
778.75	0.053300003	0.200299891	0.496100023	0.792099907	1.975999906	
865	0.0526	0.1992	0.4946	0.7902001	1.972	
Spect	ral dependency	of optical thickn	ess for assembla	age 31		
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0	
412	0.056899998	0.207099995	0.507799975	0.808699894	2.011700037	
443	0.056400001	0.206499898	0.507300041	0.807799869	2.009700146	
490	0.055799994	0.205799996	0.506200056	0.806299967	2.006800009	
510	0.0554	0.205299998	0.505500056	0.805299979	2.005100052	
560	0.054799999	0.2049	0.504899937	0.804799912	2.004499962	
620	0.054299995	0.204300001	0.504799935	0.805099907	2.006300011	
665	0.053900001	0.204099892	0.504700018	0.805099996	2.007100186	
681	0.053700001	0.203999903	0.504899937	0.805599966	2.008899992	
708.75	0.053599998	0.204299891	0.505500056	0.806499894	2.010900105	
753	0.053199997	0.203899903	0.505800039	0.807399911	2.0138	
761	0.053199997	0.204099892	0.505900042	0.807699955	2.01449996	
778.75	0.052999997	0.204299891	0.505999954	0.807799869	2.015399985	
865	0.0529	0.2045	0.5074999	0.8105999	2.0233	

Table 14-1: Spectral dependency of aerosol optical thickness (cont.)

Copyright © 2001 ACRI S.A.

MERIS ESL Doc. No : PO-TN-MEL-GS-0026 Name : Reference model for MERIS Level 2 process Issue : 4 Rev.: 1 Date : 13 July 2001 Page : 79	sing
--	------

Spect					
$\tau_{tropo}(560)$	0.05	0.2	0.5	0.8	2.0
412	0.0572	0.204099993	0.499999974	0.796000022	1.979900106
443	0.0568	0.204199886	0.501199881	0.797900012	1.985500053
490	0.056500001	0.204399996	0.50279996	0.800900012	1.99350006
510	0.056200003	0.204499901	0.503400007	0.802100007	1.996900022
560	0.055799996	0.205099996	0.505399971	0.805599999	2.006599999
620	0.0556	0.205799907	0.507999983	0.810400004	2.019599911
665	0.0556	0.206299897	0.51019989	0.814000022	2.029000076
681	0.055399997	0.206499907	0.51099988	0.81540002	2.033099982
708.75	0.055399997	0.2070999	0.512399891	0.817700025	2.039000136
753	0.055300001	0.207499897	0.514699861	0.821500005	2.049499981
761	0.0552	0.207900006	0.515099965	0.8222	2.051000146
778.75	0.055100002	0.207999899	0.515699893	0.823599998	2.054399984
865	0.0552	0.2097	0.5203999	0.8311999	2.0744

Table 14-1: Spectral dependency of aerosol optical thickness (cont.)

14.2 - AEROSOL MODELS (ATM. COR. ABOVE LAND)

For the 12 aerosol models used in atmosphere corrections above land, spectral dependency is modelled by an Angström law:

$$\frac{\tau_a(\lambda 1)}{\tau_a(\lambda 2)} = \left(\frac{\lambda 1}{\lambda 2}\right)^{-ang}$$

where the Angström exponent ang is given as function of model index in table 14-2 below.

Model index	Angström exponent
1	0.
2	0.5
3	1.
4	1.5
5	0.
6	0.5
7	1.
8	1.5
9	0.
10	0.5
11	1.
12	15

Table 14-2: Angström exponent of aerosol models

Doc. No: PO-TN-MEL-GS-0026Name: Reference model for MERIS Level 2 processingIssue: 4Rev.: 1Date: 13 July 2001Page: 80

15. - Aerosol forward scattering probability

For the 33 aerosol assemblages listed in table 12 above, the forward scattering probability (determined by the phase function of its components) is tabulated at the first 9 bands in table 15-1 below. The values in *Italic type* are subject to change in a future revision of this document.

Assem. number	Wavelength								
	412	442	490	510	560	620	665	681	708.75
0	0.95220435	0.95163769	0.9510839	0.95121557	0.95037538	0.94893587	0.94888401	0.94812208	0.94763219
1	0.91486955	0.91477072	0.91462493	0.91463816	0.91431713	0.91423959	0.91406727	0.91414958	0.91408324
2	0.92483139	0.92624503	0.92650348	0.92695171	0.92631418	0.9269433	0.92665964	0.92697424	0.92641336
3	0.93273771	0.93305683	0.93329775	0.93319803	0.93352538	0.93323815	0.9331249	0.93305022	0.93313313
4	0.93743938	0.93776524	0.9383387	0.93878329	0.93898249	0.93848908	0.93896866	0.9384768	0.93831503
5	0.9224956	0.92078632	0.91805184	0.91680104	0.91358191	0.90955627	0.90654105	0.90541255	0.90381426
6	0.9308458	0.92968893	0.92785454	0.92704833	0.92457747	0.92139393	0.91898376	0.91805524	0.91674417
7	0.93694854	0.93668658	0.93615931	0.93561369	0.93486518	0.93313426	0.93190819	0.93132675	0.9305256
8	0.93722183	0.93770158	0.93825942	0.93843758	0.93847942	0.93801206	0.93767536	0.93741876	0.93708998
9	0.91316563	0.91309375	0.91300696	0.91302228	0.91279823	0.91279638	0.91265017	0.91273087	0.9126907
10	0.90659547	0.90665561	0.90677148	0.90675777	0.90671062	0.90644091	0.90615302	0.9061231	0.90601349
11	0.90068358	0.90073097	0.90079528	0.90066892	0.90055078	0.89972132	0.89906639	0.89878583	0.89847481
12	0.92248535	0.92387438	0.92423993	0.92468703	0.92420679	0.92497259	0.92475492	0.9250744	0.92459512
13	0.91229123	0.91339928	0.91400957	0.91434842	0.91436565	0.91491312	0.91476297	0.91500813	0.91467625
14	0.90330935	0.90390927	0.90429145	0.90439373	0.90439475	0.90414244	0.90367609	0.90362775	0.90323383
15	0.92989808	0.93030351	0.93066376	0.93058467	0.93106687	0.9309963	0.93095946	0.930924	0.93105203
16	0.91684842	0.91739482	0.91814506	0.91821593	0.91898394	0.9190864	0.91918325	0.91918021	0.91938812
17	0.90542269	0.90578693	0.90630329	0.90626627	0.906712	0.90630239	0.90603656	0.90585428	0.90582401
18	0.93427777	0.93470085	0.93541509	0.93587333	0.93625516	0.93603975	0.93660408	0.93615609	0.93607819
19	0.91942817	0.92007536	0.92116904	0.92161602	0.92247367	0.92262775	0.92323041	0.92300272	0.92311907
20	0.90659195	0.90700877	0.90771931	0.90792769	0.90845597	0.90818202	0.90823263	0.90797347	0.90792745
21	0.92596793	0.92526329	0.92425066	0.92394692	0.92279786	0.92199624	0.92124665	0.92116255	0.92080271
22	0.93178713	0.93067014	0.92904925	0.92844915	0.92672151	0.92507249	0.92378324	0.92345268	0.92282951
23	0.93803823	0.93639994	0.93400687	0.93305725	0.93062013	0.92804581	0.92619658	0.92563015	0.92472774
24	0.93661988	0.93713015	0.93606287	0.9360041	0.93414068	0.93353248	0.93237257	0.93237615	0.93145794
25	0.93919599	0.93882656	0.93705332	0.93657404	0.93425965	0.93264955	0.93103993	0.93076193	0.92973834
26	0.94190544	0.9405961	0.93806779	0.93715185	0.93437815	0.93178517	0.9297502	0.92919868	0.92809254
27	0.94489872	0.94411439	0.94279021	0.94208264	0.94094771	0.9393	0.93813407	0.93776917	0.93733317
28	0.94485098	0.94357121	0.94158393	0.94065505	0.9387902	0.9364602	0.93483466	0.93430632	0.93359786
29	0.94480145	0.94300956	0.94035405	0.93920267	0.93663782	0.93367279	0.93162173	0.9309414	0.92999244
30	0.94996476	0.94901365	0.94781142	0.94756556	0.94610584	0.94408733	0.94334638	0.94255823	0.94185996
31	0.94828081	0.94687492	0.94495136	0.94432139	0.94222599	0.93964076	0.93828619	0.93748921	0.9366045
32	0.94654489	0.94467551	0.94204044	0.94104242	0.93834943	0.93526125	0.93333662	0.93252838	0.93149108

Table 15-1: Aerosol scattering probability

Note: this parameter is not applicable to the 12 aerosol models used in atmosphere corrections above land.