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The analysis and understanding of data acquired by a SAR system
needs from the following considerations

Model for the
SAR imaging SAR
process/system

Wave
Scattering
Model

‘ SAR Data
Model

Model for the
scatterer being
imaged
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Te impulse response of the SAR system embracing the acquisition and the focusing
processes is
h(x,r)= exp( j nil r)sinc(”—rjsinc(”—r)
A SR oX

= Range resolution: 5R :%

m Azimuth resolution; §X =%

Point scatter
How it appears in the SAR
, image s(x,r)
h(x.r) - -
‘ T Distributed scatter
Idea of resolution cell J, xJ,

The resolution cell is not the pixel
of the SAR image. The pixel
L properties depend on how the
Range [m] SAR impulse response is
sampled. Over sampling induces
image spatial correlation.

Azimuth [mj '

0, =0,=1m
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Examples of point targets imaged by SAR systems

Power lines Vehiéles Railways
* Point scattering
Types of microwave scattering
» Complex scattering

Houses

o, (%%) = \/591950( — X, T = 1y) Object description (Deterministic description)

Man-made media present a strong point scattering behaviour

. !

Scattered field dominated by canonical scattering mecha
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Examples of natural targets imaged by SAR systems

Rocks Rough surface Snow Seaice

« Surface scattering
Types of microwave scattering
« VVolume scattering

Object scattering function. (Random function - microscopic structure)

u(r)

nisms

Vegetation cover

NOT ACCESIBLE

Distributed scatterers have complex geometries and are randomly distributed

<u (f) -u (f)*> =o' §(F - F') Object description. (2" order descriptor - ma

croscopic structure)

Geophysical media present complicate structures and/or compositions

X 3

Exact knowledge of the scattered field very difficult
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Scattering based on the Born approximation or single scattering approximation
m The scattering is supposed to be the linear coherent addition of the individual
scattered waves from a set of discrete or point scatters

a %@L %@L SAR acquisition system

\\W / Point scatterer

"

o ’. . . * '\\’o ‘
o . . . “— Natural scatterer

“..'.. @ V0’ g s

Volume Surface Multiple Wave
scattering scattering scattering  attenuation

m The model does not consider attenuation nor multiple scattering
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& Deterministic Image formation
Z Scatterer process DATA
\\ Described in a Deterministic Can be studied
deterministic way process using deterministic
tools
Resolution cell )
b Man Made Media
Linear Distributed Image formation
% response/superposition | Scatterer process DATA
\ Described in a Deterministic Can be studied
stochastic way electromagnetic process  using stochastic
but can only be tools
. described
Resolution cell in a stochastic way
b Natural Media
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" Spekle corresponds to the
¥ “Salt&Pepper” effect of the image
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On the basis of a discrete scatter description

0 © L
S(x,r):jIu(x',r’)h(x—x’,r—r’)dx’dr’ = S(x,r)J;keigkh(xxk,rrk)
—00 —00 k=1

Normalizing factor

L: Number of point scatters embraced by the resolution cell

m L as a deterministic quantity
L = 1: or a dominating point scatter: Deterministic scattering
+ Rice/Rician model
L >1: Partially developed speckle
» Not solved model. Even numerical solution difficult
L >>1: Fully developed speckle
+ Gaussian model
® L as a stochastic quantity
L characterized by a pdf: Image texture
« K-distribution model
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= SAR image formation process

1 < -
S(x,r)zf;ﬁeﬁh(x—x“r—rk)

m Complex SAR data for L>>1

Real part

S(r(xr),0(xr))=R{s}+j3(8)
=r(x.r)exp(jo(x.r))

Random Walk Process

%{S}:%Zﬁcos(@k)

Imaginary part

r(x.r)exp (j0(x.r))= %ki A exp (i, )

S{S}:%gﬂsin(ﬁsk)
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Fully Developed speckle

is constructive

is destructive

Corner reflector

Bright points: Points where the interference Dominant scatter

No speckle

Dark points: Points where the interference

*

Speckle is the interference or fading pattern | S,,, amplitude
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m Completely developed Speckle (large L and no dominant scatter)
Hypotheses
= The amplitude A, and the phase 6, of the kth scattered wave are

statistically independent of each other and from the amplitudes and
phases of all other elementary waves (Uncorrelated point scatters)

+ The phases of the elementary contributions Hsk are equally likely to lie
anywhere in the primary interval [-m7, )

S=w_.(0,6°/2)

m Central Limit Theorem
Real Part

Imaginary Part

pﬁ{s}(s{s}):\/ﬁexﬁ’[_[ﬁg}] 3{8} &(-0,) Gaussian pdf
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2
2r ry
= I 0 E 2 — 2
p, (r) o_zexp( (ajj r e[0,00) r'j=c
2
Intensity (I=r?): Exponential pdf
1 | 2
0o ) e i)
P=E{1)
Phase: Uniform pdf. Contains NO information

P(0)=5- Oc[-mx)

Amplitude and phase are uncorrelated
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1
Amplitude: Rayleigh pdf Intensity (/=r?): Exponential pdf

Phase: Uniform pdf
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Important considerations

m Speckle is a deterministic electromagnetic effect, but due to the complexity
of the image formation process, it must be analysed statistically

m Considering completely developed speckle, a SAR image pixel does not give

information about the target. Only statistical moments can describe the
target or the process
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What does it mean information in the presence of Speckle?
m Phase contains no information
= Intensity exponentially distributed

1 | E{ll=2¢7
P (I ) - 207 exp(— 207 j ' [O,oo) ‘ {0'} =20’
=
Exponential pdf First and second order moments

= Intensity, under the previous hypotheses, is completely determined by the
exponential pdf

Pdf completely determined by the pdf shape
Pdf shape parameterized by o # INFORMATION ﬂ RCS ¢

m Not useful information is considered as NOISE
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Objectives of a Noise Model
m To embed the data distribution into a noise model, that is, a function that
allows identifying of the useful information to be retrieved, the noise sources,
and how these terms interact

m Optimize the information extraction process, i.e., the noise filtering process

SAR image intensity noise model
2

| e[00) E{l}=20

1 |
SAR image intensity (1=r?) p(1)= 207 eXP(— 202) o =20
=

2

| =20°n p,(n)=exp(-n) ne[0,«)

One dimensional speckle noise model (Model —
over the SAR image intensity - 2" moment) # |I (xr) o-(x,r)n(x,r)l

Multiplicative Speckle Noise Model |
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Moments calculated over local 7x7 local windows

x 10

L] 02 D4 0E 08 1 1.2 1.4 16 8 2

Mean 10

Blue: |Sy, |2
Grass area Red: |Su|?

#

Sy, amplitude
E-SAR L-band system
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A Polarimetric SAR system acquires 3 complex SAR images

Target vector K = [shh,zshv,sw ]T The properties of the target vector follow
from the properties of a single SAR
image:

m Kk is deterministic for point scatters.
It contains all the necessary
information to characterize the
scatter

m k is a multidimensional random
variable for distributed scatters due
to speckle. A single sample does
not characterize the scatter

SAR images characterized through

i second order moments:

m Second order moments in
multidimensional SAR data are
matrix quantities
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PDF for non-correlated SAR images
m Zero-mean multidimensional complex (also circular) Gaussian pdf

1 s S/ 1 nS.SH 1 1
P (k):H 2 exp[—kzka m 2m eXp[—k ko_zk ]: R exp(—;tr(kk“ )J

o Vs :

ﬂ,

Independent SAR images with the same power S, = /\/'C2 (0,0'2/2)
m First order moment

E{k}=0

= Second order moment: Covariance matrix

C= E{kk“} =o’l

mxm
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Characterization of random variables
m Probability Density Function (pdf)
= Moment-generating function
m Statistical moments (mean, power, kurtosis, skewness...)

Zero-mean multidimensional complex Gaussian pdf

1 -
P (k):mexp(—k“c k)

= First order moment E{k}=0
m Second order moment: Covariance matrix

E{\Shn\z} E{S,S,) E{SuSi) E{SS}#0 klefl,....m} k=

C=E{kk") =| E{s,S}] E{\shv\z} E{S,S.) '}

E{suSu} EfSusn) E{lsu[} | Correlated SAR images |
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A zero-mean multidimensional complex Gaussian pdf is completely characterized by
the second order moments, i.e., the covariance matrix

= Moment theorem for complex Gaussian processes, given Q correlated SAR
images
Fork #1, where m,and n, are integers from {1,2,...,Q}
E{SnSn, S, SnSn S0} =0

Fork =1, where m is a permutation of the set of integers {1,2,...,Q}

E{SySnSnSuSy Sy} =Y E{sm”ms;j}E{smﬁ(z)s;}m E{sm”(l)s;l}

m Considering the covariance matrix
Higher order moments are function of the covariance matrix
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The covariance matrix contains the correlation structure of the set of m SAR images
E{lsul} E{SuSh) E{SuS.)
C=E{kk"}=|E{s,sS;) E{\shv\z} E{S,S.)

E{s.Sn} E{S.Sn) E{S.[}

All the information characterizing the set of 3 SAR
images is contained in the covariance matrix

Information
m Diagonal elements: Power information

(s} =Efsf] kefl2..m}
m Off-diagonal elements: Correlation information

E{s:S"} kle{l2,...m} k=l
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How to consider the correlation information
m Off-diagonal covariance matrix elements

E{s,S/"} kle{L2,...m} k=l

Absolute correlation information

m Complex correlation coefficient

_ E{Sksl*} =| ,|ejg“ OS|pk,||Sl Coherence

T E

. N . -r<6,<rx
Normalized correlation information '

m The complex correlation information represents the most important
observable for multidimensional SAR data. Its physical interpretation
depends on the multidimensional SAR system configuration
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SAR Interferometry
m Phase 6, contains topographic information
m Coherence |pk,|| is sensitive to different properties of the imaged area
Study and retrieval of stem volume over forested areas
Study of dry and wet snow covered areas
Characterization of glaciers, valleys, and fjord ice

SAR Polarimetry

m Off-diagonal information related with the geometry and the electrical
properties of the target being imaged

Polarimetric SAR Interferometry

m Complex correlation coefficient related with the vegetation height and the
vegetation structural properties
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. Multidimensional SAR data
First order moment i Second order moment
descriptors
for distributed scatterers
s S., S., Sash  ESEE 6.8
st s, Description for Kk" =/ 28,80 25,5 V2S,S)
PoISAR data s,St V2s.sts,s!
Scattering matrix . Covariance matrix
3 Point scatterers T
characterization
SlslH SlszH Sls:
Description for H H H
o S,S7 8,88 - 8,8
k= [Sl,SZ,...,Sm] generalized multidimensional e
SAR data ) : o
Target vector S.Si' S.Si ... s.sf

E{kk"}=C

Covariance matrix

I—. P (K) =”+Mexp(—kHC'lk) <—|

For multidimensional SAR data, under the hypothesis of Gaussian scattering, all the
information is contained in the covariance matrix

Elswl} E{SwSn} E{SwS.)

C=E{kk"}=|E{S,5S.} E{\sm\z} E{S.S)

hv~w
E{SuSm] E{S.Sn} E{\swf}

This matrix must be estimated from the available information
m The scattering vector for each pixel/sample of the SAR data

K =[S 28 Sn ]’

hv> “w

m The estimation process reduces to estimate the ensemble average
(expectation operator) E{:}

m The estimation process also receives the name of data filtering process
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Considerations about speckle noise reduction ‘#;.

SAR images reflex the
Nature’s complexity

¥

Opticail image DLR OP

|Homogeneous areasl Image details |Heterogeneous areas |

Maintain useful information Maintain spatial details Maintain both
o) (Shape and value)
RADIOMETRIC RESOLUTION SPATIAL RESOLUTION LOCAL ANALYSIS

Image data: S, amplitude. E-SAR L-band system
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Multidimensional SAR data information estimation, i.e., data filtering, based on two
main hypotheses

m Ergodicity in mean: The different time/space averages of each process
converge to the same limit, i.e., the ensemble average E{}

The statistics in the realizations domain can be calculated in the
time/spatial domain

Necessary to assume ergodicity since there are not multiple data
realizations over the same area

Applied to the processes E{|Sk|2}, E{|S,|2} and E{SkS,“} k,le{l,2,...,m}

m Wide-sense stationary: Given a spatial domain statistical moments do not
depend on the sample location

SAR images can not be considered as wide-sense stationary processes
since they are a reflex of the data heterogeneity

SAR images can be considered locally wide-sense stationary

Applied to the processes E{|Sk|2} , E{|S||2} and E{s,S"} k,1le{1,2,...,m}
® Homogeneity: Refers to non-textured data

Gaussian distributed data
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Covariance matrix estimation by means of a MultiLook (BoxCar)
= Maximum likelihood estimator: Sample covariance matrix

%és,(k)s;(k) %g&(k)sé‘(k) %ésl(k)s;(k)
2 L 2S00 (XS (0S(K) 388 ()

NS

n represents the total number of samples employed to estimate the
covariance matrix, taken a region (square, rectangular, adapted...)

Z, as estimator of C
» Does not consider signal morphology/heterogeneity

+ Loss of spatial resolution

The sample covariance matrix Z, is itself a multidimensional random variable
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Z_  is characterized by the complex Wishart

n

The sample covariance matrix
distribution Z, ~W(n,C)

n™ Zn " - = m(m- m H
pZ"(Z")zc"fnmetr(_nC 'z,) £, (n)=7"""1" M (n—i+1)

= Multidimensional data distribution
= Valid forn>m, otherwise \Zn\nfmis equal to zero and the Wishart pdf is
undetermined
Equivalent to Rank( z, =m, i.e., the sample covariance matrix is a full
rank matrix
The higher the data dimensionality m the higher the number of looks n
for the Wishart pdf to be defined
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_ 2 T _L _kHe !
S, =N (0.5%/2) K =[S1,S5-.»Sn] P (k)= rnlclem( k"Ck)
e — T
. . Multidimensional
Single SAR image SAR dataset Multidimensional complex Gaussian pdf

Z =

n

kK

I
Z,~W(n,C)

Sample covariance matrix

S| =
M:

5 nmn |Zn
[T (n)
Complex Wishart pdf

|n—m

Pz, (Z,)

etr(—nC‘IZn )
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|Shh-Swv| 2[Shv| | Shh +Swv|

¥/

7x7 MLT data
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Original data

7x7 MLT data

|Shh-Svv|  2|Shv| | Shh +Swyv|
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Objective of a multidimensional speckle noise model
Useful information «<————=. ...

Z,= 1 1)
= Overcome the limitations of the fully multiplicative speckle noise model.
Noise model independent of the data dimensionality and valid for any
correlation structure for the data
Observation: Any matrix entry consists of the Hermitian product of two
complex SAR images

Noise sources

SISIH SlszH SIS:

H H H

One-look sample covariance matrix Z, =kk" = SZ,S‘ SZ,SZ . SZ_Sm
SnS' SnSy S5y

m Speckle noise model for the Hermitian product of a pair of SAR images

1

Extension to model the sample covariance matrix independently of its dimensions
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Statistics area ¥
T |
Sy

a8 48 @4 22 I'l. [ 04 06 o8 []

Mean
24
Grass area .y
Statistics calculated over ,
7X7 pixel windows

+ 2nd ADVANCED COURSE ON RADAR POLARIMETRY
21:25 Januarv 2013 | ESAESRIN | Frascati [Romel. Tralv.

@=esa

Copolar

Blue: Real(Sy,S,,*)
Red: Imag(Sy,S,,*)

| | = 0.77€70%7

Crosspolar

Blue: Real(S;,;Sp,*)
Red: Imag(Sy,Sp*)

| P | = 0.118070¢%

#

S, amplitude
E-SAR L-band system
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Hermitian product speckle noise model: |S;S] =wz,n,N.e" +v (||~ N.z, )’ +w(n, + in,)
Yoln et

Multiplicative speckle component: 7,
Stationary

R{ze?" ) = 2. cos(0z) = t-‘";"\“}?,,'n,,,m

Szl = zosinfo,) = ONZ, 0,

Low coherence

Additive speckle components: riar, i1,; m=p
P P areas

Non stationary
A 4

Final speckle noise behaviour {

Special cases
 Covariance matrix diagonal element

p=lexp(j0) mmmlp 5.5} = vng,

Multiplicative term Additive term
N High coherence  E{n,}=1
areas ol =1

E(n.}=E{n}=0

o =O'§m _ %(1_")‘2)1.32

Combination of multiplicative and additive noise
components, determined by p

* By construction, the complex Hermitian product phase difference is

characterized by an additive noise model
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L-band (1.3 GHz) fully PoISAR data. E-SAR system. Oberpfaffenhofen test area (D) 4#:_

SpnS '[otal R{SunSi) ML:JL term R{Sp,50.) Ac‘ld. term R {Sy,50,1
= Rl %1 llD_ = 2 o

v

3

0< 1/ <0.2

0.4 <,/<0.6

0.8<y<1
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. . . . - - cos(0.331) = 0945
Speckle noise behaviour in high coherence areas { p = 0.850exp(j0.331) Sn(0331) ~ 032
The phase ¢.determines the contribution of the multiplicative noise component
Mult. term R {5,551 Add. term R[Sy, 50,1 Mult. term 315,,5;, 1 Add. term 3]s, 57}
§ G o J o — i ,_———f_i%; o Pl
8| 04| a5 5]
o oz o ar as as o8 t o or a4 an an 1 o or ae a6 an
w L L]
gou §nl___‘_"'v__\?.;f: . §on
Hod Foal ‘% T
o oz L o on 1 ll oz o4 as an .l
»l L
Corr.term  R{Su, S0}
! DE 2 A 4 r
i Differences between the o it 5}
real and the imaginary parts %
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. . . cos(—0.528
Speckle noise behaviour in low coherence areas{lp = 0.389 exp(—j0.525)] mi_o ;Osi

Low influence of the average phase ¢.in low coherence areas

0.863
—0.503

X

4

Mult. term R{S;, 50, ) Add. term ®{S5y,5;.) Mult. term {5,557, Add. term 3{5,,5:, }

o8 ‘ o) LEY " LE)

ol 0|

.

oa| S| e
o i ot
Bos 1 '-'\\}é/ Bl

e,
al ey’

o az 04 on oB
"

Corr.term  R{Su, S0}

oal

B For low coherences, additive .
iy T speckle term dominates :

ORR POLARIMETRY
rascati [Romel. Traly.
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Hermitian product speckle noise model: [(SS]) =wn, exp(ig. )+ (o]~ Nz, )exp(id,)+w (n, + in,)
Wi e A

Multiplicative term Additive term

Multiplicative speckle noise component
= Dominant for high coherences . s (e
+ Modulated by phase information " "t 2

Additive speckle noise component
+ Dominant for low coherences
= Not affected by phase information

Effect of the approximations
= Mean value IS NOT approximated =+  No loss of information
tim {yn,, exp(ig, )+ (||~ N.Z, )exp(ig, )+ (m + in, )} =w[olexn (i)

» Std. Dev. ARE approximated
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Define a multidimensional SAR data filtering strategy based on the multidimensional
speckle noise model

Element to consider: Covariance matrix

L Diagonal element: Multiplicative noise source

L Non-diagonal element: Multiplicative and additive noise sources
combined according to the complex correlation coefficient
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Diagonal element processing
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Any alternative to filter multiplicative noise can be considered
Non-iterative scheme

Off-diagonal element processing

The filter uses the Hermitian product speckle model: $;S; =yZ,n,Ne™ +y (|p| - N.Z, )" +y (n, + jn,)
Yz Nee ™

Multiplicative term Additive term
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Iterative scheme to take benefit of the improved coherence estimation
This strategy filters differently the covariance matrix elements
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Quantitative evaluation of the filter difficult with experimental SAR data due to speckle

1

Necessity to consider an evaluation with simulated multidimensional SAR data

PoISAR data
Nevertheless results and conclusions may be extended to any multidimensional SAR

10 et
C=E{kk"}=| 0 075 0
PoISAR data simulated < ‘p‘efwx 0 1

according to the covariance matrix

Matrix parameterized by the co-polar complex
correlation coefficient

Covariance matrix elements

Analysis of: Real and imaginary parts, amplitude, phase, correlation
Covariance matrix

Analysis of: Eigendecomposition, polarimetric signatures

Performed tests:
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3x3 looks 5x5 looks 9x9 looks
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5x5 looks 9x9 looks

am, -

‘phhw ‘

1

The multidimensional speckle noise model improves the estimation of covariance matrix
components, but what happens with the whole covariance matrix?
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Eigendecomposition applied to the estimated covariance matrices
3x3 looks 5x5 looks 9x9 looks
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To filter covariance elements differently does not damages information
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Theoretical PS Multilook PS Filter PS

11x11 looks

What happens in this particular case?
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Full-polar ESAR L-Band SAR data in Oberpfaffenhofen (DE) ‘#r
nE

Filter

5x5 Multilook

lter
It. Multilook
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Co-polar correlation
‘phhw‘

Cross-polar correlation
‘phhhv ‘
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Co-polar correlation|oy.|: Details analysis ‘#;.
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5x5 Multilook

Co-polar correlation phase
‘phhw‘

Details
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5x5 Multilook
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