

UK Met Office: planned use of satellite salinity

Alistair Sellar, Niall McConnell

SMOS user workshop, Vienna, 26 April 2012

Contents

This presentation covers the following areas

- Introduction to Met Office FOAM ocean forecasting system
- Path towards assimilation of satellite salinity data
- Initial comparisons with global FOAM model

FOAM: Forecast Ocean Assimilation Model

A brief introduction

FOAM Deep Ocean Configurations

1/12° North Atlantic

1/12° Mediterranean

1/12° Indian Ocean

1/4° Global (orca025)

Provides lateral boundary conditions for the regional models

FOAM System overview

 48-hour observation window allows us to include much more data into the FOAM system

FOAM Data assimilation

Temperature and salinity profiles (Argo floats, XBTs, CDTs, buoys,...)

Sea-ice concentration (OSI-SAF)

Satellite and in-situ SST (AATSR, AVHRR, AMSRE, METOP)

Satellite Altimeter SSH (Jason 1, Jason 2, ENVISAT)

Outline plans

Path towards assimilation of satellite salinity data

- 1. Routine model-observation comparisons to build an understanding of typical differences
 - Initially with L3 data for convenience
 - Ideal L3 dataset would be a 1-day mean global coverage not a priority (c.f. AATSR L3 SST data from Ifremer)
- 2. Output operational obs-background match-ups with L2 data
 - More precise understanding of differences against model at the precise time of observation (incl. triple collocation)
 - Allows calculation of error covariances for data assimilation
- 3. Assimilation trials
- 4. Operational implementation

Requirements for data assimilation of L2 data (in order of priority)

1. Timeliness

- Ideally receive data within 6 hours of validity time
- Longer delays result in lower impact on model

2. Error estimates

Ideally an error estimate for every data point delivered

3. Low bias

Biased observations are more challenging to assimilate

4. Accuracy

- With ~1 PSU errors, SMOS data would have some impact
- Impact of data scales as ~1/error (for large errors)

First results

SMOS – FOAM comparisons

- SMOS L3 data from CP34 (L3OS1b):
 - 3-day mean
 - 1 degree grid
 - June 2011 April 2012 (9 months)
- FOAM global ¼° model data from operational analyses
 - 3-day mean
 - interpolated to ½° lat-long grid

Example L3 SMOS data 9-12 April 2012

- Systematic cross-swath differences
- A known feature of the L2 data

FOAM-SMOS difference 9-12 April 2012

Difference statistics (tropics only)

SMOS error estimate 9-12 April 2012

Are the differences consistent with L3 error estimates?

- L3 error
 estimates are
 ~half of FOAM SMOS
 differences
- Argo validation suggests FOAM errors < 0.2 PSU.
- => L3 error estimate too low?

Next steps

- Set up routine comparisons between L3 SMOS and Aquarius data and FOAM and other models
- Use L2 data to output operational obs-background differences
- Use triple collocation to better understand errors
- Prepare for data assimilation...

Met Office

Extra slides

FOAM Deep Ocean Models

- NEMO ocean model (with a linear free surface) coupled to LIM2 sea-ice model
- 50 constant depth vertical levels (z-levels)
- Surface forcing using 3-hourly NWP fluxes
- Assimilation of satellite and in-situ observations of temperature, salinity, SSH and sea-ice concentration
- Provides lateral boundary conditions for the UK shelf seas models