

7

Mathematical Representation
The covariance matrix contains the correlation structure of the set of m SAR images
$\mathbf{C} = E\left\{\mathbf{k}\mathbf{k}^{H}\right\} = \begin{bmatrix} E\left\{\left S_{hh}\right ^{2}\right\} & E\left\{S_{hh}S_{h\nu}^{*}\right\} & E\left\{S_{hh}S_{\nu\nu}^{*}\right\} \\ E\left\{S_{h\nu}S_{hh}^{*}\right\} & E\left\{\left S_{h\nu}\right ^{2}\right\} & E\left\{S_{h\nu}S_{\nu\nu}^{*}\right\} \\ E\left\{S_{\nu\nu}S_{hh}^{*}\right\} & E\left\{S_{\nu\nu}S_{h\nu}^{*}\right\} & E\left\{\left S_{\nu\nu}\right ^{2}\right\} \end{bmatrix}$
All the information characterizing the set of 3 SAR images is contained in the covariance matrix
Information
$E\left\{S_k S_k^H\right\} = E\left\{\left S_k\right ^2\right\} k \in \{1, 2, \dots, m\}$
■ Off-diagonal elements: Correlation information $E\{S_kS_l^H\}$ $k, l \in \{1, 2,, m\}, k \neq l$

Information Content
 SAR Interferometry Phase θ_{k,l} contains topographic information Coherence ρ_{k,l} is sensitive to different properties of the imaged area Study and retrieval of stem volume over forested areas Study of dry and wet snow covered areas Characterization of glaciers, valleys, and fjord ice
 SAR Polarimetry Off-diagonal information related with the geometry and the electrical properties of the target being imaged
 Polarimetric SAR Interferometry Complex correlation coefficient related with the vegetation height and the vegetation structural properties
+ 2nd ADVANCED COURSE ON RADAR POLARIMETRY 28 Remote Sensing Lab. 21-25 January 2013 ESA-ESRIN Frascati (Rome), Italy 28 Universitat Politikenias do Catalunya Evrepsen Space Agency

Information Estimation/Filtering
Multidimensional SAR data information estimation, i.e., data filtering, based on two main hypotheses
Ergodicity in mean: The different time/space averages of each process converge to the same limit, i.e., the ensemble average E{}
 The statistics in the realizations domain can be calculated in the time/spatial domain
 Necessary to assume ergodicity since there are not multiple data realizations over the same area
• Applied to the processes $E\left\{\left S_k\right ^2\right\}$, $E\left\{\left S_l\right ^2\right\}$ and $E\left\{S_kS_l^H\right\}$, $k, l \in \{1, 2,, m\}$
 Wide-sense stationary: Given a spatial domain statistical moments do not depend on the sample location
 SAR images can not be considered as wide-sense stationary processes since they are a reflex of the data heterogeneity
SAR images can be considered locally wide-sense stationary
• Applied to the processes $E\{ S_k ^2\}$, $E\{ S_l ^2\}$ and $E\{S_kS_l^H\}$, $k, l \in \{1, 2, \dots, m\}$
Homogeneity: Refers to non-textured data
 Gaussian distributed data
2nd ADVANCED COURSE ON RADAR POLARIMETRY 21-25 January 2013 E54-6507M Executi (Borne) Taby 21-25 January 2013 E54-6507M Executi (Borne) Taby

Multilook Multidimensional Speckle Noise Model
Hermitian product speckle noise model: $\left\langle S_{i}S_{j}^{*}\right\rangle_{n} = \underbrace{\psi n_{m} \exp(j\phi_{x})}_{Multiple utive term} + \underbrace{\psi(\rho - N_{c}\overline{z_{n}}) \exp(j\phi_{x}) + \psi(n_{ar} + jn_{al})}_{Additive term}\right\rangle$
Multiplicative speckle noise component
• Dominant for high coherences • Modulated by phase information $E\{n_m\} = N_c \overline{z}_n \qquad \sigma_{n_m}^2 = N_c^2 \frac{(1+ \rho ^2)}{2n}$
Additive speckle noise component • Dominant for low coherences • Not affected by phase information $E\{n_{ar}\} = E\{n_{ai}\} = 0 \qquad \sigma_{n_{a}}^{2} = \sigma_{n_{a}}^{2} = \frac{1}{2n} (1 - \rho ^{2})^{132\sqrt{n}}$
 Effect of the approximations Mean value IS NOT approximated → No loss of information
$\lim_{n \to \infty} \left\{ \psi n_m \exp\left(j\phi_x\right) + \psi\left(\left \rho\right - N_c \overline{z}_m\right) \exp\left(j\phi_x\right) + \psi\left(n_{ar} + jn_{ai}\right) \right\} = \psi\left \rho\right \exp\left(j\phi_x\right)$
Std. Dev. ARE approximated
Znd ADVANCED COURSE ON RADAR POLARIMETRY 21-25 January 2013 ESA-ESRIN Frascati (Rome). Italy

