





## **Outline**



- 1 GMES context
- 2 Sentinel-1 mission overview
- 3 Sentinel overall operations concept, data policy
- 4 Sentinel-1 observation concept
- 5 Concluding remarks





## Global Monitoring for Environment and Security (GMES)



- EU/ESA co-funded program aiming at providing operational GMES services based on Earth observation and in-situ data
- Provides relevant information to policy-makers, institutional EU + MS authorities (Core service), and local/regional users (Downstream)

### Space Component – developed & coordinated by ESA

- ✓ Sentinels
- ✓ Contributing (national) Missions Data Access

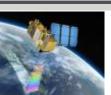
#### In-situ component – coordinated by EEA

- ✓ Observations mostly within national responsibility, with coordination at European level
- ✓ Air, sea- and ground-based systems and instrumentations

#### Service component – coordinated by EC

✓ Mapping and forecasting services: Land, Marine, Atmosph Emergency, Security and Climate Chan




### GMES dedicated missions: Sentinels





Sentinel-1 (A/B) – SAR imaging All weather, day/night applications, interferometry

2013 /2015



Sentinel-2 (A/B) – Multi-spectral imaging Land applications: urban, forest, agriculture,... Continuity of Landsat, SPOT

2014/2016



Sentinel-3 (A/B) – Ocean and global land monitoring Wide-swath ocean color, vegetation, sea/land surface temperature, altimetry

2014/2017



**Sentinel-4 (A/B) – Geostationary atmospheric** Atmospheric composition monitoring, transboundary pollution

2019/2027



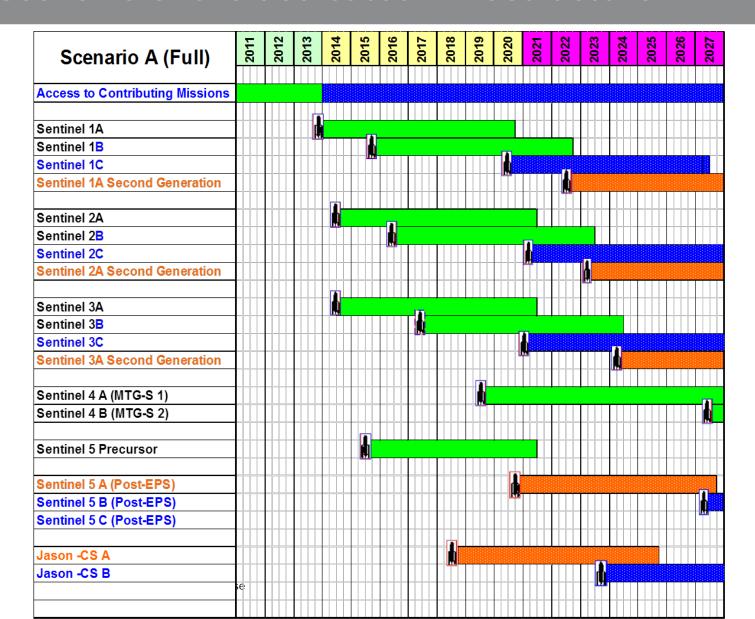
Sentinel-5 precursor/ Sentinel-5 (A/B) – Low-orbit atmospheric

Atmospheric composition monitoring

2015/2020/2027



Jason-CS (A/B) – Low inclination Altimetry Sea-level, wave height and marine wind speed


National Section 1

European Space Agency

2018/2023

## GMES Space Component: Long Term Scenario of the dedicated infrastructure





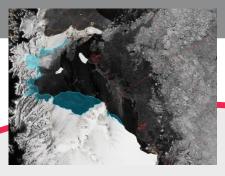
### Sentinel-1: C-band SAR mission



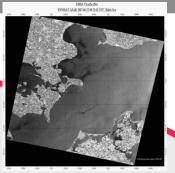
- ✓ Data continuity of ERS and ENVISAT missions
- ✓ GMES radar imaging mission for ocean, land and emergency services



### ✓ Applications:


- monitoring sea ice zones and the arctic environment
- surveillance of marine environment (e.g. oil spill monitoring)
- maritime security (e.g. ship detection)
- wind, wave, current monitoring
- monitoring of land surface motion (subsidence, landslide, tectonics, volcanoes, etc.)
- support to emergency / risk management (e.g. flooding, etc.)
   and humanitarian aid in crisis situations
- mapping of land surfaces: forest, water and soil, agriculture, etc.

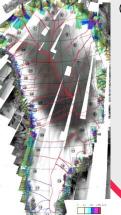
## A wide range of applications






Arctic ice extent August 2009 (Credit: MyOcean)




Larsen ice shelf loss between 2002 and 2009 (Credit: Polar View)



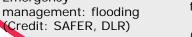
Oil spill detection and Surveillance (Credit: EMSA)



Ship detection (Credit: ESA)



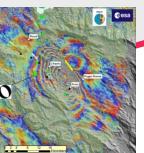
ESA U


Acceleration of Greenland glaciers flow (Credit: Rignot et AI)

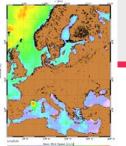







**Emergency** 





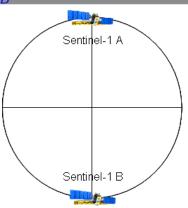

Mean wind speed

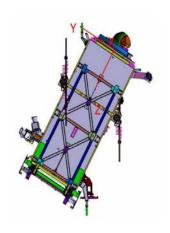
Earthquake analysis (Credit: INGV)



ency




#### **Sentinel-1 Mission Facts**



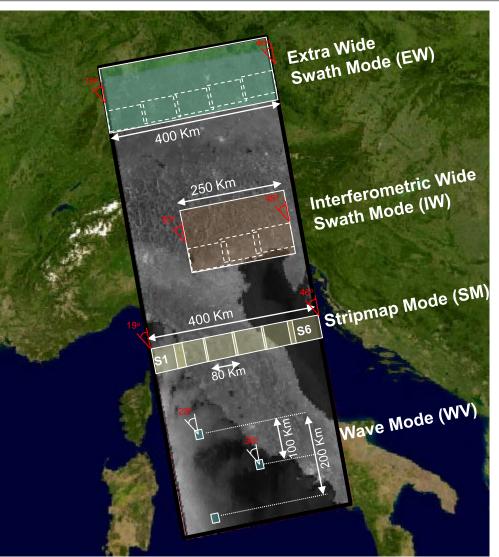





- Constellation of two satellites (A & B units)
- C-Band Synthetic Aperture Radar Payload (at 5.405 GHz)
- 7 years design life time with consumables for 12 years
- Near-Polar sun-synchronous (dawn-dusk) orbit at 698 km
- 12 days repeat cycle (1 satellite), 6 days for the constellation
- Both Sentinel-1 satellites in the same orbital plane (180 deg phased in orbit)
- On-board data storage capacity (mass memory) of 1400 Gbit
- Two X-band RF channels for data downlink with 2 X 260 Mbps
- On-board data compression using Flexible Dynamic Block Adaptive Quantization (FDBAQ)
- Optical Communication Payload (OCP) for data transfer via laser link with the GEO European Data Relay Satellite (ERDS)
- Launch of Sentinel-1A scheduled for October 1<sup>st</sup>, 2013 (Sentinel-1B launch subject to EC funding)






## **Mission Performance**



| Mode                       | Access Angle | GR <u>Single Look</u><br>Resolution | Swath Width      | Polarisation   |  |  |
|----------------------------|--------------|-------------------------------------|------------------|----------------|--|--|
| Strip Map                  | 20-45 deg.   | Range 5 m                           | > 80 km          | HH or VV or    |  |  |
|                            |              | Azimuth 5 m                         |                  | HH+HV or VV+VH |  |  |
| Interferometric Wide       | > 25 deg.    | Range 5 m                           | > 250 km         | HH or VV or    |  |  |
| Swath                      |              | Azimuth 20 m                        |                  | HH+HV or VV+VH |  |  |
| Extra Wide Swath           | > 20 deg.    | Range 20 m                          | > 400 km         | HH or VV or    |  |  |
|                            |              | Azimuth 40 m                        |                  | HH+HV or VV+VH |  |  |
| Wave mode                  | 23 deg.      | Range 5 m (TBC)                     | > 20 x 20 km     | HH or VV       |  |  |
|                            | &            | Azimuth 5 m (TBC)                   | Vignettes at     |                |  |  |
|                            | 36.5 deg.    |                                     | 100 km intervals |                |  |  |
| For All Modes              |              |                                     |                  |                |  |  |
| Radiometric accuracy (3 σ) |              |                                     |                  |                |  |  |
| Noise Equivalent Sigma     | -22 dB       |                                     |                  |                |  |  |
| Point Target Ambiguity     | -25 dB       |                                     |                  |                |  |  |
| Distributed Target Ambi    | -22 dB       |                                     |                  |                |  |  |

## **Sentinel-1 SAR Modes**

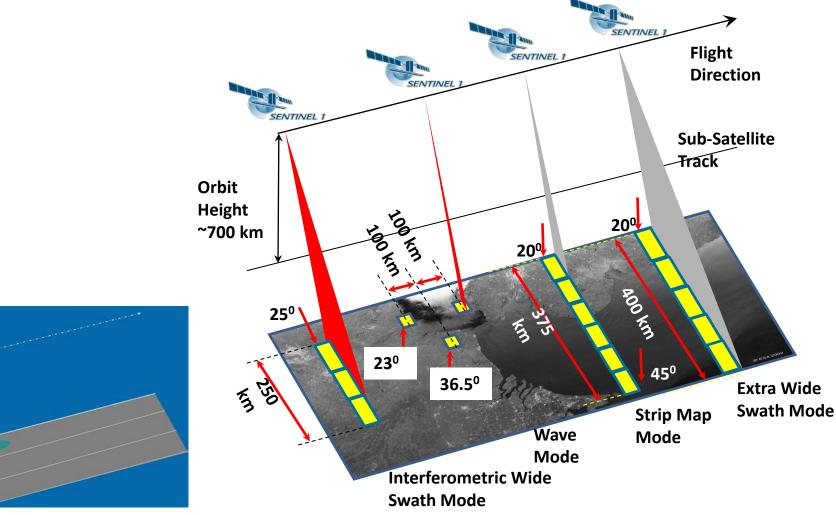




Sentinel-1 SAR can be operated in 4 exclusive imaging modes with different resolution and coverage:

| Mode Rate             | SAR Mode     |  |
|-----------------------|--------------|--|
| High Bit Rate         | IW           |  |
| (HBR)                 | EW           |  |
|                       | SM (S1 → S6) |  |
| Low Bit Rate<br>(LBR) | WV           |  |

Polarisation schemes for IW, EW and SM:


- single polarisation: HH or VV
- dual polarisation: HH+HV or VV+VH

For Wave mode: HH or VV

For all of these operating modes, the same family of products is available to the users.

## Sentinel-1 SAR Modes: TOPS





Slide 12

## Planned ESA Operational Products available to users



#### **LEVEL-0 PRODUCTS**

Compressed, unprocessed instrument source packets, with additional annotations and auxiliary information to support the processing.

#### **LEVEL-1 PRODUCTS**

#### Level-1 Slant-Range Single-Look Complex Products (SLC):

Focused data in slant-range geometry, single look, containing phase and amplitude information.

#### Level-1 Ground Range Detected Geo-referenced Products (GRD):

Focused data projected to ground range, detected and multi-looked. Data is projected to ground range using an Earth ellipsoid model, maintaining the original satellite path direction and including complete geo-reference information.

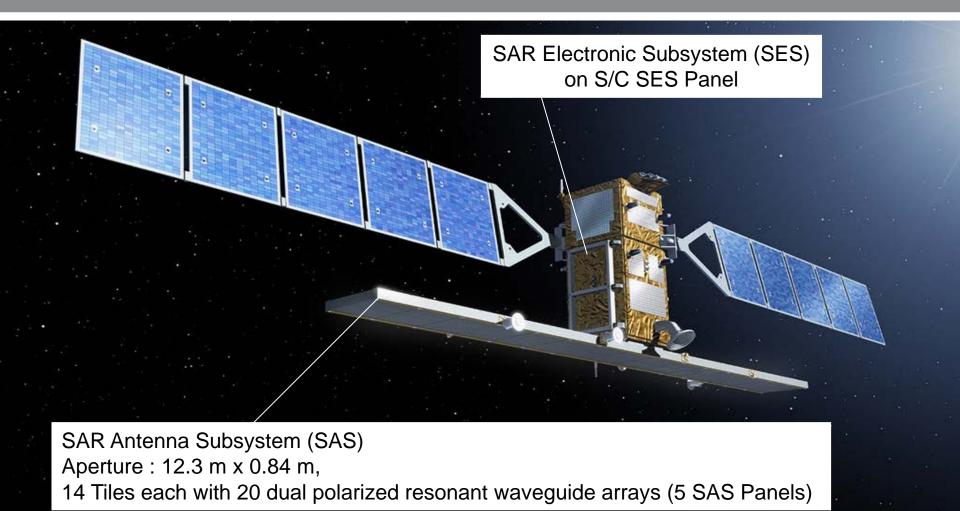
#### **LEVEL-2 PRODUCTS**

Level-2 Ocean products

Ocean wind field, swell wave spectra and surface radial velocity information as derived from SAR data.

## Planned operational ESA Sentinel-1 products - L1 characteristics




| Acq. Mode | Product<br>Type | Resolution<br>Class | Resolution<br>[Rng x Azi] [m] | Pixel Spacing<br>[Rng x Azi] | No. Looks<br>[Rng x Azi] | ENL   |
|-----------|-----------------|---------------------|-------------------------------|------------------------------|--------------------------|-------|
|           | SLC             | -                   | 1.7 x 4.3 to 3.6 x 4.9        | 1.5 x 3.6 to 3.1 x 4.1       | 1 x 1                    | 1     |
| SM        | GRD             | FR                  | 9 x 9                         | 4 x 4                        | 2 x 2                    | 3.9   |
|           |                 | HR                  | 23 x 23                       | 10 x10                       | 6 x 6                    | 34.4  |
|           |                 | MR                  | 84 x 84                       | 40 x 40                      | 22 x 22                  | 464.7 |
|           |                 |                     |                               |                              |                          |       |
|           | SLC             | -                   | 2.7 x 22 to 3.5 x 22          | 2.3 x 17.4 to 3 x 17.4       | 1                        | 1     |
| IW        | GRD             | HR                  | 20 x 22                       | 10 x 10                      | 5 x 1                    | 4.9   |
|           | GRD             | MR                  | 88 x 89                       | 40 x 40                      | 22 x 5                   | 105.7 |
|           |                 |                     |                               |                              |                          | ,     |
|           | SLC             | -                   | 7.9 x 42 to 14.4 x 43         | 5.9 x 34.7 to 12.5 x 34.7    | 1 x 1                    | 1     |
| EW        | GRD             | HR                  | 50 x 50                       | 25 x 25                      | 3 x 1                    | 3     |
|           |                 | MR                  | 93 x 87                       | 40 x 40                      | 6 x 2                    | 12    |
|           |                 |                     |                               |                              | -                        | -     |
| WV        | SLC             | -                   | 2.0 x 4.8 and 3.1 x 4.8       | 1.7 x 4.1 and 2.7 x 4.1      | 1 x 1                    | 1     |
|           | GRD             | MR                  | 52 x 51                       | 25 x 25                      | 13 x 13                  | 139.7 |

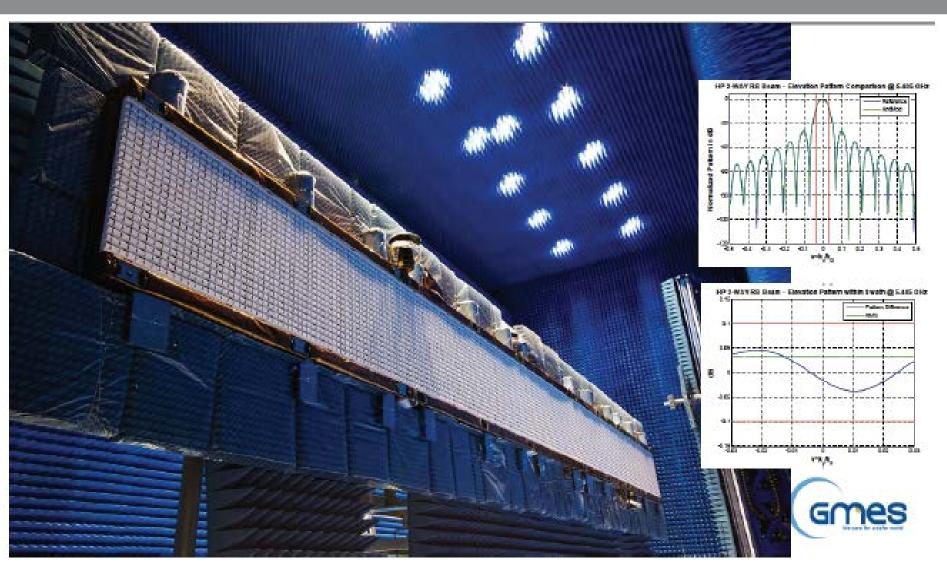
- For Ground Range Products, the resolution corresponds to the mid range value at mid orbit altitude, averaged over all swaths.
- For SLC SM/IW/EW products, the resolution and pixel spacing are provided from lowest to highest incidence angle.
   For SLC WV products, the resolution and pixel spacing are provided for beams WV1and WV2.
- For SLC products, the range coordinate is in slant range. All the other products are in ground range.

  ESA UNCLASSIFIED For Official Use

## Sentinel-1 Spacecraft – SAR elements






## Sentinel-1A platform





## Sentinel-1A SAR Antenna





# Main objectives of the Sentinel operations strategy



- Provide data to GMES services and for utilisation by ESA /
   EU Member States according to their specified requirements
- Ensure systematic and routine operational activities:
  - ✓ with a high level of automation
  - ✓ with pre-defined operations to the maximum extent possible
- Establish a conflict free operations profile, therefore anticipate conflict resolution, in particular with the elaboration of pre-defined mission observation scenarios
  - ✓ required in particular for Sentinel-1
  - ✓ the use of 2 spacecraft constellation allows:
    - to solve the vast majority of potential conflicts
    - o to fulfil the necessary revisiting requirements







## **Sentinel Data Policy**



### **Sentinel Data Policy**

full and open access to Sentinel data to all users

- Aim for maximum availability of data & corresponding access services
- Support to increasing demand of EO data for
  - → implementation of environmental policies
  - → climate change initiatives

#### In practical terms:

- Anybody can (has the right to) access acquired Sentinel data
- Licenses for the Sentinel data are free of charge
- Online access with users registration including acceptation of generic Terms and Conditions, at no fees, within the technical and financial limits (available operations budget).

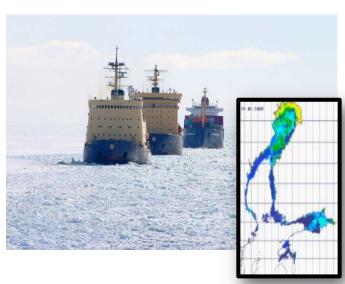
Slide 19

## Sentinel-1 observation scenario objective



Implement a pre-defined and conflict-free observation plan, aiming at fulfilling, to the maximum feasible extent, the observation requirements from:

- the GMES services
- the use by ESA / EU Member States


In addition, on best effort basis and in order to ensure some continuity of ERS/ENVISAT, requirements from the science community are also considered, as well as contribution to international cooperation activities.

→ Need to find *a priori* the solutions on the potential conflict among users (e.g. different SAR operation modes / polarisation required over same geographical area)

# Sentinel-1 services <u>over oceans, seas</u> and sea-ice areas



- These services require quasi real time or near real time data, typically in less than 3 hours, and in some cases in less than 10 min.
- Quasi real time services or services requiring data within 1 hour from sensing rely on the support from collaborative ground stations
- These "monitoring" types of service require systematic or very frequent (e.g. daily) observations
- These services include, e.g.:
  - ✓ Sea-ice and iceberg monitoring
  - ✓ Oil spill monitoring
  - ✓ Maritime security information services (incl. ship detection)
  - ✓ Wind, wave, current monitoring



European Space Agency

# Sentinel-1 services and applications over land



- These services or applications cover a wide range of different thematic domains
- They do not generally require data in quasi real time, few of them require data in 3 hours NRT
- Related data are planned to be recorded on-board and downloaded to the core ground station network (direct transmission to collaborative stations may however be made in Europe)
- These services / applications include e.g.:
  - ✓ risk management in support to flooding
  - ✓ "security" services in the GMES framework
  - Iand motion / geo-hazard monitoring with InSAR (seismic hazards, volcanoes, landslides, subsidence / inactive mines, coastal lowland and flood defence)
  - ✓ glacier, snow monitoring
  - ✓ large ice sheet monitoring (Greenland, Antarctica, in particular to support climate change studies)
  - ✓ river and lake ice monitoring
  - ✓ global forest mapping (e.g. in support of REDD / GFOI)
  - ✓ global / regional land mapping (incl. for food security, crop monitoring, land cover and change monitoring, soil moisture, etc.).

# Examples of Sentinel-1 operations constraints (list not exhaustive)



#### <u>Instrument operations constraints:</u>

- SAR modes exclusivity (incl. polarisation schemes)
- SAR mode transition time (2.4 sec.)
- SAR duty cycle (25 min/orbit for the 3 high rate modes)



### Data transmission / acquisition constraints:

- Huge volume of data, potentially up to 2.4 TB/day with the two satellites
- Data rate versus X-band downlink capacity (use of on-board data compression – FDBAQ)
- Data downlink conflict between RT data transmission in dual-polarisation and download of on-board recorded data
- On-board memory sizing (1410 Gbits)
- X-band duty cycle (max. 30 min/orbit, max. 20 min consecutive)
- X-band downlink switches (X-Band system specified for a total of 150,000 operation cycles)

# Process for collecting and implementing the Sentinel-1 observation requirements



| Category                                                                      | Source of Requirements                                                                                                                                                                                                                                                                                   | Status / Comments / Issues                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GMES Services                                                                 | <ul> <li>Extrapolation of Data Access Data         Warehouse requirements</li> <li>Direct discussions with GMES services         and EMSA</li> </ul>                                                                                                                                                     | <ul> <li>Requirements available from key current GMES services and EMSA</li> <li>Issues:         <ul> <li>GMES services which will be operational in 2014+?</li> <li>"perimeter" of GMES services</li> </ul> </li> </ul>        |
| National (public) services (in accordance with GSC Prog. Declaration)         | <ul> <li>Discussions with Delegations</li> <li>Reply to Collaborative GS questionnaire<br/>(GOCG)</li> </ul>                                                                                                                                                                                             | <ul> <li>Requirements available from ~13 Member States (AT, CND, DE, DK, E, FIN, F, GR, I, NO, PT, RO, UK)</li> <li>Some require clarification and/or consolidation</li> <li>Reply to collaborative GS questionnaire</li> </ul> |
| Scientific use, on-<br>going ESA<br>projects,<br>continuity of<br>ERS/ENVISAT | <ul> <li>Recommendations from scientists at key SAR workshops (FRINGE, SEASAR), Sentinel-2 workshops, SEN4SCI, etc.</li> <li>ESA GSE Projects (e.g. Polar View, MARISS, Terrafirma, GMFS, etc.)</li> <li>Glob-series projects, CCI, SEOM, etc.</li> <li>Extrapolation of ERS/ENVISAT projects</li> </ul> | Some requirements available. Continuous process. Requirements to be implemented in 2014.                                                                                                                                        |
| International Initiatives, International cooperation                          | <ul> <li>GEO, CEOS, IGOS, FAO, FCT, GFOI, REDD, PSTG, IICWG, GCOS, CliC, TIGER, DRAGON, Geo-hazard Supersites, etc.</li> <li>Requests from international partners (e.g. US (NOAA / NASA / USGS), Australia, China, etc.)</li> </ul>                                                                      | Some requirements available (e.g. NOAA). Requirements to be implemented in 2014                                                                                                                                                 |
| Other incl. use for commercial VA                                             | - EARSC, etc.                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                 |

### Sentinel-1 observation scenario



## High level strategy during Full Operations Capacity

- Optimum use of SAR duty cycle (25 min/orbit for 1 satellite), taking into account the various constraints (e.g. limitation in number of X-band RF switches, mode transition times)
- Wave Mode continuously operated over open oceans, with lower priority w.r.t. the other high rate modes
- IW or EW modes operated over pre-defined geographical areas:
  - ✓ Over land: pre-defined mode is IWS
  - ✓ Over seas and polar areas, and ocean relevant areas: pre-defined mode is either IWS or EWS



• The Full Operations Capacity is reached with the 2-satellite constellation

## High level strategy to fulfil observation requirements for services over LAND during Full Operations Capability CSA

- → Baseline mode of operations: IW, if possible in dual-polarisation. Single polarisation however sufficient for INSAR operational applications
- Systematic (or very frequent) mapping of the whole Europe
- Systematic (or very frequent) mapping of tectonic / subsidence / landslides / volcano areas to support operational services based on INSAR
   →Need to provide pairs in both ascending / descending passes
- Regular mapping of areas prone to risks to acquire strategic background data (e.g. for flood)
- Regular mapping of areas to support GMES security services
- Regular mapping or ice sheets (Greenland, Antarctica), polar coastal regions and of relevant areas for glacier and snow monitoring (based on season)
- Regular global/regional coverage of all land areas supporting among others forest mapping (e.g. REDD / GFOI), land cover change, crop monitoring, soil moisture, etc. based on seasonal requirements: frequency of coverage is TBD

# Sentinel-1 observation scenario evolution during the operations phase



#### The Sentinel-1 observation plan will evolve based on:

- The inclusion of the 2nd Sentinel-1 satellite leading to the Full Operational Capacity of the missions with the 2-satellite constellation
- The gradual use of the EDRS system to complement the data downlink capacity
- The evolution of the requirements from the services (GMES, National, etc.)
- The constraints on the space and ground segment resources (e.g. core and collaborative ground station networks)
- The contribution of (and interoperability with) the Radarsat Constellation Mission from CSA
- → A procedure will be set up to perform a regular update of the S-1 observation plan during routine operations

## Synergy Sentinel-1 / RCM



- CSA-ESA discussions on-going to explore synergies between Sentinel-1 and Radarsat Constellation Mission and in view of a certain level of interoperability between the missions
- RCM Sentinel-1 interoperability would bring strong benefits to users
- The following cooperation items are explored:
  - Joint / integrated pre-defined observation plans (complementarities in observations / modes, increased revisit, etc.)
  - Level 1 Product format
  - Harmonisation of catalogue interface
  - Development of common tools
  - · Harmonised communication, joint publications etc.
- A joint calibration working group has been set up





## **Concluding remarks**



- The Sentinel-1 mission will provide continuity to ERS and ENVISAT Cband SAR with improved performance and revisiting
- Sentinel-1 will be operated with a predefined routine observation plan currently under definition, fulfilling in priority the requirements from the GMES services and from ESA / EU Member States
- Towards a free and open access to Sentinel data for all users, within technical and budget constraints / restrictions.

