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The use of GOCE gravity data for hydrocarbon exploration

GOCE+ GeoExplore

GOCE gravity data may provide improved models of the crust and lithosphere

Better understanding of the evolution of  the thermal system in the basin 

Prospectivity of the basin: areas where hydrocarbons are likely to be generated



� Generation of hydrocarbons
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� Generation of hydrocarbons

• Organic-rich source rocks in the basin need heat to get mature    “cooked” and 

produce hydrocarbon (oil and gas)

• The heat needed for cooking the source rock:

• Energy from the mantel

• Energy from radiogenic elements in the basement

• Energy from radiogenic elements in the sediments

The amount of heat within the basin is controlled (defined)             by the 

heat flow [mW/m-2] 



Heat flow: Important parameter in hydrocarbon exploration

Heat flow is usually considered  a “user input”

• Present-day heat flow (measured in wells or assumed for the basin)

is applied:

o Temporal extrapolation

Apply present-day heat flow as “flat heat flow ” for the whole basin history

o Spatial extrapolation

Apply present-day heat flow as “flat heat flow” for whole basin
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Heat flow: Important parameter in hydrocarbon exploration

Main inputs:

Lithosphere and                    

Crust thickness

• Based on basin subsidence history (sedimentation, erosion, PWD, .. etc)

(heat flow variations though time and space)

• Effect of sedimentation infill and heat production in the crust

(Improved McKenzie model)

• Conducts calibration with measured 

(Model calibration and verification)
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Gravity data and heat flow modelling

• Heat flow can be determined from crustal and lithospheric models

• Gravity data can help constrain the crust the lithosphere underlying 

the basin



GOCE data and heat flow modelling

• Suitable for crust and lithosphere studies (can help “mapping” the Moho

transition; essential for heat flow modeling).  

• GOCE gradient data: higher horizontal resolution for crustal structure 

discrimination 

• Suitable resolution for regional studies

Science Goals of the GOCE Mission (ESA, 1999)

Test case:

The Rub al’ Khali basin 

(Arabian  Peninsula)



GOCE + GeoExplore: Geophysical exploration and basin modeling

Arabian Peninsula (The Rub al’ Khali area)

(Pollastro, 2003)

• Large, remote area

• Under-explored with high potential (frontier basin)

• Heterogeneous basement (Arabian shield), possible Impact 

on heat flow in the basin.



Geophysical exploration and basin modeling Arabian 

Peninsula (The Rub al’ Khali area)

Approach



Workflow 

• GOCE gravity model (gravity gradients, gravity anomaly)

•Required correction and processing

• Integration of different data (land, satellite ..etc)

Gravity data 

“Fwd. models”

Integrated 

GOCE data

Geologic 

model

• Building a geologic model of the area.

• Layer thicknesses, litho-stratigraphy, paleo water depth, tectonic evolution.

Heat flow 

model

• Geologic model and crust model used for heat flow calculation

•Stretching factor (β) for initial crust thickness

•Het flow maps through time

Lithosphere

Crust model

• Inversion and forward modeling of gravity data

• Crust model (thickness variations) 

Maturity model

• Maturity of source rock units



Work progress

• Geological model

• Gravity models preparation and analysis

• Preliminary heat flow analysis



Work progress: Geologic model

Used for:

• Gravity modeling 

• Heat flow modeling

• Maturity modeling 



Work progress: GOCE gravity models / data

• Gravity anomaly data 

• GOCE gradient data 

• Combined gravity models

Bouguer anomaly map of KSA

(Geological survey of KSA)

Used for:

•Crust model 

•Lithospheric thickness GOCE gravity gradient components 

derived from gravity models over the 

region 



Work progress: Gravity data analysis

• Preliminary  analyses

• Gravity anomaly forward modelling

• Topographic reduction

• Sensitivity analysis

• North-East Atlantic margins

Topography reduction

Forward modeling

Comparison between preliminary GOCE gravity gradients    (Vij) and 

gravity gradients from lithospheric density model (Uij).



Work progress: Preliminary heat flow analysis

Effect of crust and lithosphere thickness on heat flow 

Heat flow: crust 30 KmHeat flow: crust 45 KmDifference: HF (45) – HF(30)

[mW/m-2] [mW/m-2] [mW/m-2] 



Work progress: Preliminary heat flow analysis

Effect of crust and lithosphere thickness on heat flow 

Heat flow: Litho 125 KmHeat flow: Litho 110 KmDifference: HF(110) –HF(125)

[mW/m-2] 
[mW/m-2] [mW/m-2] 



Work progress: Preliminary heat flow analysis

Reconstructing crustal thickness in geologic time. Based on:

1. Present day crust thickness (obtained from GOCE for example )

2. Crustal stretching (obtained from basin subsidence analysis) 

Important for heat flow variations through geologic times and therefore maturity 

and hydrocarbon generation though time.

Paleo-crust thicknessStretching factor 

Present day crust 

(from literature)



Work progress: Preliminary heat flow analysis

Heat flow and maturity based on varying crustal thickness

Basal heat flow derived from  a crustal model  based on literature Modelled present day maturity of Paleozoic source rock



Initial modelling of heat flow:  preliminary conclusions

• Heat flow is sensitive to crustal thickness (radiogenic heat 

generation) and lithospheric thickness.

• Possible to link present day crustal thickness to paleo crustal 

thickness (important for tectonic heat flow modeling).

• Variations in crust thickness (provided by GOCE ?) will result in 

variations in heat flow and therefore hydrocarbon generation.



• GOCE gravity data will be interpreted to update the crust and lithosphere 

models. 

• Hopefully a better resolution is provided by the gradient data 

(different crustal structures might be detected).

• Sensitivity of GOCE to deep structures?

• New crust and lithosphere thickness model which can fit GOCE data, will 

be used to model the heat flow.

• The results will be calibrated to seismic stations, temperature, vitrinite 

reflectance and surface heat flow measurements.

Future plans







� Generation of hydrocarbons
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• Organic-rich source rocks in the basin need heat to get mature    

“cooked” and produce hydrocarbon (oil and gas)

• The heat needed for cooking the source rock comes from the crust 

• Energy from the mantel

• Energy from radiogenic elements in the basement

• Energy from radiogenic elements in the sediments

• The amount of heat within the basin is controlled (defined) by the heat flow

[mW/m-2] within the basin 



Work progress: Gravity data analysis

• Preliminary  analyses

• Gravity anomaly forward modelling

• Topographic reduction

• Sensitivity analysis

• North-East Atlantic margins

Topography reduction

Forward modeling

Comparison between preliminary GOCE gravity gradients    (Vij) and 

gravity gradients from lithospheric density model (Uij).

Ebbing et al (2011)





Jurassic maturity (Vr %) Permian maturity (Vr %) Surface heat flow (mW/m2)

Data: Basement model, Calibration data (Maturity modeling)

Moho depthBasement depth

( Milner, 1998)

(Stern and Johnson, 2010) (Al-Damegh et al., 2005)



Heat flow and Maturity (PetroProb):
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Heat flow modeling: 

Probabilistic tectonic heat flow modeling (PetroProb)

Main inputs:

Lithosphere and Crust thicknesses and properties

• A multi- 1D tectonic heat flow modelling approach

(Temporal and spatial variations)

• Based on inversion of basin subsidence data    

(sedimentation, erosion, PWD, .. etc)

(Modelled  tectonic heat flow)

• Incorporates the effect of sedimentation infill and 

heat production in the crust

(Improved  McKenzie model)

• Includes uncertainty in the input parameters

(Probabilistic approach)

• Conducts calibration with measured data and  

sensitivity analysis 

(Model calibration and verification)



The GOCE satellite mission

Gravity Field and Steady-State Ocean Circulation Explorer  (GOCE)

ESA satellite launched in 2009

Measures gravity gradient (gradiometer)

Objectives:

Gravity field with high accuracy

Spatial resolution of ~ 75 km

Model of the Geoid (1-2 cm)

Solid Earth

Sea-level Change

Geodesy 

Ocean Circulation



Basal heat flow and maturity in the basin

• Heat flow influences the maturity of the source rock

• Basement heat flow is influenced by the crust properties 

Crust structure, thickness and composition

The case in the Rub al’khali ? 

Variations (heterogeneity) within the crust 

Variations in basal heat flow

Maturity anomalies within the basin

(Pillastro, 2003)

• Heterogeneous basement (Arabian shield) shows   

Continues below the Phanerozoic sediments in the Arabian Platform


